-
1
-
-
3142776554
-
Local search heuristics for k-median and facility location problems
-
+04] V. Arya, N. Garg, R. Khandekar, A. Meyerson, K. Munagala, and V. Pandit. Local search heuristics for k-median and facility location problems. SIAM J. Comput., 33(3):544-562, 2004.
-
(2004)
SIAM J. Comput.
, vol.33
, Issue.3
, pp. 544-562
-
-
Arya, V.1
Garg, N.2
Khandekar, R.3
Meyerson, A.4
Munagala, K.5
Pandit, V.6
-
3
-
-
33748603939
-
On spectral learning of mixtures of distributions
-
[AM05] D. Achlioptas and F. McSherry. On spectral learning of mixtures of distributions. In COLT, 2005.
-
(2005)
COLT
-
-
Achlioptas, D.1
McSherry, F.2
-
4
-
-
0031643577
-
Approximation schemes for Euclidean k-medians and related problems
-
[ARR99] S. Arora, P. Raghavan, and S. Rao. Approximation schemes for Euclidean k-medians and related problems. In STOC, pages 106-113. 1999.
-
(1999)
STOC
, pp. 106-113
-
-
Arora, S.1
Raghavan, P.2
Rao, S.3
-
5
-
-
38749098136
-
Worst-case and smoothed analyses of the icp algorithm, with an application to the k-means method
-
[AV06] D. Arthur and S. Vassilvitskii. Worst-case and smoothed analyses of the icp algorithm, with an application to the k-means method. In Proc. 47th FOCS, 2006.
-
Proc. 47th FOCS, 2006
-
-
Arthur, D.1
Vassilvitskii, S.2
-
8
-
-
33847677259
-
A framework for statistical clustering with constant time approximation for k-median and k-means clustering
-
[BD07] S. Ben-David. A framework for statistical clustering with constant time approximation for k-median and k-means clustering. Mach. Learn., 66(2-3):243-257, 2007.
-
(2007)
Mach. Learn.
, vol.66
, Issue.2-3
, pp. 243-257
-
-
Ben-David, S.1
-
9
-
-
0002591749
-
Improved combinatorial algorithms for the facility location and k-median problems
-
[CG99] M. Charikar and S. Guha. Improved combinatorial algorithms for the facility location and k-median problems. In Proc. 4th FOCS, 1999.
-
Proc. 4th FOCS, 1999
-
-
Charikar, M.1
Guha, S.2
-
10
-
-
0032630441
-
A constant-factor approximation algorithm for the k-median problem
-
[CGTS99] M. Charikar, S. Guha, E. Tardos, and D. B. Shmoy. A constant-factor approximation algorithm for the k-median problem. In STOC, 1999.
-
(1999)
STOC
-
-
Charikar, M.1
Guha, S.2
Tardos, E.3
Shmoy, D.B.4
-
11
-
-
35048875680
-
Sublinear-time approximation for clustering via random samples
-
[CS04] A. Czumaj and C. Sohler. Sublinear-time approximation for clustering via random samples. In Proc. 31st ICALP, pages 396-407, 2004.
-
(2004)
Proc. 31st ICALP
, pp. 396-407
-
-
Czumaj, A.1
Sohler, C.2
-
16
-
-
0000182223
-
Greedy Strikes Back: Improved Facility Location Algorithms
-
[GK99] S. Guha and S. Khuller. Greedy strikes back: Improved algorithms for facility location. Journal of Algorithms, 31(1):228-248, 1999. (Pubitemid 129609603)
-
(1999)
Journal of Algorithms
, vol.31
, Issue.1
, pp. 228-248
-
-
Guha, S.1
Khuller, S.2
-
17
-
-
0003576139
-
Sublinear time algorithms for metric space problems
-
[Ind99] P. Indyk. Sublinear time algorithms for metric space problems. In Proc. 31st STOC, 1999.
-
Proc. 31st STOC, 1999
-
-
Indyk, P.1
-
19
-
-
0000682161
-
Approximation algorithms for metric facility location and k-median problems using the primal-dual schema and lagrangian relaxation
-
[JV01] K. Jain and V. V. Vazirani. Approximation algorithms for metric facility location and k-median problems using the primal-dual schema and lagrangian relaxation. JACM, 48(2):274-296, 2001.
-
(2001)
JACM
, vol.48
, Issue.2
, pp. 274-296
-
-
Jain, K.1
Vazirani, V.V.2
-
20
-
-
11244288693
-
A simple linear time (1 + ∈)-approximation algorithm for k-means clustering in any dimensions
-
Washington, DC, USA
-
[KSS04] A. Kumar, Y. Sabharwal, and S. Sen. A simple linear time (1 + ∈)-approximation algorithm for k-means clustering in any dimensions. In Proc. 45th FOCS, pages 454-462, Washington, DC, USA, 2004.
-
(2004)
Proc. 45th FOCS
, pp. 454-462
-
-
Kumar, A.1
Sabharwal, Y.2
Sen, S.3
-
22
-
-
0020102027
-
Least squares quantization in PCM
-
[Llo82] S.P. Lloyd. Least squares quantization in PCM. IEEE Trans. Inform. Theory, 28(2): 129-137, 1982.
-
(1982)
IEEE Trans. Inform. Theory
, vol.28
, Issue.2
, pp. 129-137
-
-
Lloyd, S.P.1
-
23
-
-
70349129782
-
The uniqueness of a good clustering for k-means
-
[Mei06] M. Meila. The uniqueness of a good clustering for k-means. In Proc. 23rd ICML, 2006.
-
Proc. 23rd ICML, 2006
-
-
Meila, M.1
-
24
-
-
0003343174
-
Sublinear time approximate clustering
-
[MOP01] N. Mishra, D. Oblinger, and L. Pitt. Sublinear time approximate clustering. In SODA, pages 439-447, 2001.
-
(2001)
SODA
, pp. 439-447
-
-
Mishra, N.1
Oblinger, D.2
Pitt, L.3
-
26
-
-
0033723962
-
Clustering for edge-cost minimization
-
[Sch00] L.J. Schulman. Clustering for edge-cost minimization. In Proc. STOC, pages 547-555, 2000.
-
(2000)
Proc. STOC
, pp. 547-555
-
-
Schulman, L.J.1
-
27
-
-
3042606899
-
A spectral algorithm for learning mixture models
-
[VW04] S. Vempala and G. Wang. A spectral algorithm for learning mixture models. JCSS, 68(2):841-860, 2004.
-
(2004)
JCSS
, vol.68
, Issue.2
, pp. 841-860
-
-
Vempala, S.1
Wang, G.2
|