메뉴 건너뛰기




Volumn 39, Issue 5, 2011, Pages 2686-2715

Robust recovery of multiple subspaces by geometric lp minimization

Author keywords

Clustering; Detection; Geometric probability; High dimensional data; Hybrid linear modeling; Multiple subspaces; Optimization on the grassmannian; Robustness

Indexed keywords


EID: 84867092906     PISSN: 00905364     EISSN: None     Source Type: Journal    
DOI: 10.1214/11-AOS914     Document Type: Article
Times cited : (82)

References (27)
  • 1
    • 57349099263 scopus 로고    scopus 로고
    • Optimal non-linear models for sparsity and sampling
    • MR2461607
    • ALDROUBI, A., CABRELLI, C. and MOLTER, U. (2008). Optimal non-linear models for sparsity and sampling. J. Fourier Anal. Appl. 14 793-812. MR2461607.
    • (2008) J. Fourier Anal. Appl. , vol.14 , pp. 793-812
    • Aldroubi, A.1    Cabrelli, C.2    Molter, U.3
  • 3
    • 84856032134 scopus 로고    scopus 로고
    • Spectral clustering based on local linear approximations
    • ARIAS-CASTRO, E., CHEN, G. and LERMAN, G. (2011). Spectral clustering based on local linear approximations. Electron. J. Statist. 5 1537-1587.
    • (2011) Electron. J. Statist. , vol.5 , pp. 1537-1587
    • Arias-castro, E.1    Chen, G.2    Lerman, G.3
  • 7
    • 70349452039 scopus 로고    scopus 로고
    • Foundations of a multi-way spectral clustering framework for hybrid linear modeling
    • MR2534403
    • CHEN, G. and LERMAN, G. (2009). Foundations of a multi-way spectral clustering framework for hybrid linear modeling. Found. Comput. Math. 9 517-558. MR2534403.
    • (2009) Found. Comput. Math. , vol.9 , pp. 517-558
    • Chen, G.1    Lerman, G.2
  • 8
    • 58149494138 scopus 로고    scopus 로고
    • Spectral curvature clustering (scc
    • CHEN, G. and LERMAN, G. (2009). Spectral curvature clustering (SCC). Int. J. Comput. Vision 81 317-330.
    • (2009) Int. J. Comput. Vision , vol.81 , pp. 317-330
    • Chen, G.1    Lerman, G.2
  • 9
    • 0032154138 scopus 로고    scopus 로고
    • A multibody factorization method for independently moving objects
    • COSTEIRA, J. and KANADE, T. (1998). A multibody factorization method for independently moving objects. Int. J. Comput. Vis. 29 159-179. (Pubitemid 128517909)
    • (1998) International Journal of Computer Vision , vol.29 , Issue.3 , pp. 159-179
    • Costeira, J.P.1    Kanade, T.2
  • 13
  • 14
    • 50949096624 scopus 로고    scopus 로고
    • Estimation of subspace arrangements with applications in modeling and segmenting mixed data
    • MR2429444
    • MA, Y., YANG, A. Y., DERKSEN, H. and FOSSUM, R. (2008). Estimation of subspace arrangements with applications in modeling and segmenting mixed data. SIAM Rev. 50 413-458. MR2429444.
    • (2008) SIAM Rev. , vol.50 , pp. 413-458
    • Ma, Y.1    Yang, A.Y.2    Derksen, H.3    Fossum, R.4
  • 15
    • 0003265439 scopus 로고
    • Geometry of sets and measures in euclidean spaces: Fractals and rectifiability
    • Cambridge Univ. Press, Cambridge, MR1333890
    • MATTILA, P. (1995). Geometry of Sets and Measures in Euclidean Spaces: Fractals and Rectifiability. Cambridge Studies in Advanced Mathematics 44. Cambridge Univ. Press, Cambridge. MR1333890.
    • (1995) Cambridge Studies in Advanced Mathematics , vol.44
    • Mattila, P.1
  • 16
    • 0000963889 scopus 로고
    • Strong consistency of k-means clustering
    • MR0600539
    • POLLARD, D. (1981). Strong consistency of k-means clustering. Ann. Statist. 9 135-140. MR0600539.
    • (1981) Ann. Statist , vol.9 , pp. 135-140
    • Pollard, D.1
  • 17
    • 0000963885 scopus 로고
    • A central limit theorem for k-means clustering
    • MR0672292
    • POLLARD, D. (1982). A central limit theorem for k-means clustering. Ann. Probab. 10 919- 926. MR0672292.
    • (1982) Ann. Probab. , vol.10 , pp. 919-926
    • Pollard, D.1
  • 18
    • 22844440983 scopus 로고    scopus 로고
    • On the eigenspectrum of the gram matrix and the generalization error of Kernel-PCA
    • DOI 10.1109/TIT.2005.850052
    • SHAWE-TAYLOR, J., WILLIAMS, C. K. I., CRISTIANINI, N. and KANDOLA, J. (2005). On the eigenspectrum of the Gram matrix and the generalization error of kernel-PCA. IEEE Trans. Inform. Theory 51 2510-2522. MR2246374. (Pubitemid 41136405)
    • (2005) IEEE Transactions on Information Theory , vol.51 , Issue.7 , pp. 2510-2522
    • Shawe-Taylor, J.1    Williams, C.K.I.2    Cristianini, N.3    Kandola, J.4
  • 19
    • 84871556743 scopus 로고    scopus 로고
    • Available at
    • TAO, T. (2011). Topics in random matrix theory. Available at http://terrytao.files.wordpress.com/2011/02/matrix-book.pdf.
    • (2011) Topics in Random Matrix Theory
    • Tao, T.1
  • 20
    • 0033556788 scopus 로고    scopus 로고
    • Mixtures of probabilistic principal component analysers
    • TIPPING, M. and BISHOP, C. (1999).Mixtures of probabilistic principal component analysers. Neural Comput. 11 443-482.
    • (1999) Neural Comput. , vol.11 , pp. 443-482
    • Tipping, M.1    Bishop, C.2
  • 22
    • 0034349278 scopus 로고    scopus 로고
    • Nearest q-flat to m points
    • MR1757267
    • TSENG, P. (2000). Nearest q-flat to m points. J. Optim. Theory Appl. 105 249-252. MR1757267.
    • (2000) J. Optim. Theory Appl. , vol.105 , pp. 249-252
    • Tseng, P.1
  • 24
    • 34948837349 scopus 로고    scopus 로고
    • A general framework for motion segmentation: Independent, articulated, rigid, non-rigid, degenerate and nondegenerate
    • YAN, J. and POLLEFEYS, M. (2006). A general framework for motion segmentation: Independent, articulated, rigid, non-rigid, degenerate and nondegenerate. In ECCV 4 94-106.
    • (2006) ECCV , vol.4 , pp. 94-106
    • Yan, J.1    Pollefeys, M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.