-
1
-
-
57349099263
-
Optimal non-linear models for sparsity and sampling
-
MR2461607
-
ALDROUBI, A., CABRELLI, C. and MOLTER, U. (2008). Optimal non-linear models for sparsity and sampling. J. Fourier Anal. Appl. 14 793-812. MR2461607.
-
(2008)
J. Fourier Anal. Appl.
, vol.14
, pp. 793-812
-
-
Aldroubi, A.1
Cabrelli, C.2
Molter, U.3
-
3
-
-
84856032134
-
Spectral clustering based on local linear approximations
-
ARIAS-CASTRO, E., CHEN, G. and LERMAN, G. (2011). Spectral clustering based on local linear approximations. Electron. J. Statist. 5 1537-1587.
-
(2011)
Electron. J. Statist.
, vol.5
, pp. 1537-1587
-
-
Arias-castro, E.1
Chen, G.2
Lerman, G.3
-
6
-
-
77954209955
-
-
Unpublished manuscript. Available at arXiv:0912.3599
-
CANDÈS, E. J., LI, X., MA, Y. and WRIGHT, J. (2009). Robust principal component analysis? Unpublished manuscript. Available at arXiv:0912.3599.
-
(2009)
Robust Principal Component Analysis?
-
-
Candès, E.J.1
Li, X.2
Ma, Y.3
Wright, J.4
-
7
-
-
70349452039
-
Foundations of a multi-way spectral clustering framework for hybrid linear modeling
-
MR2534403
-
CHEN, G. and LERMAN, G. (2009). Foundations of a multi-way spectral clustering framework for hybrid linear modeling. Found. Comput. Math. 9 517-558. MR2534403.
-
(2009)
Found. Comput. Math.
, vol.9
, pp. 517-558
-
-
Chen, G.1
Lerman, G.2
-
8
-
-
58149494138
-
Spectral curvature clustering (scc
-
CHEN, G. and LERMAN, G. (2009). Spectral curvature clustering (SCC). Int. J. Comput. Vision 81 317-330.
-
(2009)
Int. J. Comput. Vision
, vol.81
, pp. 317-330
-
-
Chen, G.1
Lerman, G.2
-
9
-
-
0032154138
-
A multibody factorization method for independently moving objects
-
COSTEIRA, J. and KANADE, T. (1998). A multibody factorization method for independently moving objects. Int. J. Comput. Vis. 29 159-179. (Pubitemid 128517909)
-
(1998)
International Journal of Computer Vision
, vol.29
, Issue.3
, pp. 159-179
-
-
Costeira, J.P.1
Kanade, T.2
-
10
-
-
0042440805
-
Clustering appearances of objects under varying illumination conditions
-
IEEE Computer Society, Madison, WI
-
HO, J., YANG, M., LIM, J., LEE, K. and KRIEGMAN, D. (2003). Clustering appearances of objects under varying illumination conditions. In Proceedings of International Conference on Computer Vision and Pattern Recognition 1 11-18. IEEE Computer Society, Madison, WI.
-
(2003)
Proceedings of International Conference on Computer Vision and Pattern Recognition
, vol.1
, pp. 11-18
-
-
Ho, J.1
Yang, M.2
Lim, J.3
Lee, K.4
Kriegman, D.5
-
13
-
-
34548133659
-
Segmentation of multivariate mixed data via lossy data coding and compression
-
DOI 10.1109/TPAMI.2007.1085
-
MA, Y., DERKSEN, H., HONG, W. and WRIGHT, J. (2007). Segmentation of multivariate mixed data via lossy coding and compression. IEEE Transactions on Pattern Analysis and Machine Intelligence 29 1546-1562. (Pubitemid 47299910)
-
(2007)
IEEE Transactions on Pattern Analysis and Machine Intelligence
, vol.29
, Issue.9
, pp. 1546-1562
-
-
Ma, Y.1
Derksen, H.2
Hong, W.3
Wright, J.4
-
14
-
-
50949096624
-
Estimation of subspace arrangements with applications in modeling and segmenting mixed data
-
MR2429444
-
MA, Y., YANG, A. Y., DERKSEN, H. and FOSSUM, R. (2008). Estimation of subspace arrangements with applications in modeling and segmenting mixed data. SIAM Rev. 50 413-458. MR2429444.
-
(2008)
SIAM Rev.
, vol.50
, pp. 413-458
-
-
Ma, Y.1
Yang, A.Y.2
Derksen, H.3
Fossum, R.4
-
15
-
-
0003265439
-
Geometry of sets and measures in euclidean spaces: Fractals and rectifiability
-
Cambridge Univ. Press, Cambridge, MR1333890
-
MATTILA, P. (1995). Geometry of Sets and Measures in Euclidean Spaces: Fractals and Rectifiability. Cambridge Studies in Advanced Mathematics 44. Cambridge Univ. Press, Cambridge. MR1333890.
-
(1995)
Cambridge Studies in Advanced Mathematics
, vol.44
-
-
Mattila, P.1
-
16
-
-
0000963889
-
Strong consistency of k-means clustering
-
MR0600539
-
POLLARD, D. (1981). Strong consistency of k-means clustering. Ann. Statist. 9 135-140. MR0600539.
-
(1981)
Ann. Statist
, vol.9
, pp. 135-140
-
-
Pollard, D.1
-
17
-
-
0000963885
-
A central limit theorem for k-means clustering
-
MR0672292
-
POLLARD, D. (1982). A central limit theorem for k-means clustering. Ann. Probab. 10 919- 926. MR0672292.
-
(1982)
Ann. Probab.
, vol.10
, pp. 919-926
-
-
Pollard, D.1
-
18
-
-
22844440983
-
On the eigenspectrum of the gram matrix and the generalization error of Kernel-PCA
-
DOI 10.1109/TIT.2005.850052
-
SHAWE-TAYLOR, J., WILLIAMS, C. K. I., CRISTIANINI, N. and KANDOLA, J. (2005). On the eigenspectrum of the Gram matrix and the generalization error of kernel-PCA. IEEE Trans. Inform. Theory 51 2510-2522. MR2246374. (Pubitemid 41136405)
-
(2005)
IEEE Transactions on Information Theory
, vol.51
, Issue.7
, pp. 2510-2522
-
-
Shawe-Taylor, J.1
Williams, C.K.I.2
Cristianini, N.3
Kandola, J.4
-
19
-
-
84871556743
-
-
Available at
-
TAO, T. (2011). Topics in random matrix theory. Available at http://terrytao.files.wordpress.com/2011/02/matrix-book.pdf.
-
(2011)
Topics in Random Matrix Theory
-
-
Tao, T.1
-
20
-
-
0033556788
-
Mixtures of probabilistic principal component analysers
-
TIPPING, M. and BISHOP, C. (1999).Mixtures of probabilistic principal component analysers. Neural Comput. 11 443-482.
-
(1999)
Neural Comput.
, vol.11
, pp. 443-482
-
-
Tipping, M.1
Bishop, C.2
-
22
-
-
0034349278
-
Nearest q-flat to m points
-
MR1757267
-
TSENG, P. (2000). Nearest q-flat to m points. J. Optim. Theory Appl. 105 249-252. MR1757267.
-
(2000)
J. Optim. Theory Appl.
, vol.105
, pp. 249-252
-
-
Tseng, P.1
-
23
-
-
30144438432
-
Generalized principal component analysis (GPCA)
-
DOI 10.1109/TPAMI.2005.244
-
VIDAL, R., MA, Y. and SASTRY, S. (2005). Generalized principal component analysis (GPCA). IEEE Trans. Pattern Anal. Mach. Intell. 27 1945-1959. (Pubitemid 43051391)
-
(2005)
IEEE Transactions on Pattern Analysis and Machine Intelligence
, vol.27
, Issue.12
, pp. 1945-1959
-
-
Vidal, R.1
Ma, Y.2
Sastry, S.3
-
24
-
-
34948837349
-
A general framework for motion segmentation: Independent, articulated, rigid, non-rigid, degenerate and nondegenerate
-
YAN, J. and POLLEFEYS, M. (2006). A general framework for motion segmentation: Independent, articulated, rigid, non-rigid, degenerate and nondegenerate. In ECCV 4 94-106.
-
(2006)
ECCV
, vol.4
, pp. 94-106
-
-
Yan, J.1
Pollefeys, M.2
-
25
-
-
77953223144
-
Median k-flats for hybrid linear modeling with many outliers
-
IEEE, Tokyo, Japan
-
ZHANG, T., SZLAM, A. and LERMAN, G. (2009). Median K-flats for hybrid linear modeling with many outliers. In Computer Vision Workshops (ICCV Workshops), IEEE 12th International Conference on Computer Vision 234-241. IEEE, Tokyo, Japan.
-
(2009)
Computer Vision Workshops (ICCV Workshops), IEEE 12th International Conference on Computer Vision
, pp. 234-241
-
-
Zhang, T.1
Szlam, A.2
Lerman, G.3
-
26
-
-
84857843454
-
-
Available at
-
ZHANG, T., SZLAM, A., WANG, Y. and LERMAN, G. (2010). Hybrid linear modeling via local best-fit flats. Available at http://arxiv.org/abs/1010.3460.
-
(2010)
Hybrid Linear Modeling via Local Best-fit Flats
-
-
Zhang, T.1
Szlam, A.2
Wang, Y.3
Lerman, G.4
-
27
-
-
77955989449
-
Randomized hybrid linear modeling by local best-fit flats
-
IEEE, San Francisco, CA
-
ZHANG, T., SZLAM, A., WANG, Y. and LERMAN, G. (2010). Randomized hybrid linear modeling by local best-fit flats. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 1927-1934. IEEE, San Francisco, CA.
-
(2010)
IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
, pp. 1927-1934
-
-
Zhang, T.1
Szlam, A.2
Wang, Y.3
Lerman, G.4
|