메뉴 건너뛰기




Volumn , Issue , 2009, Pages 1068-1077

Approximate clustering without the approximation

Author keywords

[No Author keywords available]

Indexed keywords

APPROXIMATION ALGORITHMS; OPTIMAL SYSTEMS; OPTIMIZATION;

EID: 70349129917     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1137/1.9781611973068.116     Document Type: Conference Paper
Times cited : (114)

References (27)
  • 3
    • 33748603939 scopus 로고    scopus 로고
    • On spectral learning of mixtures of distributions
    • [AM05] D. Achlioptas and F. McSherry. On spectral learning of mixtures of distributions. In COLT, 2005.
    • (2005) COLT
    • Achlioptas, D.1    McSherry, F.2
  • 4
    • 0031643577 scopus 로고    scopus 로고
    • Approximation schemes for Euclidean k-medians and related problems
    • [ARR99] S. Arora, P. Raghavan, and S. Rao. Approximation schemes for Euclidean k-medians and related problems. In STOC, pages 106-113. 1999.
    • (1999) STOC , pp. 106-113
    • Arora, S.1    Raghavan, P.2    Rao, S.3
  • 5
    • 38749098136 scopus 로고    scopus 로고
    • Worst-case and smoothed analyses of the icp algorithm, with an application to the k-means method
    • [AV06] D. Arthur and S. Vassilvitskii. Worst-case and smoothed analyses of the icp algorithm, with an application to the k-means method. In Proc. 47th FOCS, 2006.
    • Proc. 47th FOCS, 2006
    • Arthur, D.1    Vassilvitskii, S.2
  • 6
    • 77952043599 scopus 로고    scopus 로고
    • A discrimantive framework for clustering via similarity functions
    • [BBV08] M.-F. Balcan, A. Blum, and S. Vempala. A discrimantive framework for clustering via similarity functions. In Proc. 40th STOC, 2008.
    • Proc. 40th STOC, 2008
    • Balcan, M.-F.1    Blum, A.2    Vempala, S.3
  • 8
    • 33847677259 scopus 로고    scopus 로고
    • A framework for statistical clustering with constant time approximation for k-median and k-means clustering
    • [BD07] S. Ben-David. A framework for statistical clustering with constant time approximation for k-median and k-means clustering. Mach. Learn., 66(2-3):243-257, 2007.
    • (2007) Mach. Learn. , vol.66 , Issue.2-3 , pp. 243-257
    • Ben-David, S.1
  • 9
    • 0002591749 scopus 로고    scopus 로고
    • Improved combinatorial algorithms for the facility location and k-median problems
    • [CG99] M. Charikar and S. Guha. Improved combinatorial algorithms for the facility location and k-median problems. In Proc. 4th FOCS, 1999.
    • Proc. 4th FOCS, 1999
    • Charikar, M.1    Guha, S.2
  • 10
    • 0032630441 scopus 로고    scopus 로고
    • A constant-factor approximation algorithm for the k-median problem
    • [CGTS99] M. Charikar, S. Guha, E. Tardos, and D. B. Shmoy. A constant-factor approximation algorithm for the k-median problem. In STOC, 1999.
    • (1999) STOC
    • Charikar, M.1    Guha, S.2    Tardos, E.3    Shmoy, D.B.4
  • 11
    • 35048875680 scopus 로고    scopus 로고
    • Sublinear-time approximation for clustering via random samples
    • [CS04] A. Czumaj and C. Sohler. Sublinear-time approximation for clustering via random samples. In Proc. 31st ICALP, pages 396-407, 2004.
    • (2004) Proc. 31st ICALP , pp. 396-407
    • Czumaj, A.1    Sohler, C.2
  • 16
    • 0000182223 scopus 로고    scopus 로고
    • Greedy Strikes Back: Improved Facility Location Algorithms
    • [GK99] S. Guha and S. Khuller. Greedy strikes back: Improved algorithms for facility location. Journal of Algorithms, 31(1):228-248, 1999. (Pubitemid 129609603)
    • (1999) Journal of Algorithms , vol.31 , Issue.1 , pp. 228-248
    • Guha, S.1    Khuller, S.2
  • 17
    • 0003576139 scopus 로고    scopus 로고
    • Sublinear time algorithms for metric space problems
    • [Ind99] P. Indyk. Sublinear time algorithms for metric space problems. In Proc. 31st STOC, 1999.
    • Proc. 31st STOC, 1999
    • Indyk, P.1
  • 19
    • 0000682161 scopus 로고    scopus 로고
    • Approximation algorithms for metric facility location and k-median problems using the primal-dual schema and lagrangian relaxation
    • [JV01] K. Jain and V. V. Vazirani. Approximation algorithms for metric facility location and k-median problems using the primal-dual schema and lagrangian relaxation. JACM, 48(2):274-296, 2001.
    • (2001) JACM , vol.48 , Issue.2 , pp. 274-296
    • Jain, K.1    Vazirani, V.V.2
  • 20
    • 11244288693 scopus 로고    scopus 로고
    • A simple linear time (1 + ∈)-approximation algorithm for k-means clustering in any dimensions
    • Washington, DC, USA
    • [KSS04] A. Kumar, Y. Sabharwal, and S. Sen. A simple linear time (1 + ∈)-approximation algorithm for k-means clustering in any dimensions. In Proc. 45th FOCS, pages 454-462, Washington, DC, USA, 2004.
    • (2004) Proc. 45th FOCS , pp. 454-462
    • Kumar, A.1    Sabharwal, Y.2    Sen, S.3
  • 22
    • 0020102027 scopus 로고
    • Least squares quantization in PCM
    • [Llo82] S.P. Lloyd. Least squares quantization in PCM. IEEE Trans. Inform. Theory, 28(2): 129-137, 1982.
    • (1982) IEEE Trans. Inform. Theory , vol.28 , Issue.2 , pp. 129-137
    • Lloyd, S.P.1
  • 23
    • 70349129782 scopus 로고    scopus 로고
    • The uniqueness of a good clustering for k-means
    • [Mei06] M. Meila. The uniqueness of a good clustering for k-means. In Proc. 23rd ICML, 2006.
    • Proc. 23rd ICML, 2006
    • Meila, M.1
  • 24
    • 0003343174 scopus 로고    scopus 로고
    • Sublinear time approximate clustering
    • [MOP01] N. Mishra, D. Oblinger, and L. Pitt. Sublinear time approximate clustering. In SODA, pages 439-447, 2001.
    • (2001) SODA , pp. 439-447
    • Mishra, N.1    Oblinger, D.2    Pitt, L.3
  • 26
    • 0033723962 scopus 로고    scopus 로고
    • Clustering for edge-cost minimization
    • [Sch00] L.J. Schulman. Clustering for edge-cost minimization. In Proc. STOC, pages 547-555, 2000.
    • (2000) Proc. STOC , pp. 547-555
    • Schulman, L.J.1
  • 27
    • 3042606899 scopus 로고    scopus 로고
    • A spectral algorithm for learning mixture models
    • [VW04] S. Vempala and G. Wang. A spectral algorithm for learning mixture models. JCSS, 68(2):841-860, 2004.
    • (2004) JCSS , vol.68 , Issue.2 , pp. 841-860
    • Vempala, S.1    Wang, G.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.