메뉴 건너뛰기




Volumn 57, Issue 5, 2014, Pages 860-867

Nuclear receptors and metabolism: From feast to famine

Author keywords

Circadian metabolism; FGFs; Glucose homeostasis; Nuclear receptors; Review

Indexed keywords

CELL NUCLEUS RECEPTOR; FIBROBLAST GROWTH FACTOR; NUCLEAR HORMONE RECEPTOR; UNCLASSIFIED DRUG; 2,4 THIAZOLIDINEDIONE DERIVATIVE; 2,4-THIAZOLIDINEDIONE; CELL RECEPTOR; GLUCOSE; LIGAND;

EID: 84898599981     PISSN: 0012186X     EISSN: 14320428     Source Type: Journal    
DOI: 10.1007/s00125-014-3209-9     Document Type: Review
Times cited : (29)

References (83)
  • 1
    • 22344445270 scopus 로고    scopus 로고
    • The nuclear receptor superfamily: A personal retrospect on the first two decades
    • DOI 10.1210/me.2005-0125
    • Chambon P (2005) The nuclear receptor superfamily: a personal retrospect on the first two decades. Mol Endocrinol 19:1418-1428 (Pubitemid 41002973)
    • (2005) Molecular Endocrinology , vol.19 , Issue.6 , pp. 1418-1428
    • Chambon, P.1
  • 3
    • 2342573009 scopus 로고    scopus 로고
    • The role of corepressors in transcriptional regulation by nuclear hormone receptors
    • DOI 10.1146/annurev.physiol.66.032802.155556
    • Privalsky ML (2004) The role of corepressors in transcriptional regulation by nuclear hormone receptors. Annu Rev Physiol 66:315-360 (Pubitemid 40614447)
    • (2004) Annual Review of Physiology , vol.66 , pp. 315-360
    • Privalsky, M.L.1
  • 6
    • 78650816688 scopus 로고    scopus 로고
    • The histone variant macroH2A suppresses melanoma progression through regulation of CDK8
    • 1:CAS:528:DC%2BC3MXotlGqsg%3D%3D 3057940 21179167 10.1038/nature09590
    • Kapoor A, Goldberg MS, Cumberland LK et al (2010) The histone variant macroH2A suppresses melanoma progression through regulation of CDK8. Nature 468:1105-1109
    • (2010) Nature , vol.468 , pp. 1105-1109
    • Kapoor, A.1    Goldberg, M.S.2    Cumberland, L.K.3
  • 7
    • 1942518840 scopus 로고    scopus 로고
    • PPARs and the complex journey to obesity
    • DOI 10.1038/nm1025
    • Evans RM, Barish GD, Wang YX (2004) PPARs and the complex journey to obesity. Nat Med 10:355-361 (Pubitemid 38508511)
    • (2004) Nature Medicine , vol.10 , Issue.4 , pp. 355-361
    • Evans, R.M.1    Barish, G.D.2    Wang, Y.-X.3
  • 9
    • 50649097541 scopus 로고    scopus 로고
    • Fat and beyond: The diverse biology of PPARγ
    • 1:CAS:528:DC%2BD1cXos1ekur4%3D 18518822 10.1146/annurev.biochem.77. 061307.091829
    • Tontonoz P, Spiegelman BM (2008) Fat and beyond: the diverse biology of PPARγ. Annu Rev Biochem 77:289-312
    • (2008) Annu Rev Biochem , vol.77 , pp. 289-312
    • Tontonoz, P.1    Spiegelman, B.M.2
  • 10
    • 0030462770 scopus 로고    scopus 로고
    • The peroxisome proliferator-activated receptors: Ligands and activators
    • DOI 10.1111/j.1749-6632.1996.tb18621.x
    • Forman BM, Chen J, Evans RM (1996) The peroxisome proliferator-activated receptors: ligands and activators. Ann N Y Acad Sci 804:266-275 (Pubitemid 27056615)
    • (1996) Annals of the New York Academy of Sciences , vol.804 , pp. 266-275
    • Forman, B.M.1    Chen, J.2    Evans, R.M.3
  • 14
    • 84887474124 scopus 로고    scopus 로고
    • Lipoatrophy and severe metabolic disturbance in mice with fat-specific deletion of PPARγ
    • 1:CAS:528:DC%2BC3sXhvVygsb7I 24167256 10.1073/pnas.1314863110
    • Wang F, Mullican SE, DiSpirito JR, Peed LC, Lazar MA (2013) Lipoatrophy and severe metabolic disturbance in mice with fat-specific deletion of PPARγ. Proc Natl Acad Sci U S A 110:18656-18661
    • (2013) Proc Natl Acad Sci U S A , vol.110 , pp. 18656-18661
    • Wang, F.1    Mullican, S.E.2    Dispirito, J.R.3    Peed, L.C.4    Lazar, M.A.5
  • 16
    • 84861312625 scopus 로고    scopus 로고
    • Peroxisome proliferator-activated receptor γ-dependent regulation of lipolytic nodes and metabolic flexibility
    • 1:CAS:528:DC%2BC38XlsVChs7c%3D 3318581 22310664 10.1128/MCB.06154-11
    • Rodriguez-Cuenca S, Carobbio S, Velagapudi VR et al (2012) Peroxisome proliferator-activated receptor γ-dependent regulation of lipolytic nodes and metabolic flexibility. Mol Cell Biol 32:1555-1565
    • (2012) Mol Cell Biol , vol.32 , pp. 1555-1565
    • Rodriguez-Cuenca, S.1    Carobbio, S.2    Velagapudi, V.R.3
  • 19
    • 0027972524 scopus 로고
    • Altered gene expression for tumor necrosis factor-α and its receptors during drug and dietary modulation of insulin resistance
    • DOI 10.1210/en.134.1.264
    • Hofmann C, Lorenz K, Braithwaite SS et al (1994) Altered gene expression for tumor necrosis factor-α and its receptors during drug and dietary modulation of insulin resistance. Endocrinology 134:264-270 (Pubitemid 24021997)
    • (1994) Endocrinology , vol.134 , Issue.1 , pp. 264-270
    • Hofmann, C.1    Lorenz, K.2    Braithwaite, S.S.3    Colca, J.R.4    Palazuk, B.J.5    Hotamisligil, G.S.6    Spiegelman, B.M.7
  • 20
    • 65249089760 scopus 로고    scopus 로고
    • Adipocyte-specific expression of murine resistin is mediated by synergism between peroxisome proliferator-activated receptor γ and CCAAT/enhancer-binding proteins
    • 1:CAS:528:DC%2BD1MXisVSktrw%3D 2649096 19126543 10.1074/jbc.M808407200
    • Tomaru T, Steger DJ, Lefterova MI, Schupp M, Lazar MA (2009) Adipocyte-specific expression of murine resistin is mediated by synergism between peroxisome proliferator-activated receptor γ and CCAAT/enhancer-binding proteins. J Biol Chem 284:6116-6125
    • (2009) J Biol Chem , vol.284 , pp. 6116-6125
    • Tomaru, T.1    Steger, D.J.2    Lefterova, M.I.3    Schupp, M.4    Lazar, M.A.5
  • 21
    • 0036146384 scopus 로고    scopus 로고
    • A novel heterozygous mutation in peroxisome proliferator-activated receptor-γ gene in a patient with familial partial lipodystrophy
    • DOI 10.1210/jc.87.1.408
    • Agarwal AK, Garg A (2002) A novel heterozygous mutation in peroxisome proliferator-activated receptor-γ gene in a patient with familial partial lipodystrophy. J Clin Endocrinol Metab 87:408-411 (Pubitemid 34084723)
    • (2002) Journal of Clinical Endocrinology and Metabolism , vol.87 , Issue.1 , pp. 408-411
    • Agarwal, A.K.1    Garg, A.2
  • 22
    • 0036894397 scopus 로고    scopus 로고
    • PPARG F388L, a transactivation-deficient mutant, in familial partial lipodystrophy
    • Hegele RA, Cao H, Frankowski C, Mathews ST, Leff T (2002) PPARG F388L, a transactivation-deficient mutant, in familial partial lipodystrophy. Diabetes 51:3586-3590 (Pubitemid 35403468)
    • (2002) Diabetes , vol.51 , Issue.12 , pp. 3586-3590
    • Hegele, R.A.1    Cao, H.2    Frankowski, C.3    Mathews, S.T.4    Leff, T.5
  • 24
    • 76049086229 scopus 로고    scopus 로고
    • PPARγ activation in adipocytes is sufficient for systemic insulin sensitization
    • 1:CAS:528:DC%2BC3cXmsVenuw%3D%3D 2794650 20018750 10.1073/pnas.0912487106
    • Sugii S, Olson P, Sears DD et al (2009) PPARγ activation in adipocytes is sufficient for systemic insulin sensitization. Proc Natl Acad Sci U S A 106:22504-22509
    • (2009) Proc Natl Acad Sci U S A , vol.106 , pp. 22504-22509
    • Sugii, S.1    Olson, P.2    Sears, D.D.3
  • 25
    • 84877329207 scopus 로고    scopus 로고
    • PPARγ signaling and metabolism: The good, the bad and the future
    • 1:CAS:528:DC%2BC3sXntF2kurs%3D 23652116 10.1038/nm.3159
    • Ahmadian M, Suh JM, Hah N et al (2013) PPARγ signaling and metabolism: the good, the bad and the future. Nat Med 19:557-566
    • (2013) Nat Med , vol.19 , pp. 557-566
    • Ahmadian, M.1    Suh, J.M.2    Hah, N.3
  • 27
    • 84887397982 scopus 로고    scopus 로고
    • Inverse agonist of nuclear receptor ERRγ mediates antidiabetic effect through inhibition of hepatic gluconeogenesis
    • 1:CAS:528:DC%2BC3sXhtl2jtL%2FI 23775767 10.2337/db12-0946
    • Kim DK, Gang GT, Ryu D et al (2013) Inverse agonist of nuclear receptor ERRγ mediates antidiabetic effect through inhibition of hepatic gluconeogenesis. Diabetes 62:3093-3102
    • (2013) Diabetes , vol.62 , pp. 3093-3102
    • Kim, D.K.1    Gang, G.T.2    Ryu, D.3
  • 29
    • 0033594980 scopus 로고    scopus 로고
    • A critical role for the peroxisome proliferator-activated receptor α (PPARα) in the cellular fasting response: The PPARα-null mouse as a model of fatty acid oxidation disorders
    • DOI 10.1073/pnas.96.13.7473
    • Leone TC, Weinheimer CJ, Kelly DP (1999) A critical role for the peroxisome proliferator-activated receptor α (PPARα) in the cellular fasting response: the PPARα-null mouse as a model of fatty acid oxidation disorders. Proc Natl Acad Sci U S A 96:7473-7478 (Pubitemid 29299686)
    • (1999) Proceedings of the National Academy of Sciences of the United States of America , vol.96 , Issue.13 , pp. 7473-7478
    • Leone, T.C.1    Weinheimer, C.J.2    Kelly, D.P.3
  • 30
    • 0032699670 scopus 로고    scopus 로고
    • Peroxisome proliferator-activated receptor alpha mediates the adaptive response to fasting
    • 1:CAS:528:DyaK1MXjvVSntLo%3D 408372 10359558 10.1172/JCI6223
    • Kersten S, Seydoux J, Peters JM, Gonzalez FJ, Desvergne B, Wahli W (1999) Peroxisome proliferator-activated receptor alpha mediates the adaptive response to fasting. J Clin Invest 103:1489-1498
    • (1999) J Clin Invest , vol.103 , pp. 1489-1498
    • Kersten, S.1    Seydoux, J.2    Peters, J.M.3    Gonzalez, F.J.4    Desvergne, B.5    Wahli, W.6
  • 31
    • 68149098866 scopus 로고    scopus 로고
    • Identification of a physiologically relevant endogenous ligand for PPARα in liver
    • 1:CAS:528:DC%2BD1MXhsVChs7nI 2725194 19646743 10.1016/j.cell.2009.05.036
    • Chakravarthy MV, Lodhi IJ, Yin L et al (2009) Identification of a physiologically relevant endogenous ligand for PPARα in liver. Cell 138:476-488
    • (2009) Cell , vol.138 , pp. 476-488
    • Chakravarthy, M.V.1    Lodhi, I.J.2    Yin, L.3
  • 34
    • 0037072732 scopus 로고    scopus 로고
    • Stimulation of lipogenesis by pharmacological activation of the liver X receptor leads to production of large, triglyceride-rich very low density lipoprotein particles
    • 1:CAS:528:DC%2BD38Xnt1SqtL8%3D 12097330 10.1074/jbc.M204887200
    • Grefhorst A, Elzinga BM, Voshol PJ et al (2002) Stimulation of lipogenesis by pharmacological activation of the liver X receptor leads to production of large, triglyceride-rich very low density lipoprotein particles. J Biol Chem 277:34182-34190
    • (2002) J Biol Chem , vol.277 , pp. 34182-34190
    • Grefhorst, A.1    Elzinga, B.M.2    Voshol, P.J.3
  • 35
    • 77956868119 scopus 로고    scopus 로고
    • The role of PPARα activation in liver and muscle
    • 10.1155/2010/542359 2933910 20847941
    • Burri L, Thoresen GH, Berge RK (2010) The role of PPARα activation in liver and muscle. PPAR Res. doi: 10.1155/2010/542359
    • (2010) PPAR Res
    • Burri, L.1    Thoresen, G.H.2    Berge, R.K.3
  • 36
    • 0037610288 scopus 로고    scopus 로고
    • Molecular basis of skeletal muscle plasticity - From gene to form and function
    • 1:STN:280:DC%2BD3s%2Fptlalug%3D%3D 12605307 10.1007/s10254-002-0004-7
    • Fluck M, Hoppeler H (2003) Molecular basis of skeletal muscle plasticity - from gene to form and function. Rev Physiol Biochem Pharmacol 146:159-216
    • (2003) Rev Physiol Biochem Pharmacol , vol.146 , pp. 159-216
    • Fluck, M.1    Hoppeler, H.2
  • 37
    • 0034665188 scopus 로고    scopus 로고
    • Myosin isoforms, muscle fiber types, and transitions
    • 1:CAS:528:DC%2BD3cXnslWhtL8%3D 10998639 10.1002/1097-0029(20000915)50: 6<500: AID-JEMT7>3.0.CO;2-7
    • Pette D, Staron RS (2000) Myosin isoforms, muscle fiber types, and transitions. Microsc Res Tech 50:500-509
    • (2000) Microsc Res Tech , vol.50 , pp. 500-509
    • Pette, D.1    Staron, R.S.2
  • 38
    • 0035929170 scopus 로고    scopus 로고
    • Adaptive increase in pyruvate dehydrogenase kinase 4 during starvation is mediated by peroxisome proliferator-activated receptor α
    • DOI 10.1006/bbrc.2001.5608
    • Wu P, Peters JM, Harris RA (2001) Adaptive increase in pyruvate dehydrogenase kinase 4 during starvation is mediated by peroxisome proliferator-activated receptor α. Biochem Biophys Res Commun 287:391-396 (Pubitemid 32917610)
    • (2001) Biochemical and Biophysical Research Communications , vol.287 , Issue.2 , pp. 391-396
    • Wu, P.1    Peters, J.M.2    Harris, R.A.3
  • 39
    • 34548304285 scopus 로고    scopus 로고
    • Nur77 coordinately regulates expression of genes linked to glucose metabolism in skeletal muscle
    • DOI 10.1210/me.2007-0169
    • Chao LC, Zhang Z, Pei L, Saito T, Tontonoz P, Pilch PF (2007) Nur77 coordinately regulates expression of genes linked to glucose metabolism in skeletal muscle. Mol Endocrinol 21:2152-2163 (Pubitemid 47347379)
    • (2007) Molecular Endocrinology , vol.21 , Issue.9 , pp. 2152-2163
    • Chao, L.C.1    Zhang, Z.2    Pei, L.3    Saito, T.4    Tontonoz, P.5    Pilch, P.F.6
  • 41
    • 48449094498 scopus 로고    scopus 로고
    • AMPK and PPARδ agonists are exercise mimetics
    • 1:CAS:528:DC%2BD1cXhtVSis77P 2706130 18674809 10.1016/j.cell.2008.06.051
    • Narkar VA, Downes M, Yu RT et al (2008) AMPK and PPARδ agonists are exercise mimetics. Cell 134:405-415
    • (2008) Cell , vol.134 , pp. 405-415
    • Narkar, V.A.1    Downes, M.2    Yu, R.T.3
  • 45
    • 79952148111 scopus 로고    scopus 로고
    • Exercise and PGC-1α-independent synchronization of type i muscle metabolism and vasculature by ERRγ
    • 1:CAS:528:DC%2BC3MXisFGrsr0%3D 3084588 21356518 10.1016/j.cmet.2011.01. 019
    • Narkar VA, Fan W, Downes M et al (2011) Exercise and PGC-1α- independent synchronization of type I muscle metabolism and vasculature by ERRγ. Cell Metab 13:283-293
    • (2011) Cell Metab , vol.13 , pp. 283-293
    • Narkar, V.A.1    Fan, W.2    Downes, M.3
  • 46
    • 84873378527 scopus 로고    scopus 로고
    • Exercise metabolism and the molecular regulation of skeletal muscle adaptation
    • 1:CAS:528:DC%2BC3sXitFCnsb4%3D 23395166 10.1016/j.cmet.2012.12.012
    • Egan B, Zierath JR (2013) Exercise metabolism and the molecular regulation of skeletal muscle adaptation. Cell Metab 17:162-184
    • (2013) Cell Metab , vol.17 , pp. 162-184
    • Egan, B.1    Zierath, J.R.2
  • 47
    • 24944460267 scopus 로고    scopus 로고
    • Differential control of Bmal1 circadian transcription by REV-ERB and ROR nuclear receptors
    • DOI 10.1177/0748730405277232
    • Guillaumond F, Dardente H, Giguere V, Cermakian N (2005) Differential control of Bmal1 circadian transcription by REV-ERB and ROR nuclear receptors. J Biol Rhythm 20:391-403 (Pubitemid 41318436)
    • (2005) Journal of Biological Rhythms , vol.20 , Issue.5 , pp. 391-403
    • Guillaumond, F.1    Dardente, H.2    Giguere, V.3    Cermakian, N.4
  • 49
    • 84860264490 scopus 로고    scopus 로고
    • Regulation of circadian behaviour and metabolism by REV-ERB-α and REV-ERB-β
    • 1:CAS:528:DC%2BC38XmsFCgtr4%3D 3367514 22460952 10.1038/nature11048
    • Cho H, Zhao X, Hatori M et al (2012) Regulation of circadian behaviour and metabolism by REV-ERB-α and REV-ERB-β. Nature 485:123-127
    • (2012) Nature , vol.485 , pp. 123-127
    • Cho, H.1    Zhao, X.2    Hatori, M.3
  • 52
    • 84859329911 scopus 로고    scopus 로고
    • Rev-erbalpha and Rev-erbβ coordinately protect the circadian clock and normal metabolic function
    • 1:CAS:528:DC%2BC38XntVyqtLs%3D 3323877 22474260 10.1101/gad.186858.112
    • Bugge A, Feng D, Everett LJ et al (2012) Rev-erbalpha and Rev-erbβ coordinately protect the circadian clock and normal metabolic function. Genes Dev 26:657-667
    • (2012) Genes Dev , vol.26 , pp. 657-667
    • Bugge, A.1    Feng, D.2    Everett, L.J.3
  • 53
    • 84255206549 scopus 로고    scopus 로고
    • Cryptochromes mediate rhythmic repression of the glucocorticoid receptor
    • 1:CAS:528:DC%2BC3MXhs1aisbvP 3245818 22170608
    • Lamia KA, Papp SJ, Yu RT et al (2011) Cryptochromes mediate rhythmic repression of the glucocorticoid receptor. Nature 480:552-556
    • (2011) Nature , vol.480 , pp. 552-556
    • Lamia, K.A.1    Papp, S.J.2    Yu, R.T.3
  • 54
    • 79953224499 scopus 로고    scopus 로고
    • Proline- and acidic amino acid-rich basic leucine zipper proteins modulate peroxisome proliferator-activated receptor α (PPARα) activity
    • 1:CAS:528:DC%2BC3MXktVOgu7o%3D 3064322 21383142 10.1073/pnas.1002862108
    • Gachon F, Leuenberger N, Claudel T et al (2011) Proline- and acidic amino acid-rich basic leucine zipper proteins modulate peroxisome proliferator-activated receptor α (PPARα) activity. Proc Natl Acad Sci U S A 108:4794-4799
    • (2011) Proc Natl Acad Sci U S A , vol.108 , pp. 4794-4799
    • Gachon, F.1    Leuenberger, N.2    Claudel, T.3
  • 56
    • 84870568785 scopus 로고    scopus 로고
    • Circulating fibroblast growth factors as metabolic regulators - A critical appraisal
    • 1:CAS:528:DC%2BC38Xhslymsb%2FN 23217254 10.1016/j.cmet.2012.11.001
    • Angelin B, Larsson TE, Rudling M (2012) Circulating fibroblast growth factors as metabolic regulators - a critical appraisal. Cell Metab 16:693-705
    • (2012) Cell Metab , vol.16 , pp. 693-705
    • Angelin, B.1    Larsson, T.E.2    Rudling, M.3
  • 57
    • 84875421249 scopus 로고    scopus 로고
    • Exploring mechanisms of FGF signalling through the lens of structural biology
    • 1:CAS:528:DC%2BC3sXitlentr8%3D 3695728 23403721 10.1038/nrm3528
    • Goetz R, Mohammadi M (2013) Exploring mechanisms of FGF signalling through the lens of structural biology. Nat Rev Mol Cell Biol 14:166-180
    • (2013) Nat Rev Mol Cell Biol , vol.14 , pp. 166-180
    • Goetz, R.1    Mohammadi, M.2
  • 58
    • 61649100307 scopus 로고    scopus 로고
    • The FGF family: Biology, pathophysiology and therapy
    • 1:CAS:528:DC%2BD1MXisVShur4%3D 3684054 19247306 10.1038/nrd2792
    • Beenken A, Mohammadi M (2009) The FGF family: biology, pathophysiology and therapy. Nat Rev Drug Discov 8:235-253
    • (2009) Nat Rev Drug Discov , vol.8 , pp. 235-253
    • Beenken, A.1    Mohammadi, M.2
  • 59
    • 84865741904 scopus 로고    scopus 로고
    • βklotho is required for fibroblast growth factor 21 effects on growth and metabolism
    • 1:CAS:528:DC%2BC38XhtlSkt73E 3447537 22958921 10.1016/j.cmet.2012.08.002
    • Ding X, Boney-Montoya J, Owen BM et al (2012) βKlotho is required for fibroblast growth factor 21 effects on growth and metabolism. Cell Metab 16:387-393
    • (2012) Cell Metab , vol.16 , pp. 387-393
    • Ding, X.1    Boney-Montoya, J.2    Owen, B.M.3
  • 62
    • 79953129095 scopus 로고    scopus 로고
    • FGF19 as a postprandial, insulin-independent activator of hepatic protein and glycogen synthesis
    • 1:CAS:528:DC%2BC3MXjs1Cgtb4%3D 3076083 21436455 10.1126/science.1198363
    • Kir S, Beddow SA, Samuel VT et al (2011) FGF19 as a postprandial, insulin-independent activator of hepatic protein and glycogen synthesis. Science 331:1621-1624
    • (2011) Science , vol.331 , pp. 1621-1624
    • Kir, S.1    Beddow, S.A.2    Samuel, V.T.3
  • 64
    • 79958066536 scopus 로고    scopus 로고
    • FGF15/19 regulates hepatic glucose metabolism by inhibiting the CREB-PGC-1α pathway
    • 1:CAS:528:DC%2BC3MXntFSlu74%3D 3131185 21641554 10.1016/j.cmet.2011.03. 019
    • Potthoff MJ, Boney-Montoya J, Choi M et al (2011) FGF15/19 regulates hepatic glucose metabolism by inhibiting the CREB-PGC-1α pathway. Cell Metab 13:729-738
    • (2011) Cell Metab , vol.13 , pp. 729-738
    • Potthoff, M.J.1    Boney-Montoya, J.2    Choi, M.3
  • 65
    • 56949101730 scopus 로고    scopus 로고
    • Fibroblast growth factor receptor 4 regulates proliferation, anti-apoptosis and α-fetoprotein secretion during hepatocellular carcinoma progression and represents a potential target for therapeutic intervention
    • 1:CAS:528:DC%2BD1cXhsVCkt77I 19008009 10.1016/j.jhep.2008.08.015
    • Ho HK, Pok S, Streit S et al (2009) Fibroblast growth factor receptor 4 regulates proliferation, anti-apoptosis and α-fetoprotein secretion during hepatocellular carcinoma progression and represents a potential target for therapeutic intervention. J Hepatol 50:118-127
    • (2009) J Hepatol , vol.50 , pp. 118-127
    • Ho, H.K.1    Pok, S.2    Streit, S.3
  • 67
    • 84863012459 scopus 로고    scopus 로고
    • Fibroblast growth factor-21 regulates PPARγ activity and the antidiabetic actions of thiazolidinediones
    • 1:CAS:528:DC%2BC38XhvFart74%3D 3273727 22304921 10.1016/j.cell.2011.11. 062
    • Dutchak PA, Katafuchi T, Bookout AL et al (2012) Fibroblast growth factor-21 regulates PPARγ activity and the antidiabetic actions of thiazolidinediones. Cell 148:556-567
    • (2012) Cell , vol.148 , pp. 556-567
    • Dutchak, P.A.1    Katafuchi, T.2    Bookout, A.L.3
  • 68
    • 34249711964 scopus 로고    scopus 로고
    • Hepatic Fibroblast Growth Factor 21 Is Regulated by PPARα and Is a Key Mediator of Hepatic Lipid Metabolism in Ketotic States
    • DOI 10.1016/j.cmet.2007.05.002, PII S1550413107001295
    • Badman MK, Pissios P, Kennedy AR, Koukos G, Flier JS, Maratos-Flier E (2007) Hepatic fibroblast growth factor 21 is regulated by PPARα and is a key mediator of hepatic lipid metabolism in ketotic states. Cell Metab 5:426-437 (Pubitemid 46825495)
    • (2007) Cell Metabolism , vol.5 , Issue.6 , pp. 426-437
    • Badman, M.K.1    Pissios, P.2    Kennedy, A.R.3    Koukos, G.4    Flier, J.S.5    Maratos-Flier, E.6
  • 70
    • 61649127208 scopus 로고    scopus 로고
    • Fibroblast growth factor 21 reverses hepatic steatosis, increases energy expenditure, and improves insulin sensitivity in diet-induced obese mice
    • 1:CAS:528:DC%2BD1MXptVCntA%3D%3D 2606881 18840786 10.2337/db08-0392
    • Xu J, Lloyd DJ, Hale C et al (2009) Fibroblast growth factor 21 reverses hepatic steatosis, increases energy expenditure, and improves insulin sensitivity in diet-induced obese mice. Diabetes 58:250-259
    • (2009) Diabetes , vol.58 , pp. 250-259
    • Xu, J.1    Lloyd, D.J.2    Hale, C.3
  • 72
    • 84893849860 scopus 로고    scopus 로고
    • Interplay between FGF21 and insulin action in the liver regulates metabolism
    • 1:CAS:528:DC%2BC2cXis1ersLg%3D 3904602 24401271 10.1172/JCI67353
    • Emanuelli B, Vienberg SG, Smyth G et al (2014) Interplay between FGF21 and insulin action in the liver regulates metabolism. J Clin Invest 124:515-527
    • (2014) J Clin Invest , vol.124 , pp. 515-527
    • Emanuelli, B.1    Vienberg, S.G.2    Smyth, G.3
  • 73
    • 84877260638 scopus 로고    scopus 로고
    • Adiponectin mediates the metabolic effects of FGF21 on glucose homeostasis and insulin sensitivity in mice
    • 1:CAS:528:DC%2BC3sXnsVykurw%3D 23663741 10.1016/j.cmet.2013.04.005
    • Lin Z, Tian H, Lam KS et al (2013) Adiponectin mediates the metabolic effects of FGF21 on glucose homeostasis and insulin sensitivity in mice. Cell Metab 17:779-789
    • (2013) Cell Metab , vol.17 , pp. 779-789
    • Lin, Z.1    Tian, H.2    Lam, K.S.3
  • 74
    • 84877272187 scopus 로고    scopus 로고
    • An FGF21-adiponectin-ceramide axis controls energy expenditure and insulin action in mice
    • 1:CAS:528:DC%2BC3sXnsV2jsbw%3D 23663742 10.1016/j.cmet.2013.03.019
    • Holland WL, Adams AC, Brozinick JT et al (2013) An FGF21-adiponectin- ceramide axis controls energy expenditure and insulin action in mice. Cell Metab 17:790-797
    • (2013) Cell Metab , vol.17 , pp. 790-797
    • Holland, W.L.1    Adams, A.C.2    Brozinick, J.T.3
  • 75
    • 84883778996 scopus 로고    scopus 로고
    • FGF21 regulates metabolism and circadian behavior by acting on the nervous system
    • 1:CAS:528:DC%2BC3sXht1Cgt7jE 3769420 23933984 10.1038/nm.3249
    • Bookout AL, de Groot MH, Owen BM et al (2013) FGF21 regulates metabolism and circadian behavior by acting on the nervous system. Nat Med 19:1147-1152
    • (2013) Nat Med , vol.19 , pp. 1147-1152
    • Bookout, A.L.1    De Groot, M.H.2    Owen, B.M.3
  • 76
    • 84883763046 scopus 로고    scopus 로고
    • FGF21 contributes to neuroendocrine control of female reproduction
    • 1:CAS:528:DC%2BC3sXht1Cgs73O 3769455 23933983 10.1038/nm.3250
    • Owen BM, Bookout AL, Ding X et al (2013) FGF21 contributes to neuroendocrine control of female reproduction. Nat Med 19:1153-1156
    • (2013) Nat Med , vol.19 , pp. 1153-1156
    • Owen, B.M.1    Bookout, A.L.2    Ding, X.3
  • 77
    • 84861047531 scopus 로고    scopus 로고
    • A PPARγ-FGF1 axis is required for adaptive adipose remodelling and metabolic homeostasis
    • 1:CAS:528:DC%2BC38XmtVCjsr4%3D 3358516 22522926 10.1038/nature10998
    • Jonker JW, Suh JM, Atkins AR et al (2012) A PPARγ-FGF1 axis is required for adaptive adipose remodelling and metabolic homeostasis. Nature 485:391-394
    • (2012) Nature , vol.485 , pp. 391-394
    • Jonker, J.W.1    Suh, J.M.2    Atkins, A.R.3
  • 78
    • 84883481988 scopus 로고    scopus 로고
    • The effects of LY2405319, an FGF21 analog, in obese human subjects with type 2 diabetes
    • 1:CAS:528:DC%2BC3sXhsVShtbrN 24011069 10.1016/j.cmet.2013.08.005
    • Gaich G, Chien JY, Fu H et al (2013) The effects of LY2405319, an FGF21 analog, in obese human subjects with type 2 diabetes. Cell Metab 18:333-340
    • (2013) Cell Metab , vol.18 , pp. 333-340
    • Gaich, G.1    Chien, J.Y.2    Fu, H.3
  • 79
    • 84883482471 scopus 로고    scopus 로고
    • FGF21 mimetic shows therapeutic promise
    • 1:CAS:528:DC%2BC3sXhsVShtLjI 24011067 10.1016/j.cmet.2013.08.014
    • Reitman ML (2013) FGF21 mimetic shows therapeutic promise. Cell Metab 18:307-309
    • (2013) Cell Metab , vol.18 , pp. 307-309
    • Reitman, M.L.1
  • 80
    • 84863116228 scopus 로고    scopus 로고
    • Fibroblast growth factor 21 promotes bone loss by potentiating the effects of peroxisome proliferator-activated receptor gamma
    • 1:CAS:528:DC%2BC38Xjs1Wmtbs%3D 3286969 22315431 10.1073/pnas.1200797109
    • Wei W, Dutchak PA, Wang X et al (2012) Fibroblast growth factor 21 promotes bone loss by potentiating the effects of peroxisome proliferator-activated receptor gamma. Proc Natl Acad Sci U S A 109:3143-3148
    • (2012) Proc Natl Acad Sci U S A , vol.109 , pp. 3143-3148
    • Wei, W.1    Dutchak, P.A.2    Wang, X.3
  • 81
    • 83655165300 scopus 로고    scopus 로고
    • Amelioration of type 2 diabetes by antibody-mediated activation of fibroblast growth factor receptor 1
    • Wu AL, Kolumam G, Stawicki S et al (2011) Amelioration of type 2 diabetes by antibody-mediated activation of fibroblast growth factor receptor 1. Sci Trans Med 3:113-126
    • (2011) Sci Trans Med , vol.3 , pp. 113-126
    • Wu, A.L.1    Kolumam, G.2    Stawicki, S.3
  • 82
    • 84882255392 scopus 로고    scopus 로고
    • Rev-erb-alpha modulates skeletal muscle oxidative capacity by regulating mitochondrial biogenesis and autophagy
    • 1:CAS:528:DC%2BC3sXhtFSgsrzM 3737409 23852339 10.1038/nm.3213
    • Woldt E, Sebti Y, Solt LA et al (2013) Rev-erb-alpha modulates skeletal muscle oxidative capacity by regulating mitochondrial biogenesis and autophagy. Nat Med 19:1039-1046
    • (2013) Nat Med , vol.19 , pp. 1039-1046
    • Woldt, E.1    Sebti, Y.2    Solt, L.A.3
  • 83
    • 84860291442 scopus 로고    scopus 로고
    • Regulation of circadian behaviour and metabolism by synthetic REV-ERB agonists
    • 1:CAS:528:DC%2BC38XmsFCgtb4%3D 3343186 22460951 10.1038/nature11030
    • Solt LA, Wang Y, Banerjee S et al (2012) Regulation of circadian behaviour and metabolism by synthetic REV-ERB agonists. Nature 485:62-68
    • (2012) Nature , vol.485 , pp. 62-68
    • Solt, L.A.1    Wang, Y.2    Banerjee, S.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.