-
1
-
-
22344445270
-
The nuclear receptor superfamily: A personal retrospect on the first two decades
-
DOI 10.1210/me.2005-0125
-
Chambon P (2005) The nuclear receptor superfamily: a personal retrospect on the first two decades. Mol Endocrinol 19:1418-1428 (Pubitemid 41002973)
-
(2005)
Molecular Endocrinology
, vol.19
, Issue.6
, pp. 1418-1428
-
-
Chambon, P.1
-
2
-
-
0012473279
-
The nuclear receptor superfamily: The second decade
-
DOI 10.1016/0092-8674(95)90199-X
-
Mangelsdorf DJ, Thummel C, Beato M et al (1995) The nuclear receptor superfamily: the second decade. Cell 83:835-839 (Pubitemid 26006525)
-
(1995)
Cell
, vol.83
, Issue.6
, pp. 835-839
-
-
Mangelsdorf, D.J.1
Thummel, C.2
Beato, M.3
Herrlich, P.4
Schutz, G.5
Umesono, K.6
Blumberg, B.7
Kastner, P.8
Mark, M.9
Chambon, P.10
Evans, R.M.11
-
3
-
-
2342573009
-
The role of corepressors in transcriptional regulation by nuclear hormone receptors
-
DOI 10.1146/annurev.physiol.66.032802.155556
-
Privalsky ML (2004) The role of corepressors in transcriptional regulation by nuclear hormone receptors. Annu Rev Physiol 66:315-360 (Pubitemid 40614447)
-
(2004)
Annual Review of Physiology
, vol.66
, pp. 315-360
-
-
Privalsky, M.L.1
-
5
-
-
17544398986
-
Mechanism of corepressor binding and release from nuclear hormone receptors
-
DOI 10.1101/gad.13.24.3209
-
Nagy L, Kao HY, Love JD et al (1999) Mechanism of corepressor binding and release from nuclear hormone receptors. Genes Dev 13:3209-3216 (Pubitemid 30030443)
-
(1999)
Genes and Development
, vol.13
, Issue.24
, pp. 3209-3216
-
-
Nagy, L.1
Kao, H.-Y.2
Love, J.D.3
Li, C.4
Banayo, E.5
Gooch, J.T.6
Krishna, V.7
Chatterjee, K.8
Evans, R.M.9
Schwabe, J.W.R.10
-
6
-
-
78650816688
-
The histone variant macroH2A suppresses melanoma progression through regulation of CDK8
-
1:CAS:528:DC%2BC3MXotlGqsg%3D%3D 3057940 21179167 10.1038/nature09590
-
Kapoor A, Goldberg MS, Cumberland LK et al (2010) The histone variant macroH2A suppresses melanoma progression through regulation of CDK8. Nature 468:1105-1109
-
(2010)
Nature
, vol.468
, pp. 1105-1109
-
-
Kapoor, A.1
Goldberg, M.S.2
Cumberland, L.K.3
-
7
-
-
1942518840
-
PPARs and the complex journey to obesity
-
DOI 10.1038/nm1025
-
Evans RM, Barish GD, Wang YX (2004) PPARs and the complex journey to obesity. Nat Med 10:355-361 (Pubitemid 38508511)
-
(2004)
Nature Medicine
, vol.10
, Issue.4
, pp. 355-361
-
-
Evans, R.M.1
Barish, G.D.2
Wang, Y.-X.3
-
8
-
-
34249341193
-
Triacylglycerol metabolism in adipose tissue
-
DOI 10.2217/17460875.2.2.229
-
Ahmadian M, Duncan RE, Jaworski K, Sarkadi-Nagy E, Sul HS (2007) Triacylglycerol metabolism in adipose tissue. Future Lipidol 2:229-237 (Pubitemid 46812939)
-
(2007)
Future Lipidology
, vol.2
, Issue.2
, pp. 229-237
-
-
Ahmadian, M.1
Duncan, R.E.2
Jaworski, K.3
Sarkadi-Nagy, E.4
Sul, H.S.5
-
9
-
-
50649097541
-
Fat and beyond: The diverse biology of PPARγ
-
1:CAS:528:DC%2BD1cXos1ekur4%3D 18518822 10.1146/annurev.biochem.77. 061307.091829
-
Tontonoz P, Spiegelman BM (2008) Fat and beyond: the diverse biology of PPARγ. Annu Rev Biochem 77:289-312
-
(2008)
Annu Rev Biochem
, vol.77
, pp. 289-312
-
-
Tontonoz, P.1
Spiegelman, B.M.2
-
10
-
-
0030462770
-
The peroxisome proliferator-activated receptors: Ligands and activators
-
DOI 10.1111/j.1749-6632.1996.tb18621.x
-
Forman BM, Chen J, Evans RM (1996) The peroxisome proliferator-activated receptors: ligands and activators. Ann N Y Acad Sci 804:266-275 (Pubitemid 27056615)
-
(1996)
Annals of the New York Academy of Sciences
, vol.804
, pp. 266-275
-
-
Forman, B.M.1
Chen, J.2
Evans, R.M.3
-
11
-
-
0033213637
-
PPARγ is required for placental, cardiac, and adipose tissue development
-
DOI 10.1016/S1097-2765(00)80209-9
-
Barak Y, Nelson MC, Ong ES et al (1999) PPARγ is required for placental, cardiac, and adipose tissue development. Mol Cell 4:585-595 (Pubitemid 29531138)
-
(1999)
Molecular Cell
, vol.4
, Issue.4
, pp. 585-595
-
-
Barak, Y.1
Nelson, M.C.2
Ong, E.S.3
Jones, Y.Z.4
Ruiz-Lozano, P.5
Chien, K.R.6
Koder, A.7
Evans, R.M.8
-
12
-
-
12144291563
-
Peroxisome proliferator-activated receptor γ is required in mature white and brown adipocytes for their survival in the mouse
-
DOI 10.1073/pnas.0400356101
-
Imai T, Takakuwa R, Marchand S et al (2004) Peroxisome proliferator-activated receptor γ is required in mature white and brown adipocytes for their survival in the mouse. Proc Natl Acad Sci U S A 101:4543-4547 (Pubitemid 38437447)
-
(2004)
Proceedings of the National Academy of Sciences of the United States of America
, vol.101
, Issue.13
, pp. 4543-4547
-
-
Imai, T.1
Takakuwa, R.2
Marchand, S.3
Dentz, E.4
Bornert, J.-M.5
Messaddeq, N.6
Wendling, O.7
Mark, M.8
Desvergne, B.9
Wahli, W.10
Chambon, P.11
Metzger, D.12
-
13
-
-
9144229185
-
Adipose-specific peroxisome proliferator-activated receptor γ knockout causes insulin resistance in fat and liver but not in muscle
-
DOI 10.1073/pnas.2536828100
-
He W, Barak Y, Hevener A et al (2003) Adipose-specific peroxisome proliferator-activated receptor γ knockout causes insulin resistance in fat and liver but not in muscle. Proc Natl Acad Sci U S A 100:15712-15717 (Pubitemid 38021055)
-
(2003)
Proceedings of the National Academy of Sciences of the United States of America
, vol.100
, Issue.26
, pp. 15712-15717
-
-
He, W.1
Barak, Y.2
Hevener, A.3
Olson, P.4
Liao, D.5
Le, J.6
Nelson, M.7
Ong, E.8
Olefsky, J.M.9
Evans, R.M.10
-
14
-
-
84887474124
-
Lipoatrophy and severe metabolic disturbance in mice with fat-specific deletion of PPARγ
-
1:CAS:528:DC%2BC3sXhvVygsb7I 24167256 10.1073/pnas.1314863110
-
Wang F, Mullican SE, DiSpirito JR, Peed LC, Lazar MA (2013) Lipoatrophy and severe metabolic disturbance in mice with fat-specific deletion of PPARγ. Proc Natl Acad Sci U S A 110:18656-18661
-
(2013)
Proc Natl Acad Sci U S A
, vol.110
, pp. 18656-18661
-
-
Wang, F.1
Mullican, S.E.2
Dispirito, J.R.3
Peed, L.C.4
Lazar, M.A.5
-
15
-
-
37149052557
-
PPARγ regulates adipose triglyceride lipase in adipocytes in vitro and in vivo
-
DOI 10.1152/ajpendo.00122.2007
-
Kershaw EE, Schupp M, Guan HP, Gardner NP, Lazar MA, Flier JS (2007) PPARγ regulates adipose triglyceride lipase in adipocytes in vitro and in vivo. Am J Physiol Endocrinol Metab 293:E1736-E1745 (Pubitemid 350255127)
-
(2007)
American Journal of Physiology - Endocrinology and Metabolism
, vol.293
, Issue.6
-
-
Kershaw, E.E.1
Schupp, M.2
Guan, H.-P.3
Gardner, N.P.4
Lazar, M.A.5
Flier, J.S.6
-
16
-
-
84861312625
-
Peroxisome proliferator-activated receptor γ-dependent regulation of lipolytic nodes and metabolic flexibility
-
1:CAS:528:DC%2BC38XlsVChs7c%3D 3318581 22310664 10.1128/MCB.06154-11
-
Rodriguez-Cuenca S, Carobbio S, Velagapudi VR et al (2012) Peroxisome proliferator-activated receptor γ-dependent regulation of lipolytic nodes and metabolic flexibility. Mol Cell Biol 32:1555-1565
-
(2012)
Mol Cell Biol
, vol.32
, pp. 1555-1565
-
-
Rodriguez-Cuenca, S.1
Carobbio, S.2
Velagapudi, V.R.3
-
17
-
-
0031051523
-
Functional antagonism between CCAAT/enhancer binding protein-α and peroxisome proliferator-activated receptor-γ on the leptin promoter
-
DOI 10.1074/jbc.272.8.5283
-
Hollenberg AN, Susulic VS, Madura JP et al (1997) Functional antagonism between CCAAT/Enhancer binding protein-α and peroxisome proliferator-activated receptor-γ on the leptin promoter. J Biol Chem 272:5283-5290 (Pubitemid 27090091)
-
(1997)
Journal of Biological Chemistry
, vol.272
, Issue.8
, pp. 5283-5290
-
-
Hollenberg, A.N.1
Susulic, V.S.2
Madura, J.P.3
Zhang, B.4
Moller, D.E.5
Tontonoz, P.6
Sarraf, P.7
Spiegelman, B.M.8
Lowell, B.B.9
-
18
-
-
0037677767
-
Induction of adiponectin, a fat-derived antidiabetic and antiatherogenic factor, by nuclear receptors
-
Iwaki M, Matsuda M, Maeda N et al (2003) Induction of adiponectin, a fat-derived antidiabetic and antiatherogenic factor, by nuclear receptors. Diabetes 52:1655-1663 (Pubitemid 36792453)
-
(2003)
Diabetes
, vol.52
, Issue.7
, pp. 1655-1663
-
-
Iwaki, M.1
Matsuda, M.2
Maeda, N.3
Funahashi, T.4
Matsuzawa, Y.5
Makishima, M.6
Shimomura, I.7
-
19
-
-
0027972524
-
Altered gene expression for tumor necrosis factor-α and its receptors during drug and dietary modulation of insulin resistance
-
DOI 10.1210/en.134.1.264
-
Hofmann C, Lorenz K, Braithwaite SS et al (1994) Altered gene expression for tumor necrosis factor-α and its receptors during drug and dietary modulation of insulin resistance. Endocrinology 134:264-270 (Pubitemid 24021997)
-
(1994)
Endocrinology
, vol.134
, Issue.1
, pp. 264-270
-
-
Hofmann, C.1
Lorenz, K.2
Braithwaite, S.S.3
Colca, J.R.4
Palazuk, B.J.5
Hotamisligil, G.S.6
Spiegelman, B.M.7
-
20
-
-
65249089760
-
Adipocyte-specific expression of murine resistin is mediated by synergism between peroxisome proliferator-activated receptor γ and CCAAT/enhancer-binding proteins
-
1:CAS:528:DC%2BD1MXisVSktrw%3D 2649096 19126543 10.1074/jbc.M808407200
-
Tomaru T, Steger DJ, Lefterova MI, Schupp M, Lazar MA (2009) Adipocyte-specific expression of murine resistin is mediated by synergism between peroxisome proliferator-activated receptor γ and CCAAT/enhancer-binding proteins. J Biol Chem 284:6116-6125
-
(2009)
J Biol Chem
, vol.284
, pp. 6116-6125
-
-
Tomaru, T.1
Steger, D.J.2
Lefterova, M.I.3
Schupp, M.4
Lazar, M.A.5
-
21
-
-
0036146384
-
A novel heterozygous mutation in peroxisome proliferator-activated receptor-γ gene in a patient with familial partial lipodystrophy
-
DOI 10.1210/jc.87.1.408
-
Agarwal AK, Garg A (2002) A novel heterozygous mutation in peroxisome proliferator-activated receptor-γ gene in a patient with familial partial lipodystrophy. J Clin Endocrinol Metab 87:408-411 (Pubitemid 34084723)
-
(2002)
Journal of Clinical Endocrinology and Metabolism
, vol.87
, Issue.1
, pp. 408-411
-
-
Agarwal, A.K.1
Garg, A.2
-
22
-
-
0036894397
-
PPARG F388L, a transactivation-deficient mutant, in familial partial lipodystrophy
-
Hegele RA, Cao H, Frankowski C, Mathews ST, Leff T (2002) PPARG F388L, a transactivation-deficient mutant, in familial partial lipodystrophy. Diabetes 51:3586-3590 (Pubitemid 35403468)
-
(2002)
Diabetes
, vol.51
, Issue.12
, pp. 3586-3590
-
-
Hegele, R.A.1
Cao, H.2
Frankowski, C.3
Mathews, S.T.4
Leff, T.5
-
23
-
-
0344375097
-
Human metabolic syndrome resulting from dominant-negative mutations in the nuclear receptor peroxisome proliferator-activated receptor-γ
-
DOI 10.2337/diabetes.52.4.910
-
Savage DB, Tan GD, Acerini CL et al (2003) Human metabolic syndrome resulting from dominant-negative mutations in the nuclear receptor peroxisome proliferator-activated receptor-γ. Diabetes 52:910-917 (Pubitemid 36384259)
-
(2003)
Diabetes
, vol.52
, Issue.4
, pp. 910-917
-
-
Savage, D.B.1
Tan, G.D.2
Acerini, C.L.3
Jebb, S.A.4
Agostini, M.5
Gurnell, M.6
Williams, R.L.7
Umpleby, A.M.8
Thomas, E.L.9
Bell, J.D.10
Dixon, A.K.11
Dunne, F.12
Boiani, R.13
Cinti, S.14
Vidal-Puig, A.15
Karpe, F.16
Chatterjee, V.K.V.17
O'Rahilly, S.18
-
24
-
-
76049086229
-
PPARγ activation in adipocytes is sufficient for systemic insulin sensitization
-
1:CAS:528:DC%2BC3cXmsVenuw%3D%3D 2794650 20018750 10.1073/pnas.0912487106
-
Sugii S, Olson P, Sears DD et al (2009) PPARγ activation in adipocytes is sufficient for systemic insulin sensitization. Proc Natl Acad Sci U S A 106:22504-22509
-
(2009)
Proc Natl Acad Sci U S A
, vol.106
, pp. 22504-22509
-
-
Sugii, S.1
Olson, P.2
Sears, D.D.3
-
25
-
-
84877329207
-
PPARγ signaling and metabolism: The good, the bad and the future
-
1:CAS:528:DC%2BC3sXntF2kurs%3D 23652116 10.1038/nm.3159
-
Ahmadian M, Suh JM, Hah N et al (2013) PPARγ signaling and metabolism: the good, the bad and the future. Nat Med 19:557-566
-
(2013)
Nat Med
, vol.19
, pp. 557-566
-
-
Ahmadian, M.1
Suh, J.M.2
Hah, N.3
-
26
-
-
0242349197
-
Regulation of hepatic fasting response by PPARγ coactivator-1α (PGC-1): Requirement for hepatocyte nuclear factor 4α in gluconeogenesis
-
DOI 10.1073/pnas.0730870100
-
Rhee J, Inoue Y, Yoon JC et al (2003) Regulation of hepatic fasting response by PPARγ coactivator-1α (PGC-1): requirement for hepatocyte nuclear factor 4α in gluconeogenesis. Proc Natl Acad Sci U S A 100:4012-4017 (Pubitemid 36418148)
-
(2003)
Proceedings of the National Academy of Sciences of the United States of America
, vol.100
, Issue.7
, pp. 4012-4017
-
-
Rhee, J.1
Inoue, Y.2
Yoon, J.C.3
Puigserver, P.4
Fan, M.5
Gonzalez, F.J.6
Spiegelman, B.M.7
-
27
-
-
84887397982
-
Inverse agonist of nuclear receptor ERRγ mediates antidiabetic effect through inhibition of hepatic gluconeogenesis
-
1:CAS:528:DC%2BC3sXhtl2jtL%2FI 23775767 10.2337/db12-0946
-
Kim DK, Gang GT, Ryu D et al (2013) Inverse agonist of nuclear receptor ERRγ mediates antidiabetic effect through inhibition of hepatic gluconeogenesis. Diabetes 62:3093-3102
-
(2013)
Diabetes
, vol.62
, pp. 3093-3102
-
-
Kim, D.K.1
Gang, G.T.2
Ryu, D.3
-
28
-
-
0037135623
-
Fatty acid homeostasis and induction of lipid regulatory genes in skeletal muscles of peroxisome proliferator-activated receptor (PPAR) α knock-out mice. Evidence for compensatory regulation by PPARδ
-
DOI 10.1074/jbc.M203997200
-
Muoio DM, MacLean PS, Lang DB et al (2002) Fatty acid homeostasis and induction of lipid regulatory genes in skeletal muscles of peroxisome proliferator-activated receptor (PPAR) alpha knock-out mice. Evidence for compensatory regulation by PPAR δ. J Biol Chem 277:26089-26097 (Pubitemid 34967092)
-
(2002)
Journal of Biological Chemistry
, vol.277
, Issue.29
, pp. 26089-26097
-
-
Muoio, D.M.1
MacLean, P.S.2
Lang, D.B.3
Li, S.4
Houmard, J.A.5
Way, J.M.6
Winegar, D.A.7
Christopher Corton, J.8
Lynis Dohm, G.9
Kraus, W.E.10
-
29
-
-
0033594980
-
A critical role for the peroxisome proliferator-activated receptor α (PPARα) in the cellular fasting response: The PPARα-null mouse as a model of fatty acid oxidation disorders
-
DOI 10.1073/pnas.96.13.7473
-
Leone TC, Weinheimer CJ, Kelly DP (1999) A critical role for the peroxisome proliferator-activated receptor α (PPARα) in the cellular fasting response: the PPARα-null mouse as a model of fatty acid oxidation disorders. Proc Natl Acad Sci U S A 96:7473-7478 (Pubitemid 29299686)
-
(1999)
Proceedings of the National Academy of Sciences of the United States of America
, vol.96
, Issue.13
, pp. 7473-7478
-
-
Leone, T.C.1
Weinheimer, C.J.2
Kelly, D.P.3
-
30
-
-
0032699670
-
Peroxisome proliferator-activated receptor alpha mediates the adaptive response to fasting
-
1:CAS:528:DyaK1MXjvVSntLo%3D 408372 10359558 10.1172/JCI6223
-
Kersten S, Seydoux J, Peters JM, Gonzalez FJ, Desvergne B, Wahli W (1999) Peroxisome proliferator-activated receptor alpha mediates the adaptive response to fasting. J Clin Invest 103:1489-1498
-
(1999)
J Clin Invest
, vol.103
, pp. 1489-1498
-
-
Kersten, S.1
Seydoux, J.2
Peters, J.M.3
Gonzalez, F.J.4
Desvergne, B.5
Wahli, W.6
-
31
-
-
68149098866
-
Identification of a physiologically relevant endogenous ligand for PPARα in liver
-
1:CAS:528:DC%2BD1MXhsVChs7nI 2725194 19646743 10.1016/j.cell.2009.05.036
-
Chakravarthy MV, Lodhi IJ, Yin L et al (2009) Identification of a physiologically relevant endogenous ligand for PPARα in liver. Cell 138:476-488
-
(2009)
Cell
, vol.138
, pp. 476-488
-
-
Chakravarthy, M.V.1
Lodhi, I.J.2
Yin, L.3
-
32
-
-
0037965630
-
Activation of liver X receptor improves glucose tolerance through coordinate regulation of glucose metabolism in liver and adipose tissue
-
DOI 10.1073/pnas.0830671100
-
Laffitte BA, Chao LC, Li J et al (2003) Activation of liver X receptor improves glucose tolerance through coordinate regulation of glucose metabolism in liver and adipose tissue. Proc Natl Acad Sci U S A 100:5419-5424 (Pubitemid 36542720)
-
(2003)
Proceedings of the National Academy of Sciences of the United States of America
, vol.100
, Issue.9
, pp. 5419-5424
-
-
Laffitte, B.A.1
Chao, L.C.2
Li, J.3
Walczak, R.4
Hummasti, S.5
Joseph, S.B.6
Castrillo, A.7
Wilpitz, D.C.8
Mangelsdorf, D.J.9
Collins, J.L.10
Saez, E.11
Tontonoz, P.12
-
33
-
-
32244447570
-
Activation of the nuclear FXR improves hyperglycemia and hyperlipidemia in diabetic mice
-
DOI 10.1073/pnas.0506982103
-
Zhang Y, Lee FY, Barrera G et al (2006) Activation of the nuclear receptor FXR improves hyperglycemia and hyperlipidemia in diabetic mice. Proc Natl Acad Sci U S A 103:1006-1011 (Pubitemid 43212212)
-
(2006)
Proceedings of the National Academy of Sciences of the United States of America
, vol.103
, Issue.4
, pp. 1006-1011
-
-
Zhang, Y.1
Lee, F.Y.2
Barrera, G.3
Lee, H.4
Vales, C.5
Gonzalez, F.J.6
Willson, T.M.7
Edwards, P.A.8
-
34
-
-
0037072732
-
Stimulation of lipogenesis by pharmacological activation of the liver X receptor leads to production of large, triglyceride-rich very low density lipoprotein particles
-
1:CAS:528:DC%2BD38Xnt1SqtL8%3D 12097330 10.1074/jbc.M204887200
-
Grefhorst A, Elzinga BM, Voshol PJ et al (2002) Stimulation of lipogenesis by pharmacological activation of the liver X receptor leads to production of large, triglyceride-rich very low density lipoprotein particles. J Biol Chem 277:34182-34190
-
(2002)
J Biol Chem
, vol.277
, pp. 34182-34190
-
-
Grefhorst, A.1
Elzinga, B.M.2
Voshol, P.J.3
-
35
-
-
77956868119
-
The role of PPARα activation in liver and muscle
-
10.1155/2010/542359 2933910 20847941
-
Burri L, Thoresen GH, Berge RK (2010) The role of PPARα activation in liver and muscle. PPAR Res. doi: 10.1155/2010/542359
-
(2010)
PPAR Res
-
-
Burri, L.1
Thoresen, G.H.2
Berge, R.K.3
-
36
-
-
0037610288
-
Molecular basis of skeletal muscle plasticity - From gene to form and function
-
1:STN:280:DC%2BD3s%2Fptlalug%3D%3D 12605307 10.1007/s10254-002-0004-7
-
Fluck M, Hoppeler H (2003) Molecular basis of skeletal muscle plasticity - from gene to form and function. Rev Physiol Biochem Pharmacol 146:159-216
-
(2003)
Rev Physiol Biochem Pharmacol
, vol.146
, pp. 159-216
-
-
Fluck, M.1
Hoppeler, H.2
-
37
-
-
0034665188
-
Myosin isoforms, muscle fiber types, and transitions
-
1:CAS:528:DC%2BD3cXnslWhtL8%3D 10998639 10.1002/1097-0029(20000915)50: 6<500: AID-JEMT7>3.0.CO;2-7
-
Pette D, Staron RS (2000) Myosin isoforms, muscle fiber types, and transitions. Microsc Res Tech 50:500-509
-
(2000)
Microsc Res Tech
, vol.50
, pp. 500-509
-
-
Pette, D.1
Staron, R.S.2
-
38
-
-
0035929170
-
Adaptive increase in pyruvate dehydrogenase kinase 4 during starvation is mediated by peroxisome proliferator-activated receptor α
-
DOI 10.1006/bbrc.2001.5608
-
Wu P, Peters JM, Harris RA (2001) Adaptive increase in pyruvate dehydrogenase kinase 4 during starvation is mediated by peroxisome proliferator-activated receptor α. Biochem Biophys Res Commun 287:391-396 (Pubitemid 32917610)
-
(2001)
Biochemical and Biophysical Research Communications
, vol.287
, Issue.2
, pp. 391-396
-
-
Wu, P.1
Peters, J.M.2
Harris, R.A.3
-
39
-
-
34548304285
-
Nur77 coordinately regulates expression of genes linked to glucose metabolism in skeletal muscle
-
DOI 10.1210/me.2007-0169
-
Chao LC, Zhang Z, Pei L, Saito T, Tontonoz P, Pilch PF (2007) Nur77 coordinately regulates expression of genes linked to glucose metabolism in skeletal muscle. Mol Endocrinol 21:2152-2163 (Pubitemid 47347379)
-
(2007)
Molecular Endocrinology
, vol.21
, Issue.9
, pp. 2152-2163
-
-
Chao, L.C.1
Zhang, Z.2
Pei, L.3
Saito, T.4
Tontonoz, P.5
Pilch, P.F.6
-
40
-
-
22544462381
-
A potential link between muscle peroxisome proliferator- activated receptor-α signaling and obesity-related diabetes
-
DOI 10.1016/j.cmet.2005.01.006, PII S1550413105000331
-
Finck BN, Bernal-Mizrachi C, Han DH et al (2005) A potential link between muscle peroxisome proliferator-activated receptor-alpha signaling and obesity-related diabetes. Cell Metab 1:133-144 (Pubitemid 43960595)
-
(2005)
Cell Metabolism
, vol.1
, Issue.2
, pp. 133-144
-
-
Finck, B.N.1
Bernal-Mizrachi, C.2
Han, D.H.3
Coleman, T.4
Sambandam, N.5
LaRiviere, L.L.6
Holloszy, J.O.7
Semenkovich, C.F.8
Kelly, D.P.9
-
41
-
-
48449094498
-
AMPK and PPARδ agonists are exercise mimetics
-
1:CAS:528:DC%2BD1cXhtVSis77P 2706130 18674809 10.1016/j.cell.2008.06.051
-
Narkar VA, Downes M, Yu RT et al (2008) AMPK and PPARδ agonists are exercise mimetics. Cell 134:405-415
-
(2008)
Cell
, vol.134
, pp. 405-415
-
-
Narkar, V.A.1
Downes, M.2
Yu, R.T.3
-
42
-
-
8844276054
-
Regulation of muscle fiber type and running endurance by PPARδ
-
DOI 10.1371/journal.pbio.0020294
-
Wang YX, Zhang CL, Yu RT et al (2004) Regulation of muscle fiber type and running endurance by PPARδ. PLoS Biol 2:e294 (Pubitemid 39532914)
-
(2004)
PLoS Biology
, vol.2
, Issue.10
-
-
Wang, Y.-X.1
Zhang, C.-L.2
Yu, R.T.3
Cho, H.K.4
Nelson, M.C.5
Bayuga-Ocampo, C.R.6
Ham, J.7
Kang, H.8
Evans, R.M.9
-
43
-
-
33750427891
-
PGC1α expression is controlled in skeletal muscles by PPARβ, whose ablation results in fiber-type switching, obesity, and type 2 diabetes
-
DOI 10.1016/j.cmet.2006.10.003, PII S1550413106003317
-
Schuler M, Ali F, Chambon C et al (2006) PGC1α expression is controlled in skeletal muscles by PPARβ, whose ablation results in fiber-type switching, obesity, and type 2 diabetes. Cell Metab 4:407-414 (Pubitemid 44645068)
-
(2006)
Cell Metabolism
, vol.4
, Issue.5
, pp. 407-414
-
-
Schuler, M.1
Ali, F.2
Chambon, C.3
Duteil, D.4
Bornert, J.-M.5
Tardivel, A.6
Desvergne, B.7
Wahli, W.8
Chambon, P.9
Metzger, D.10
-
44
-
-
9144271149
-
Activation of peroxisome proliferator-activated receptor δ induces fatty acid β-oxidation in skeletal muscle and attenuates metabolic syndrome
-
DOI 10.1073/pnas.0306981100
-
Tanaka T, Yamamoto J, Iwasaki S et al (2003) Activation of peroxisome proliferator-activated receptor δ induces fatty acid β-oxidation in skeletal muscle and attenuates metabolic syndrome. Proc Natl Acad Sci U S A 100:15924-15929 (Pubitemid 38021091)
-
(2003)
Proceedings of the National Academy of Sciences of the United States of America
, vol.100
, Issue.26
, pp. 15924-15929
-
-
Tanaka, T.1
Yamamoto, J.2
Iwasaki, S.3
Asaba, H.4
Hamura, H.5
Ikeda, Y.6
Watanabe, M.7
Magoori, K.8
Ioka, R.X.9
Tachibana, K.10
Watanabe, Y.11
Uchiyama, Y.12
Sumi, K.13
Iguchi, H.14
Ito, S.15
Doi, T.16
Hamakubo, T.17
Naito, M.18
Auwerx, J.19
Yanagisawa, M.20
Kodama, T.21
Sakai, J.22
more..
-
45
-
-
79952148111
-
Exercise and PGC-1α-independent synchronization of type i muscle metabolism and vasculature by ERRγ
-
1:CAS:528:DC%2BC3MXisFGrsr0%3D 3084588 21356518 10.1016/j.cmet.2011.01. 019
-
Narkar VA, Fan W, Downes M et al (2011) Exercise and PGC-1α- independent synchronization of type I muscle metabolism and vasculature by ERRγ. Cell Metab 13:283-293
-
(2011)
Cell Metab
, vol.13
, pp. 283-293
-
-
Narkar, V.A.1
Fan, W.2
Downes, M.3
-
46
-
-
84873378527
-
Exercise metabolism and the molecular regulation of skeletal muscle adaptation
-
1:CAS:528:DC%2BC3sXitFCnsb4%3D 23395166 10.1016/j.cmet.2012.12.012
-
Egan B, Zierath JR (2013) Exercise metabolism and the molecular regulation of skeletal muscle adaptation. Cell Metab 17:162-184
-
(2013)
Cell Metab
, vol.17
, pp. 162-184
-
-
Egan, B.1
Zierath, J.R.2
-
47
-
-
24944460267
-
Differential control of Bmal1 circadian transcription by REV-ERB and ROR nuclear receptors
-
DOI 10.1177/0748730405277232
-
Guillaumond F, Dardente H, Giguere V, Cermakian N (2005) Differential control of Bmal1 circadian transcription by REV-ERB and ROR nuclear receptors. J Biol Rhythm 20:391-403 (Pubitemid 41318436)
-
(2005)
Journal of Biological Rhythms
, vol.20
, Issue.5
, pp. 391-403
-
-
Guillaumond, F.1
Dardente, H.2
Giguere, V.3
Cermakian, N.4
-
48
-
-
4143142003
-
A functional genomics strategy reveals rora as a component of the mammalian circadian clock
-
DOI 10.1016/j.neuron.2004.07.018, PII S089662730400460X
-
Sato TK, Panda S, Miraglia LJ et al (2004) A functional genomics strategy reveals Rora as a component of the mammalian circadian clock. Neuron 43:527-537 (Pubitemid 39094679)
-
(2004)
Neuron
, vol.43
, Issue.4
, pp. 527-537
-
-
Sato, T.K.1
Panda, S.2
Miraglia, L.J.3
Reyes, T.M.4
Rudic, R.D.5
McNamara, P.6
Naik, K.A.7
Fitzgerald, G.A.8
Kay, S.A.9
Hogenesch, J.B.10
-
49
-
-
84860264490
-
Regulation of circadian behaviour and metabolism by REV-ERB-α and REV-ERB-β
-
1:CAS:528:DC%2BC38XmsFCgtr4%3D 3367514 22460952 10.1038/nature11048
-
Cho H, Zhao X, Hatori M et al (2012) Regulation of circadian behaviour and metabolism by REV-ERB-α and REV-ERB-β. Nature 485:123-127
-
(2012)
Nature
, vol.485
, pp. 123-127
-
-
Cho, H.1
Zhao, X.2
Hatori, M.3
-
50
-
-
37249086610
-
Rev-erbα, a heme sensor that coordinates metabolic and circadian pathways
-
DOI 10.1126/science.1150179
-
Yin L, Wu N, Curtin JC et al (2007) Rev-erbα, a heme sensor that coordinates metabolic and circadian pathways. Science 318:1786-1789 (Pubitemid 350274391)
-
(2007)
Science
, vol.318
, Issue.5857
, pp. 1786-1789
-
-
Yin, L.1
Wu, N.2
Curtin, J.C.3
Qatanani, M.4
Szwergold, N.R.5
Reid, R.A.6
Waitt, G.M.7
Parks, D.J.8
Pearce, K.H.9
Wisely, G.B.10
Lazar, M.A.11
-
51
-
-
36849084107
-
Identification of heme as the ligand for the orphan nuclear receptors REV-ERBα and REV-ERBβ
-
DOI 10.1038/nsmb1344, PII NSMB1344
-
Raghuram S, Stayrook KR, Huang P et al (2007) Identification of heme as the ligand for the orphan nuclear receptors REV-ERBα and REV-ERBβ. Nat Struct Mol Biol 14:1207-1213 (Pubitemid 350223341)
-
(2007)
Nature Structural and Molecular Biology
, vol.14
, Issue.12
, pp. 1207-1213
-
-
Raghuram, S.1
Stayrook, K.R.2
Huang, P.3
Rogers, P.M.4
Nosie, A.K.5
McClure, D.B.6
Burris, L.L.7
Khorasanizadeh, S.8
Burris, T.P.9
Rastinejad, F.10
-
52
-
-
84859329911
-
Rev-erbalpha and Rev-erbβ coordinately protect the circadian clock and normal metabolic function
-
1:CAS:528:DC%2BC38XntVyqtLs%3D 3323877 22474260 10.1101/gad.186858.112
-
Bugge A, Feng D, Everett LJ et al (2012) Rev-erbalpha and Rev-erbβ coordinately protect the circadian clock and normal metabolic function. Genes Dev 26:657-667
-
(2012)
Genes Dev
, vol.26
, pp. 657-667
-
-
Bugge, A.1
Feng, D.2
Everett, L.J.3
-
53
-
-
84255206549
-
Cryptochromes mediate rhythmic repression of the glucocorticoid receptor
-
1:CAS:528:DC%2BC3MXhs1aisbvP 3245818 22170608
-
Lamia KA, Papp SJ, Yu RT et al (2011) Cryptochromes mediate rhythmic repression of the glucocorticoid receptor. Nature 480:552-556
-
(2011)
Nature
, vol.480
, pp. 552-556
-
-
Lamia, K.A.1
Papp, S.J.2
Yu, R.T.3
-
54
-
-
79953224499
-
Proline- and acidic amino acid-rich basic leucine zipper proteins modulate peroxisome proliferator-activated receptor α (PPARα) activity
-
1:CAS:528:DC%2BC3MXktVOgu7o%3D 3064322 21383142 10.1073/pnas.1002862108
-
Gachon F, Leuenberger N, Claudel T et al (2011) Proline- and acidic amino acid-rich basic leucine zipper proteins modulate peroxisome proliferator-activated receptor α (PPARα) activity. Proc Natl Acad Sci U S A 108:4794-4799
-
(2011)
Proc Natl Acad Sci U S A
, vol.108
, pp. 4794-4799
-
-
Gachon, F.1
Leuenberger, N.2
Claudel, T.3
-
55
-
-
33747157406
-
Nuclear Receptor Expression Links the Circadian Clock to Metabolism
-
DOI 10.1016/j.cell.2006.06.050, PII S0092867406009780
-
Yang X, Downes M, Yu RT et al (2006) Nuclear receptor expression links the circadian clock to metabolism. Cell 126:801-810 (Pubitemid 44233631)
-
(2006)
Cell
, vol.126
, Issue.4
, pp. 801-810
-
-
Yang, X.1
Downes, M.2
Yu, R.T.3
Bookout, A.L.4
He, W.5
Straume, M.6
Mangelsdorf, D.J.7
Evans, R.M.8
-
56
-
-
84870568785
-
Circulating fibroblast growth factors as metabolic regulators - A critical appraisal
-
1:CAS:528:DC%2BC38Xhslymsb%2FN 23217254 10.1016/j.cmet.2012.11.001
-
Angelin B, Larsson TE, Rudling M (2012) Circulating fibroblast growth factors as metabolic regulators - a critical appraisal. Cell Metab 16:693-705
-
(2012)
Cell Metab
, vol.16
, pp. 693-705
-
-
Angelin, B.1
Larsson, T.E.2
Rudling, M.3
-
57
-
-
84875421249
-
Exploring mechanisms of FGF signalling through the lens of structural biology
-
1:CAS:528:DC%2BC3sXitlentr8%3D 3695728 23403721 10.1038/nrm3528
-
Goetz R, Mohammadi M (2013) Exploring mechanisms of FGF signalling through the lens of structural biology. Nat Rev Mol Cell Biol 14:166-180
-
(2013)
Nat Rev Mol Cell Biol
, vol.14
, pp. 166-180
-
-
Goetz, R.1
Mohammadi, M.2
-
58
-
-
61649100307
-
The FGF family: Biology, pathophysiology and therapy
-
1:CAS:528:DC%2BD1MXisVShur4%3D 3684054 19247306 10.1038/nrd2792
-
Beenken A, Mohammadi M (2009) The FGF family: biology, pathophysiology and therapy. Nat Rev Drug Discov 8:235-253
-
(2009)
Nat Rev Drug Discov
, vol.8
, pp. 235-253
-
-
Beenken, A.1
Mohammadi, M.2
-
59
-
-
84865741904
-
βklotho is required for fibroblast growth factor 21 effects on growth and metabolism
-
1:CAS:528:DC%2BC38XhtlSkt73E 3447537 22958921 10.1016/j.cmet.2012.08.002
-
Ding X, Boney-Montoya J, Owen BM et al (2012) βKlotho is required for fibroblast growth factor 21 effects on growth and metabolism. Cell Metab 16:387-393
-
(2012)
Cell Metab
, vol.16
, pp. 387-393
-
-
Ding, X.1
Boney-Montoya, J.2
Owen, B.M.3
-
60
-
-
18344394556
-
Transgenic mice expressing human fibroblast growth factor-19 display increased metabolic rate and decreased adiposity
-
DOI 10.1210/en.143.5.1741
-
Tomlinson E, Fu L, John L et al (2002) Transgenic mice expressing human fibroblast growth factor-19 display increased metabolic rate and decreased adiposity. Endocrinology 143:1741-1747 (Pubitemid 34415889)
-
(2002)
Endocrinology
, vol.143
, Issue.5
, pp. 1741-1747
-
-
Tomlinson, E.1
Fu, L.2
John, L.3
Hultgren, B.4
Huang, X.5
Renz, M.6
Stephan, J.P.7
Tsai, S.P.8
Powell-Braxton, L.9
French, D.10
Stewart, T.A.11
-
61
-
-
2542505481
-
Fibroblast growth factor 19 increases metabolic rate and reverses dietary and leptin-deficient diabetes
-
DOI 10.1210/en.2003-1671
-
Fu L, John LM, Adams SH et al (2004) Fibroblast growth factor 19 increases metabolic rate and reverses dietary and leptin-deficient diabetes. Endocrinology 145:2594-2603 (Pubitemid 38686202)
-
(2004)
Endocrinology
, vol.145
, Issue.6
, pp. 2594-2603
-
-
Fu, L.1
John, L.M.2
Adams, S.H.3
Yu, X.X.4
Tomlinson, E.5
Renz, M.6
Williams, P.M.7
Soriano, R.8
Corpuz, R.9
Moffat, B.10
Vandlen, R.11
Simmons, L.12
Foster, J.13
Stephan, J.-P.14
Tsai, S.P.15
Stewart, T.A.16
-
62
-
-
79953129095
-
FGF19 as a postprandial, insulin-independent activator of hepatic protein and glycogen synthesis
-
1:CAS:528:DC%2BC3MXjs1Cgtb4%3D 3076083 21436455 10.1126/science.1198363
-
Kir S, Beddow SA, Samuel VT et al (2011) FGF19 as a postprandial, insulin-independent activator of hepatic protein and glycogen synthesis. Science 331:1621-1624
-
(2011)
Science
, vol.331
, pp. 1621-1624
-
-
Kir, S.1
Beddow, S.A.2
Samuel, V.T.3
-
64
-
-
79958066536
-
FGF15/19 regulates hepatic glucose metabolism by inhibiting the CREB-PGC-1α pathway
-
1:CAS:528:DC%2BC3MXntFSlu74%3D 3131185 21641554 10.1016/j.cmet.2011.03. 019
-
Potthoff MJ, Boney-Montoya J, Choi M et al (2011) FGF15/19 regulates hepatic glucose metabolism by inhibiting the CREB-PGC-1α pathway. Cell Metab 13:729-738
-
(2011)
Cell Metab
, vol.13
, pp. 729-738
-
-
Potthoff, M.J.1
Boney-Montoya, J.2
Choi, M.3
-
65
-
-
56949101730
-
Fibroblast growth factor receptor 4 regulates proliferation, anti-apoptosis and α-fetoprotein secretion during hepatocellular carcinoma progression and represents a potential target for therapeutic intervention
-
1:CAS:528:DC%2BD1cXhsVCkt77I 19008009 10.1016/j.jhep.2008.08.015
-
Ho HK, Pok S, Streit S et al (2009) Fibroblast growth factor receptor 4 regulates proliferation, anti-apoptosis and α-fetoprotein secretion during hepatocellular carcinoma progression and represents a potential target for therapeutic intervention. J Hepatol 50:118-127
-
(2009)
J Hepatol
, vol.50
, pp. 118-127
-
-
Ho, H.K.1
Pok, S.2
Streit, S.3
-
66
-
-
0036086285
-
A mouse model of hepatocellular carcinoma: Ectopic expression of fibroblast growth factor 19 in skeletal muscle of transgenic mice
-
Nicholes K, Guillet S, Tomlinson E et al (2002) A mouse model of hepatocellular carcinoma: ectopic expression of fibroblast growth factor 19 in skeletal muscle of transgenic mice. Am J Pathol 160:2295-2307 (Pubitemid 34663420)
-
(2002)
American Journal of Pathology
, vol.160
, Issue.6
, pp. 2295-2307
-
-
Nicholes, K.1
Guillet, S.2
Tomlinson, E.3
Hillan, K.4
Wright, B.5
Frantz, G.D.6
Pham, T.A.7
Dillard-Telm, L.8
Tsai, S.P.9
Stephan, J.-P.10
Stinson, J.11
Stewart, T.12
French, D.M.13
-
67
-
-
84863012459
-
Fibroblast growth factor-21 regulates PPARγ activity and the antidiabetic actions of thiazolidinediones
-
1:CAS:528:DC%2BC38XhvFart74%3D 3273727 22304921 10.1016/j.cell.2011.11. 062
-
Dutchak PA, Katafuchi T, Bookout AL et al (2012) Fibroblast growth factor-21 regulates PPARγ activity and the antidiabetic actions of thiazolidinediones. Cell 148:556-567
-
(2012)
Cell
, vol.148
, pp. 556-567
-
-
Dutchak, P.A.1
Katafuchi, T.2
Bookout, A.L.3
-
68
-
-
34249711964
-
Hepatic Fibroblast Growth Factor 21 Is Regulated by PPARα and Is a Key Mediator of Hepatic Lipid Metabolism in Ketotic States
-
DOI 10.1016/j.cmet.2007.05.002, PII S1550413107001295
-
Badman MK, Pissios P, Kennedy AR, Koukos G, Flier JS, Maratos-Flier E (2007) Hepatic fibroblast growth factor 21 is regulated by PPARα and is a key mediator of hepatic lipid metabolism in ketotic states. Cell Metab 5:426-437 (Pubitemid 46825495)
-
(2007)
Cell Metabolism
, vol.5
, Issue.6
, pp. 426-437
-
-
Badman, M.K.1
Pissios, P.2
Kennedy, A.R.3
Koukos, G.4
Flier, J.S.5
Maratos-Flier, E.6
-
69
-
-
34249686631
-
Endocrine Regulation of the Fasting Response by PPARα-Mediated Induction of Fibroblast Growth Factor 21
-
DOI 10.1016/j.cmet.2007.05.003, PII S1550413107001301
-
Inagaki T, Dutchak P, Zhao G et al (2007) Endocrine regulation of the fasting response by PPARα-mediated induction of fibroblast growth factor 21. Cell Metab 5:415-425 (Pubitemid 46825496)
-
(2007)
Cell Metabolism
, vol.5
, Issue.6
, pp. 415-425
-
-
Inagaki, T.1
Dutchak, P.2
Zhao, G.3
Ding, X.4
Gautron, L.5
Parameswara, V.6
Li, Y.7
Goetz, R.8
Mohammadi, M.9
Esser, V.10
Elmquist, J.K.11
Gerard, R.D.12
Burgess, S.C.13
Hammer, R.E.14
Mangelsdorf, D.J.15
Kliewer, S.A.16
-
70
-
-
61649127208
-
Fibroblast growth factor 21 reverses hepatic steatosis, increases energy expenditure, and improves insulin sensitivity in diet-induced obese mice
-
1:CAS:528:DC%2BD1MXptVCntA%3D%3D 2606881 18840786 10.2337/db08-0392
-
Xu J, Lloyd DJ, Hale C et al (2009) Fibroblast growth factor 21 reverses hepatic steatosis, increases energy expenditure, and improves insulin sensitivity in diet-induced obese mice. Diabetes 58:250-259
-
(2009)
Diabetes
, vol.58
, pp. 250-259
-
-
Xu, J.1
Lloyd, D.J.2
Hale, C.3
-
71
-
-
33846418834
-
The metabolic state of diabetic monkeys is regulated by fibroblast growth factor-21
-
DOI 10.1210/en.2006-1168
-
Kharitonenkov A, Wroblewski VJ, Koester A et al (2007) The metabolic state of diabetic monkeys is regulated by fibroblast growth factor-21. Endocrinology 148:774-781 (Pubitemid 46143178)
-
(2007)
Endocrinology
, vol.148
, Issue.2
, pp. 774-781
-
-
Kharitonenkov, A.1
Wroblewski, V.J.2
Koester, A.3
Chen, Y.-F.4
Clutinger, C.K.5
Tigno, X.T.6
Hansen, B.C.7
Shanafelt, A.B.8
Etgen, G.J.9
-
72
-
-
84893849860
-
Interplay between FGF21 and insulin action in the liver regulates metabolism
-
1:CAS:528:DC%2BC2cXis1ersLg%3D 3904602 24401271 10.1172/JCI67353
-
Emanuelli B, Vienberg SG, Smyth G et al (2014) Interplay between FGF21 and insulin action in the liver regulates metabolism. J Clin Invest 124:515-527
-
(2014)
J Clin Invest
, vol.124
, pp. 515-527
-
-
Emanuelli, B.1
Vienberg, S.G.2
Smyth, G.3
-
73
-
-
84877260638
-
Adiponectin mediates the metabolic effects of FGF21 on glucose homeostasis and insulin sensitivity in mice
-
1:CAS:528:DC%2BC3sXnsVykurw%3D 23663741 10.1016/j.cmet.2013.04.005
-
Lin Z, Tian H, Lam KS et al (2013) Adiponectin mediates the metabolic effects of FGF21 on glucose homeostasis and insulin sensitivity in mice. Cell Metab 17:779-789
-
(2013)
Cell Metab
, vol.17
, pp. 779-789
-
-
Lin, Z.1
Tian, H.2
Lam, K.S.3
-
74
-
-
84877272187
-
An FGF21-adiponectin-ceramide axis controls energy expenditure and insulin action in mice
-
1:CAS:528:DC%2BC3sXnsV2jsbw%3D 23663742 10.1016/j.cmet.2013.03.019
-
Holland WL, Adams AC, Brozinick JT et al (2013) An FGF21-adiponectin- ceramide axis controls energy expenditure and insulin action in mice. Cell Metab 17:790-797
-
(2013)
Cell Metab
, vol.17
, pp. 790-797
-
-
Holland, W.L.1
Adams, A.C.2
Brozinick, J.T.3
-
75
-
-
84883778996
-
FGF21 regulates metabolism and circadian behavior by acting on the nervous system
-
1:CAS:528:DC%2BC3sXht1Cgt7jE 3769420 23933984 10.1038/nm.3249
-
Bookout AL, de Groot MH, Owen BM et al (2013) FGF21 regulates metabolism and circadian behavior by acting on the nervous system. Nat Med 19:1147-1152
-
(2013)
Nat Med
, vol.19
, pp. 1147-1152
-
-
Bookout, A.L.1
De Groot, M.H.2
Owen, B.M.3
-
76
-
-
84883763046
-
FGF21 contributes to neuroendocrine control of female reproduction
-
1:CAS:528:DC%2BC3sXht1Cgs73O 3769455 23933983 10.1038/nm.3250
-
Owen BM, Bookout AL, Ding X et al (2013) FGF21 contributes to neuroendocrine control of female reproduction. Nat Med 19:1153-1156
-
(2013)
Nat Med
, vol.19
, pp. 1153-1156
-
-
Owen, B.M.1
Bookout, A.L.2
Ding, X.3
-
77
-
-
84861047531
-
A PPARγ-FGF1 axis is required for adaptive adipose remodelling and metabolic homeostasis
-
1:CAS:528:DC%2BC38XmtVCjsr4%3D 3358516 22522926 10.1038/nature10998
-
Jonker JW, Suh JM, Atkins AR et al (2012) A PPARγ-FGF1 axis is required for adaptive adipose remodelling and metabolic homeostasis. Nature 485:391-394
-
(2012)
Nature
, vol.485
, pp. 391-394
-
-
Jonker, J.W.1
Suh, J.M.2
Atkins, A.R.3
-
78
-
-
84883481988
-
The effects of LY2405319, an FGF21 analog, in obese human subjects with type 2 diabetes
-
1:CAS:528:DC%2BC3sXhsVShtbrN 24011069 10.1016/j.cmet.2013.08.005
-
Gaich G, Chien JY, Fu H et al (2013) The effects of LY2405319, an FGF21 analog, in obese human subjects with type 2 diabetes. Cell Metab 18:333-340
-
(2013)
Cell Metab
, vol.18
, pp. 333-340
-
-
Gaich, G.1
Chien, J.Y.2
Fu, H.3
-
79
-
-
84883482471
-
FGF21 mimetic shows therapeutic promise
-
1:CAS:528:DC%2BC3sXhsVShtLjI 24011067 10.1016/j.cmet.2013.08.014
-
Reitman ML (2013) FGF21 mimetic shows therapeutic promise. Cell Metab 18:307-309
-
(2013)
Cell Metab
, vol.18
, pp. 307-309
-
-
Reitman, M.L.1
-
80
-
-
84863116228
-
Fibroblast growth factor 21 promotes bone loss by potentiating the effects of peroxisome proliferator-activated receptor gamma
-
1:CAS:528:DC%2BC38Xjs1Wmtbs%3D 3286969 22315431 10.1073/pnas.1200797109
-
Wei W, Dutchak PA, Wang X et al (2012) Fibroblast growth factor 21 promotes bone loss by potentiating the effects of peroxisome proliferator-activated receptor gamma. Proc Natl Acad Sci U S A 109:3143-3148
-
(2012)
Proc Natl Acad Sci U S A
, vol.109
, pp. 3143-3148
-
-
Wei, W.1
Dutchak, P.A.2
Wang, X.3
-
81
-
-
83655165300
-
Amelioration of type 2 diabetes by antibody-mediated activation of fibroblast growth factor receptor 1
-
Wu AL, Kolumam G, Stawicki S et al (2011) Amelioration of type 2 diabetes by antibody-mediated activation of fibroblast growth factor receptor 1. Sci Trans Med 3:113-126
-
(2011)
Sci Trans Med
, vol.3
, pp. 113-126
-
-
Wu, A.L.1
Kolumam, G.2
Stawicki, S.3
-
82
-
-
84882255392
-
Rev-erb-alpha modulates skeletal muscle oxidative capacity by regulating mitochondrial biogenesis and autophagy
-
1:CAS:528:DC%2BC3sXhtFSgsrzM 3737409 23852339 10.1038/nm.3213
-
Woldt E, Sebti Y, Solt LA et al (2013) Rev-erb-alpha modulates skeletal muscle oxidative capacity by regulating mitochondrial biogenesis and autophagy. Nat Med 19:1039-1046
-
(2013)
Nat Med
, vol.19
, pp. 1039-1046
-
-
Woldt, E.1
Sebti, Y.2
Solt, L.A.3
-
83
-
-
84860291442
-
Regulation of circadian behaviour and metabolism by synthetic REV-ERB agonists
-
1:CAS:528:DC%2BC38XmsFCgtb4%3D 3343186 22460951 10.1038/nature11030
-
Solt LA, Wang Y, Banerjee S et al (2012) Regulation of circadian behaviour and metabolism by synthetic REV-ERB agonists. Nature 485:62-68
-
(2012)
Nature
, vol.485
, pp. 62-68
-
-
Solt, L.A.1
Wang, Y.2
Banerjee, S.3
|