메뉴 건너뛰기




Volumn 40, Issue 3, 2012, Pages 1637-1664

High-dimensional regression with noisy and missing data: Provable guarantees with nonconvexity

Author keywords

High dimensional statistics; M estimation; Missing data; Nonconvexity; Regularization; Sparse linear regression

Indexed keywords


EID: 84872078104     PISSN: 00905364     EISSN: None     Source Type: Journal    
DOI: 10.1214/12-AOS1018     Document Type: Article
Times cited : (361)

References (23)
  • 2
    • 68649086910 scopus 로고    scopus 로고
    • Simultaneous analysis of lasso and dantzig selector
    • MR2533469
    • BICKEL, P. J., RITOV, Y. and TSYBAKOV, A. B. (2009). Simultaneous analysis of Lasso and Dantzig selector. Ann. Statist. 37 1705-1732. MR2533469
    • (2009) Ann. Statist. , vol.37 , pp. 1705-1732
    • Bickel, P.J.1    Ritov, Y.2    Tsybakov, A.B.3
  • 6
    • 0005455937 scopus 로고
    • Multiplicative errors-in-variables models with applications to recent data released by the u.s. Department of energy
    • MR0860499
    • HWANG, J. T. (1986). Multiplicative errors-in-variables models with applications to recent data released by the U.S. Department of Energy. J. Amer. Statist. Assoc. 81 680-688. MR0860499
    • (1986) J. Amer. Statist. Assoc. , vol.81 , pp. 680-688
    • Hwang, J.T.1
  • 7
    • 0000753820 scopus 로고    scopus 로고
    • Polynomial regression and estimating functions in the presence of multiplicative measurement error
    • MR1707860
    • ITURRIA, S. J., CARROLL, R. J. and FIRTH, D. (1999). Polynomial regression and estimating functions in the presence of multiplicative measurement error. J. R. Stat. Soc. Ser. B Stat. Methodol. 61 547-561. MR1707860
    • (1999) J. R. Stat. Soc. Ser. B Stat. Methodol. , vol.61 , pp. 547-561
    • Iturria, S.J.1    Carroll, R.J.2    Firth, D.3
  • 10
    • 33747163541 scopus 로고    scopus 로고
    • High-dimensional graphs and variable selection with the lasso
    • MR2278363
    • MEINSHAUSEN, N. and BÜHLMANN, P. (2006). High-dimensional graphs and variable selection with the Lasso. Ann. Statist. 34 1436-1462. MR2278363
    • (2006) Ann. Statist. , vol.34 , pp. 1436-1462
    • Meinshausen, N.1    Bühlmann, P.2
  • 11
    • 65349193793 scopus 로고    scopus 로고
    • Lasso-Type recovery of sparse representations for highdimensional data
    • MR2488351
    • MEINSHAUSEN, N. andYU, B. (2009). Lasso-Type recovery of sparse representations for highdimensional data. Ann. Statist. 37 246-270. MR2488351
    • (2009) Ann. Statist. , vol.37 , pp. 246-270
    • Meinshausen, N.1    Yu, B.2
  • 13
    • 77956925453 scopus 로고    scopus 로고
    • Restricted eigenvalue properties for correlated gaussian designs
    • MR2719855
    • RASKUTTI, G.,WAINWRIGHT, M. J. and YU, B. (2010). Restricted eigenvalue properties for correlated Gaussian designs. J. Mach. Learn. Res. 11 2241-2259. MR2719855
    • (2010) J. Mach. Learn. Res. , vol.11 , pp. 2241-2259
    • Raskutti, G.1    Wainwright, M.J.2    Yu, B.3
  • 14
    • 77957596337 scopus 로고    scopus 로고
    • Sparse recovery under matrix uncertainty
    • MR2722451
    • ROSENBAUM, M. and TSYBAKOV, A. B. (2010). Sparse recovery under matrix uncertainty. Ann. Statist. 38 2620-2651. MR2722451
    • (2010) Ann. Statist. , vol.38 , pp. 2620-2651
    • Rosenbaum, M.1    Tsybakov, A.B.2
  • 16
    • 62349119614 scopus 로고    scopus 로고
    • Sparse permutation invariant covariance estimation
    • MR2417391
    • ROTHMAN, A. J., BICKEL, P. J., LEVINA, E. and ZHU, J. (2008). Sparse permutation invariant covariance estimation. Electron. J. Stat. 2 494-515. MR2417391
    • (2008) Electron. J. Stat. , vol.2 , pp. 494-515
    • Rothman, A.J.1    Bickel, P.J.2    Levina, E.3    Zhu, J.4
  • 18
    • 82055169484 scopus 로고    scopus 로고
    • Missing values: Sparse inverse covariance estimation and an extension to sparse regression
    • STÄDLER, N. and BÜHLMANN, P. (2012). Missing values: Sparse inverse covariance estimation and an extension to sparse regression. Statist. Comput. 22 219-235.
    • (2012) Statist. Comput. , vol.22 , pp. 219-235
    • Städler, N.1    Bühlmann, P.2
  • 19
    • 0001287271 scopus 로고    scopus 로고
    • Regression shrinkage and selection via the lasso
    • MR1379242
    • TIBSHIRANI, R. (1996). Regression shrinkage and selection via the Lasso. J. R. Stat. Soc. Ser. B Stat. Methodol. 58 267-288. MR1379242
    • (1996) J. R. Stat. Soc. Ser. B Stat. Methodol. , vol.58 , pp. 267-288
    • Tibshirani, R.1
  • 20
    • 77955054299 scopus 로고    scopus 로고
    • On the conditions used to prove oracle results for the lasso
    • MR2576316
    • VAN DE GEER, S. A. and BÜHLMANN, P. (2009). On the conditions used to prove oracle results for the Lasso. Electron. J. Stat. 3 1360-1392. MR2576316
    • (2009) Electron. J. Stat. , vol.3 , pp. 1360-1392
    • Van De Geer, S.A.1    Bühlmann, P.2
  • 21
    • 33847369049 scopus 로고    scopus 로고
    • Covariate selection for linear errors-in-variables regression models
    • MR2391878
    • XU, Q. and YOU, J. (2007). Covariate selection for linear errors-in-variables regression models. Comm. Statist. Theory Methods 36 375-386. MR2391878
    • (2007) Comm. Statist. Theory Methods , vol.36 , pp. 375-386
    • Xu, Q.1    You, J.2
  • 22
    • 77956916683 scopus 로고    scopus 로고
    • High dimensional inverse covariance matrix estimation via linear programming
    • MR2719856
    • YUAN, M. (2010). High dimensional inverse covariance matrix estimation via linear programming. J. Mach. Learn. Res. 11 2261-2286. MR2719856
    • (2010) J. Mach. Learn. Res. , vol.11 , pp. 2261-2286
    • Yuan, M.1
  • 23
    • 50949096321 scopus 로고    scopus 로고
    • The sparsity and bias of the lasso selection in highdimensional linear regression
    • MR2435448
    • ZHANG, C.-H. and HUANG, J. (2008). The sparsity and bias of the LASSO selection in highdimensional linear regression. Ann. Statist. 36 1567-1594. MR2435448
    • (2008) Ann. Statist. , vol.36 , pp. 1567-1594
    • Zhang, C.-H.1    Huang, J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.