메뉴 건너뛰기




Volumn 20, Issue 10, 2014, Pages 1487-1498

Role of monocarboxylate transporters in drug delivery to the brain

Author keywords

Brain; Lactate; Monocarboxylate transporters; hydroxybutyrate

Indexed keywords

4 HYDROXYBUTYRIC ACID; ATORVASTATIN; BUMETANIDE; GABAPENTIN; GABAPENTIN ENACARBIL; GLUCOSE; KETONE BODY; LACTIC ACID; MONOCARBOXYLATE TRANSPORTER; MONOCARBOXYLATE TRANSPORTER 1; MONOCARBOXYLATE TRANSPORTER 10; MONOCARBOXYLATE TRANSPORTER 2; MONOCARBOXYLATE TRANSPORTER 3; MONOCARBOXYLATE TRANSPORTER 4; MONOCARBOXYLATE TRANSPORTER 6; MONOCARBOXYLATE TRANSPORTER 8; NATEGLINIDE; SALICYLIC ACID; SIMVASTATIN; SODIUM COUPLED MONOCARBOXYLATE TRANSPORTER; UNCLASSIFIED DRUG; VALPROIC ACID;

EID: 84897412061     PISSN: 13816128     EISSN: 18734286     Source Type: Journal    
DOI: 10.2174/13816128113199990462     Document Type: Review
Times cited : (293)

References (125)
  • 1
    • 0027418622 scopus 로고
    • Transport of lactate and other monocarboxylates across mammalian plasma membranes
    • Poole RC, Halestrap AP. Transport of lactate and other monocarboxylates across mammalian plasma membranes. Am J Physiol 1993; 264: C761-82.
    • (1993) Am J Physiol , vol.264
    • Poole, R.C.1    Halestrap, A.P.2
  • 2
    • 0030933001 scopus 로고    scopus 로고
    • Lactate-proton cotransport in skeletal muscle
    • Juel C. Lactate-proton cotransport in skeletal muscle. Physiol Rev 1997; 77: 321-58.
    • (1997) Physiol Rev , vol.77 , pp. 321-358
    • Juel, C.1
  • 3
    • 0033569442 scopus 로고    scopus 로고
    • The proton-linked monocarboxylate transporter (MCT) family: Structure, function and regulation
    • Halestrap AP, Price NT. The proton-linked monocarboxylate transporter (MCT) family: structure, function and regulation. Biochem J 1999; 343 Pt 2: 281-99.
    • (1999) Biochem J , vol.343 , Issue.PART 2 , pp. 281-299
    • Halestrap, A.P.1    Price, N.T.2
  • 4
    • 0030044996 scopus 로고    scopus 로고
    • The kinetics, substrate, and inhibitor specificity of the monocarboxylate (lactate) transporter of rat liver cells determined using the fluorescent intracellular pH indicator, 2', 7'-bis(carboxyethyl)-5(6)-carboxyfluorescein
    • Jackson VN, Halestrap AP. The kinetics, substrate, and inhibitor specificity of the monocarboxylate (lactate) transporter of rat liver cells determined using the fluorescent intracellular pH indicator, 2', 7'-bis(carboxyethyl)-5(6)-carboxyfluorescein. J Biol Chem 1996; 271: 861-8.
    • (1996) J Biol Chem , vol.271 , pp. 861-868
    • Jackson, V.N.1    Halestrap, A.P.2
  • 5
    • 3242679774 scopus 로고    scopus 로고
    • The human tumour suppressor gene SLC5A8 expresses a Na+-monocarboxylate cotransporter
    • Coady MJ, Chang MH, Charron FM, et al. The human tumour suppressor gene SLC5A8 expresses a Na+-monocarboxylate cotransporter. J Physiol 2004; 557: 719-31.
    • (2004) J Physiol , vol.557 , pp. 719-731
    • Coady, M.J.1    Chang, M.H.2    Charron, F.M.3
  • 6
    • 7244236578 scopus 로고    scopus 로고
    • Expression of slc5a8 in kidney and its role in Na(+)-coupled transport of lactate
    • Gopal E, Fei YJ, Sugawara M, et al. Expression of slc5a8 in kidney and its role in Na(+)-coupled transport of lactate. J Biol Chem 2004; 279: 44522-32.
    • (2004) J Biol Chem , vol.279 , pp. 44522-44532
    • Gopal, E.1    Fei, Y.J.2    Sugawara, M.3
  • 7
    • 29644435407 scopus 로고    scopus 로고
    • Cloning and functional identification of slc5a12 as a sodium-coupled low-affinity transporter for monocarboxylates (SMCT2)
    • Srinivas SR, Gopal E, Zhuang L, et al. Cloning and functional identification of slc5a12 as a sodium-coupled low-affinity transporter for monocarboxylates (SMCT2). Biochem J 2005; 392: 655-64.
    • (2005) Biochem J , vol.392 , pp. 655-664
    • Srinivas, S.R.1    Gopal, E.2    Zhuang, L.3
  • 8
    • 1242340302 scopus 로고    scopus 로고
    • The SLC16 gene family-from monocarboxylate transporters (MCTs) to aromatic amino acid transporters and beyond
    • Halestrap AP, Meredith D. The SLC16 gene family-from monocarboxylate transporters (MCTs) to aromatic amino acid transporters and beyond. Pflugers Arch 2004; 447: 619-28.
    • (2004) Pflugers Arch , vol.447 , pp. 619-628
    • Halestrap, A.P.1    Meredith, D.2
  • 9
    • 21344444566 scopus 로고    scopus 로고
    • Monocarboxylate transporters in the central nervous system: Distribution, regulation and function
    • Pierre K, Pellerin L. Monocarboxylate transporters in the central nervous system: distribution, regulation and function. J Neurochem 2005; 94: 1-14.
    • (2005) J Neurochem , vol.94 , pp. 1-14
    • Pierre, K.1    Pellerin, L.2
  • 10
    • 33745955759 scopus 로고    scopus 로고
    • Transport of gammahydroxybutyrate in rat kidney membrane vesicles: Role of monocarboxylate transporters
    • Wang Q, Darling IM, Morris ME. Transport of gammahydroxybutyrate in rat kidney membrane vesicles: Role of monocarboxylate transporters. J Pharmacol Exp Ther 2006; 318: 751-61.
    • (2006) J Pharmacol Exp Ther , vol.318 , pp. 751-761
    • Wang, Q.1    Darling, I.M.2    Morris, M.E.3
  • 11
    • 34249106145 scopus 로고    scopus 로고
    • Monocarboxylate transporter (MCT) mediates the transport of gamma-hydroxybutyrate in human kidney HK-2 cells
    • Wang Q, Lu Y, Morris ME. Monocarboxylate transporter (MCT) mediates the transport of gamma-hydroxybutyrate in human kidney HK-2 cells. Pharm Res 2007; 24: 1067-78.
    • (2007) Pharm Res , vol.24 , pp. 1067-1078
    • Wang, Q.1    Lu, Y.2    Morris, M.E.3
  • 12
    • 34547218143 scopus 로고    scopus 로고
    • The role of monocarboxylate transporter 2 and 4 in the transport of gamma-hydroxybutyric acid in mammalian cells
    • Wang Q, Morris ME. The role of monocarboxylate transporter 2 and 4 in the transport of gamma-hydroxybutyric acid in mammalian cells. Drug Metab Dispos 2007; 35: 1393-9.
    • (2007) Drug Metab Dispos , vol.35 , pp. 1393-1399
    • Wang, Q.1    Morris, M.E.2
  • 13
    • 67649397435 scopus 로고    scopus 로고
    • The drug of abuse gamma-hydroxybutyrate is a substrate for sodium-coupled monocarboxylate transporter (SMCT) 1 (SLC5A8): Characterization of SMCT-mediated uptake and inhibition
    • Cui D, Morris ME. The drug of abuse gamma-hydroxybutyrate is a substrate for sodium-coupled monocarboxylate transporter (SMCT) 1 (SLC5A8): characterization of SMCT-mediated uptake and inhibition. Drug Metab Dispos 2009; 37: 1404-10.
    • (2009) Drug Metab Dispos , vol.37 , pp. 1404-1410
    • Cui, D.1    Morris, M.E.2
  • 14
    • 0020468306 scopus 로고
    • Monocarboxylate transport in erythrocytes
    • Deuticke B. Monocarboxylate transport in erythrocytes. J Membr Biol 1982; 70: 89-103.
    • (1982) J Membr Biol , vol.70 , pp. 89-103
    • Deuticke, B.1
  • 15
    • 0017099416 scopus 로고
    • Transport of pyruvate nad lactate into human erythrocytes. Evidence for the involvement of the chloride carrier and a chloride-independent carrier
    • Halestrap AP. Transport of pyruvate nad lactate into human erythrocytes. Evidence for the involvement of the chloride carrier and a chloride-independent carrier. Biochem J 1976; 156: 193-207.
    • (1976) Biochem J , vol.156 , pp. 193-207
    • Halestrap, A.P.1
  • 16
    • 0020956323 scopus 로고
    • Kinetic analysis of L-lactate transport in human erythrocytes via the monocarboxylatespecific carrier system
    • De Bruijne AW, Vreeburg H, Van Steveninck J. Kinetic analysis of L-lactate transport in human erythrocytes via the monocarboxylatespecific carrier system. Biochim Biophys Acta 1983; 732: 562-8.
    • (1983) Biochim Biophys Acta , vol.732 , pp. 562-568
    • De Bruijne, A.W.1    Vreeburg, H.2    Van Steveninck, J.3
  • 17
    • 0030473710 scopus 로고    scopus 로고
    • Studies of the membrane topology of the rat erythrocyte H+/lactate cotransporter (MCT1)
    • Poole RC, Sansom CE, Halestrap AP. Studies of the membrane topology of the rat erythrocyte H+/lactate cotransporter (MCT1). Biochem J 1996; 320 (Pt 3): 817-24.
    • (1996) Biochem J , vol.320 , Issue.PART 3 , pp. 817-824
    • Poole, R.C.1    Sansom, C.E.2    Halestrap, A.P.3
  • 18
    • 0344086180 scopus 로고    scopus 로고
    • Lactate transport in skeletal muscle-role and regulation of the monocarboxylate transporter
    • Juel C, Halestrap AP. Lactate transport in skeletal muscle-role and regulation of the monocarboxylate transporter. J Physiol 1999; 517 (Pt 3): 633-42.
    • (1999) J Physiol , vol.517 , Issue.PART 3 , pp. 633-642
    • Juel, C.1    Halestrap, A.P.2
  • 19
    • 33750723755 scopus 로고    scopus 로고
    • Testosterone increases lactate transport, monocarboxylate transporter (MCT) 1 and MCT4 in rat skeletal muscle
    • Enoki T, Yoshida Y, Lally J, Hatta H, Bonen A. Testosterone increases lactate transport, monocarboxylate transporter (MCT) 1 and MCT4 in rat skeletal muscle. J Physiol 2006; 577: 433-43.
    • (2006) J Physiol , vol.577 , pp. 433-443
    • Enoki, T.1    Yoshida, Y.2    Lally, J.3    Hatta, H.4    Bonen, A.5
  • 20
    • 34347242128 scopus 로고    scopus 로고
    • Noradrenaline enhances the expression of the neuronal monocarboxylate transporter MCT2 by translational activation via stimulation of PI3K/Akt and the mTOR/S6K pathway
    • Chenal J, Pellerin L. Noradrenaline enhances the expression of the neuronal monocarboxylate transporter MCT2 by translational activation via stimulation of PI3K/Akt and the mTOR/S6K pathway. J Neurochem 2007; 102: 389-97.
    • (2007) J Neurochem , vol.102 , pp. 389-397
    • Chenal, J.1    Pellerin, L.2
  • 21
    • 22844442936 scopus 로고    scopus 로고
    • Basigin (CD147) is the target for organomercurial inhibition of monocarboxylate transporter isoforms 1 and 4: The ancillary protein for the insensitive MCT2 is EMBIGIN (gp70)
    • Wilson MC, Meredith D, Fox JE, Manoharan C, Davies AJ, Halestrap AP. Basigin (CD147) is the target for organomercurial inhibition of monocarboxylate transporter isoforms 1 and 4: the ancillary protein for the insensitive MCT2 is EMBIGIN (gp70). J Biol Chem 2005; 280: 27213-21.
    • (2005) J Biol Chem , vol.280 , pp. 27213-27221
    • Wilson, M.C.1    Meredith, D.2    Fox, J.E.3    Manoharan, C.4    Davies, A.J.5    Halestrap, A.P.6
  • 22
    • 0026463075 scopus 로고
    • cDNA cloning of MEV, a mutant protein that facilitates cellular uptake of mevalonate, and identification of the point mutation responsible for its gain of function
    • Kim CM, Goldstein JL, Brown MS. cDNA cloning of MEV, a mutant protein that facilitates cellular uptake of mevalonate, and identification of the point mutation responsible for its gain of function. J Biol Chem 1992; 267: 23113-21.
    • (1992) J Biol Chem , vol.267 , pp. 23113-23121
    • Kim, C.M.1    Goldstein, J.L.2    Brown, M.S.3
  • 23
    • 0029115356 scopus 로고
    • cDNA cloning of MCT1, a monocarboxylate transporter from rat skeletal muscle
    • Jackson VN, Price NT, Halestrap AP. cDNA cloning of MCT1, a monocarboxylate transporter from rat skeletal muscle. Biochim Biophys Acta 1995; 1238: 193-6.
    • (1995) Biochim Biophys Acta , vol.1238 , pp. 193-196
    • Jackson, V.N.1    Price, N.T.2    Halestrap, A.P.3
  • 24
    • 0029881113 scopus 로고    scopus 로고
    • Cloning and sequencing of the monocarboxylate transporter from mouse Ehrlich Lettre tumour cell confirms its identity as MCT1 and demonstrates that glycosylation is not required for MCT1 function
    • Carpenter L, Poole RC, Halestrap AP. Cloning and sequencing of the monocarboxylate transporter from mouse Ehrlich Lettre tumour cell confirms its identity as MCT1 and demonstrates that glycosylation is not required for MCT1 function. Biochim Biophys Acta 1996; 1279: 157-63.
    • (1996) Biochim Biophys Acta , vol.1279 , pp. 157-163
    • Carpenter, L.1    Poole, R.C.2    Halestrap, A.P.3
  • 25
    • 0029616310 scopus 로고
    • cDNA cloning and functional characterization of rat intestinal monocarboxylate transporter
    • Takanaga H, Tamai I, Inaba S, et al. cDNA cloning and functional characterization of rat intestinal monocarboxylate transporter. Biochem Biophys Res Commun 1995; 217: 370-7.
    • (1995) Biochem Biophys Res Commun , vol.217 , pp. 370-377
    • Takanaga, H.1    Tamai, I.2    Inaba, S.3
  • 26
    • 0028294023 scopus 로고
    • Molecular characterization of a membrane transporter for lactate, pyruvate, and other monocarboxylates: Implications for the Cori cycle
    • Garcia CK, Goldstein JL, Pathak RK, Anderson RG, Brown MS. Molecular characterization of a membrane transporter for lactate, pyruvate, and other monocarboxylates: implications for the Cori cycle. Cell 1994; 76: 865-73.
    • (1994) Cell , vol.76 , pp. 865-873
    • Garcia, C.K.1    Goldstein, J.L.2    Pathak, R.K.3    Anderson, R.G.4    Brown, M.S.5
  • 27
    • 0032127127 scopus 로고    scopus 로고
    • Characterization of the monocarboxylate transporter 1 expressed in Xenopus laevis oocytes by changes in cytosolic pH
    • Broer S, Schneider HP, Broer A, Rahman B, Hamprecht B, Deitmer JW. Characterization of the monocarboxylate transporter 1 expressed in Xenopus laevis oocytes by changes in cytosolic pH. Biochem J 1998; 333 (Pt 1): 167-74.
    • (1998) Biochem J , vol.333 , Issue.PART 1 , pp. 167-174
    • Broer, S.1    Schneider, H.P.2    Broer, A.3    Rahman, B.4    Hamprecht, B.5    Deitmer, J.W.6
  • 28
    • 0021921626 scopus 로고
    • Alternativesubstrate inhibition of L-lactate transport via the monocarboxylatespecific carrier system in human erythrocytes
    • de Bruijne AW, Vreeburg H, van Steveninck J. Alternativesubstrate inhibition of L-lactate transport via the monocarboxylatespecific carrier system in human erythrocytes. Biochim Biophys Acta 1985; 812: 841-4.
    • (1985) Biochim Biophys Acta , vol.812 , pp. 841-844
    • de Bruijne, A.W.1    Vreeburg, H.2    van Steveninck, J.3
  • 29
    • 53749107434 scopus 로고    scopus 로고
    • Overview of the proton-coupled MCT (SLC16A) family of transporters: Characterization, function and role in the transport of the drug of abuse gamma-hydroxybutyric acid
    • Morris ME, Felmlee MA. Overview of the proton-coupled MCT (SLC16A) family of transporters: characterization, function and role in the transport of the drug of abuse gamma-hydroxybutyric acid. AAPS J 2008; 10: 311-21.
    • (2008) AAPS J , vol.10 , pp. 311-321
    • Morris, M.E.1    Felmlee, M.A.2
  • 30
    • 0015973650 scopus 로고
    • Specific inhibition of pyruvate transport in rat liver mitochondria and human erythrocytes by alpha-cyano-4-hydroxycinnamate
    • Halestrap AP, Denton RM. Specific inhibition of pyruvate transport in rat liver mitochondria and human erythrocytes by alpha-cyano-4-hydroxycinnamate. Biochem J 1974; 138: 313-6.
    • (1974) Biochem J , vol.138 , pp. 313-316
    • Halestrap, A.P.1    Denton, R.M.2
  • 31
    • 0016259467 scopus 로고
    • Inhibition of mitochondrial pyruvate transport by phenylpyruvate and alpha-ketoisocaproate
    • Halestrap AP, Brand MD, Denton RM. Inhibition of mitochondrial pyruvate transport by phenylpyruvate and alpha-ketoisocaproate. Biochim Biophys Acta 1974; 367: 102-8.
    • (1974) Biochim Biophys Acta , vol.367 , pp. 102-108
    • Halestrap, A.P.1    Brand, M.D.2    Denton, R.M.3
  • 32
    • 0016756374 scopus 로고
    • The mitochondrial pyruvate carrier. Kinetics and specificity for substrates and inhibitors
    • Halestrap AP. The mitochondrial pyruvate carrier. Kinetics and specificity for substrates and inhibitors. Biochem J 1975; 148: 85-96.
    • (1975) Biochem J , vol.148 , pp. 85-96
    • Halestrap, A.P.1
  • 33
    • 0016814829 scopus 로고
    • The specificity and metabolic implications of the inhibition of pyruvate transport in isolated mitochondria and intact tissue preparations by alpha-Cyano-4-hydroxycinnamate and related compounds
    • Halestrap AP, Denton RM. The specificity and metabolic implications of the inhibition of pyruvate transport in isolated mitochondria and intact tissue preparations by alpha-Cyano-4-hydroxycinnamate and related compounds. Biochem J 1975; 148: 97-106.
    • (1975) Biochem J , vol.148 , pp. 97-106
    • Halestrap, A.P.1    Denton, R.M.2
  • 34
    • 0028909335 scopus 로고
    • cDNA cloning of MCT2, a second monocarboxylate transporter expressed in different cells than MCT1
    • Garcia CK, Brown MS, Pathak RK, Goldstein JL. cDNA cloning of MCT2, a second monocarboxylate transporter expressed in different cells than MCT1. J Biol Chem 1995; 270: 1843-9.
    • (1995) J Biol Chem , vol.270 , pp. 1843-1849
    • Garcia, C.K.1    Brown, M.S.2    Pathak, R.K.3    Goldstein, J.L.4
  • 35
    • 0030909127 scopus 로고    scopus 로고
    • Cloning of the monocarboxylate transporter isoform MCT2 from rat testis provides evidence that expression in tissues is species-specific and may involve post-transcriptional regulation
    • Jackson VN, Price NT, Carpenter L, Halestrap AP. Cloning of the monocarboxylate transporter isoform MCT2 from rat testis provides evidence that expression in tissues is species-specific and may involve post-transcriptional regulation. Biochem J 1997; 324 (Pt 2): 447-53.
    • (1997) Biochem J , vol.324 , Issue.PART 2 , pp. 447-453
    • Jackson, V.N.1    Price, N.T.2    Carpenter, L.3    Halestrap, A.P.4
  • 36
    • 0032582702 scopus 로고    scopus 로고
    • Human monocarboxylate transporter 2 (MCT2) is a high affinity pyruvate transporter
    • Lin RY, Vera JC, Chaganti RS, Golde DW. Human monocarboxylate transporter 2 (MCT2) is a high affinity pyruvate transporter. J Biol Chem 1998; 273: 28959-65.
    • (1998) J Biol Chem , vol.273 , pp. 28959-28965
    • Lin, R.Y.1    Vera, J.C.2    Chaganti, R.S.3    Golde, D.W.4
  • 37
    • 0039351371 scopus 로고    scopus 로고
    • Characterization of the high-affinity monocarboxylate transporter MCT2 in Xenopus laevis oocytes
    • Broer S, Broer A, Schneider HP, Stegen C, Halestrap AP, Deitmer JW. Characterization of the high-affinity monocarboxylate transporter MCT2 in Xenopus laevis oocytes. Biochem J 1999; 341 (Pt 3): 529-35.
    • (1999) Biochem J , vol.341 , Issue.PART 3 , pp. 529-535
    • Broer, S.1    Broer, A.2    Schneider, H.P.3    Stegen, C.4    Halestrap, A.P.5    Deitmer, J.W.6
  • 38
    • 84855444042 scopus 로고    scopus 로고
    • The monocarboxylate transporter family--Structure and functional characterization
    • Halestrap AP. The monocarboxylate transporter family--Structure and functional characterization. IUBMB Life 2012; 64: 1-9.
    • (2012) IUBMB Life , vol.64 , pp. 1-9
    • Halestrap, A.P.1
  • 39
    • 0030982108 scopus 로고    scopus 로고
    • Identification of a unique monocarboxylate transporter (MCT3) in retinal pigment epithelium
    • Yoon H, Fanelli A, Grollman EF, Philp NJ. Identification of a unique monocarboxylate transporter (MCT3) in retinal pigment epithelium. Biochem Biophys Res Commun 1997; 234: 90-4.
    • (1997) Biochem Biophys Res Commun , vol.234 , pp. 90-94
    • Yoon, H.1    Fanelli, A.2    Grollman, E.F.3    Philp, N.J.4
  • 40
    • 0034622518 scopus 로고    scopus 로고
    • Determination of transport kinetics of chick MCT3 monocarboxylate transporter from retinal pigment epithelium by expression in genetically modified yeast
    • Grollman EF, Philp NJ, McPhie P, Ward RD, Sauer B. Determination of transport kinetics of chick MCT3 monocarboxylate transporter from retinal pigment epithelium by expression in genetically modified yeast. Biochemistry 2000; 39: 9351-7.
    • (2000) Biochemistry , vol.39 , pp. 9351-9357
    • Grollman, E.F.1    Philp, N.J.2    McPhie, P.3    Ward, R.D.4    Sauer, B.5
  • 41
    • 0031775697 scopus 로고    scopus 로고
    • Monocarboxylate transporter MCT1 is located in the apical membrane and MCT3 in the basal membrane of rat RPE
    • Philp NJ, Yoon H, Grollman EF. Monocarboxylate transporter MCT1 is located in the apical membrane and MCT3 in the basal membrane of rat RPE. Am J Physiol 1998; 274: R1824-8.
    • (1998) Am J Physiol , vol.274
    • Philp, N.J.1    Yoon, H.2    Grollman, E.F.3
  • 42
    • 0344527986 scopus 로고    scopus 로고
    • Cellular and subcellular expression of monocarboxylate transporters in the pigment epithelium and retina of the rat
    • Bergersen L, Johannsson E, Veruki ML, et al. Cellular and subcellular expression of monocarboxylate transporters in the pigment epithelium and retina of the rat. Neuroscience 1999; 90: 319-31.
    • (1999) Neuroscience , vol.90 , pp. 319-331
    • Bergersen, L.1    Johannsson, E.2    Veruki, M.L.3
  • 43
    • 0032518981 scopus 로고    scopus 로고
    • Cloning and sequencing of four new mammalian monocarboxylate transporter (MCT) homologues confirms the existence of a transporter family with an ancient past
    • Price NT, Jackson VN, Halestrap AP. Cloning and sequencing of four new mammalian monocarboxylate transporter (MCT) homologues confirms the existence of a transporter family with an ancient past. Biochem J 1998; 329 (Pt 2): 321-8.
    • (1998) Biochem J , vol.329 , Issue.PART 2 , pp. 321-328
    • Price, N.T.1    Jackson, V.N.2    Halestrap, A.P.3
  • 44
    • 0034663601 scopus 로고    scopus 로고
    • The lowaffinity monocarboxylate transporter MCT4 is adapted to the export of lactate in highly glycolytic cells
    • Dimmer KS, Friedrich B, Lang F, Deitmer JW, Broer S. The lowaffinity monocarboxylate transporter MCT4 is adapted to the export of lactate in highly glycolytic cells. Biochem J 2000; 350 Pt 1: 219-27.
    • (2000) Biochem J , vol.350 , Issue.PART 1 , pp. 219-227
    • Dimmer, K.S.1    Friedrich, B.2    Lang, F.3    Deitmer, J.W.4    Broer, S.5
  • 45
    • 0034525940 scopus 로고    scopus 로고
    • Characterisation of human monocarboxylate transporter 4 substantiates its role in lactic acid efflux from skeletal muscle
    • Manning Fox JE, Meredith D, Halestrap AP. Characterisation of human monocarboxylate transporter 4 substantiates its role in lactic acid efflux from skeletal muscle. J Physiol 2000; 529 Pt 2: 285-93.
    • (2000) J Physiol , vol.529 , Issue.PART 2 , pp. 285-293
    • Manning Fox, J.E.1    Meredith, D.2    Halestrap, A.P.3
  • 46
    • 28144438907 scopus 로고    scopus 로고
    • Functional characterization of human monocarboxylate transporter 6 (SLC16A5)
    • Murakami Y, Kohyama N, Kobayashi Y, et al. Functional characterization of human monocarboxylate transporter 6 (SLC16A5). Drug Metab Dispos 2005; 33: 1845-51.
    • (2005) Drug Metab Dispos , vol.33 , pp. 1845-1851
    • Murakami, Y.1    Kohyama, N.2    Kobayashi, Y.3
  • 47
    • 0028332347 scopus 로고
    • A novel transmembrane transporter encoded by the XPCT gene in Xq13. 2
    • Lafreniere RG, Carrel L, Willard HF. A novel transmembrane transporter encoded by the XPCT gene in Xq13. 2. Hum Mol Genet 1994; 3: 1133-9.
    • (1994) Hum Mol Genet , vol.3 , pp. 1133-1139
    • Lafreniere, R.G.1    Carrel, L.2    Willard, H.F.3
  • 48
    • 0141891099 scopus 로고    scopus 로고
    • Identification of monocarboxylate transporter 8 as a specific thyroid hormone transporter
    • Friesema EC, Ganguly S, Abdalla A, et al. Identification of monocarboxylate transporter 8 as a specific thyroid hormone transporter. J Biol Chem 2003; 278: 40128-35.
    • (2003) J Biol Chem , vol.278 , pp. 40128-40135
    • Friesema, E.C.1    Ganguly, S.2    Abdalla, A.3
  • 49
    • 78650916392 scopus 로고    scopus 로고
    • Minireview: Thyroid hormone transporters: The knowns and the unknowns
    • Visser WE, Friesema EC, Visser TJ. Minireview: thyroid hormone transporters: the knowns and the unknowns. Mol Endocrinol 2011; 25: 1-14.
    • (2011) Mol Endocrinol , vol.25 , pp. 1-14
    • Visser, W.E.1    Friesema, E.C.2    Visser, T.J.3
  • 50
    • 0035907362 scopus 로고    scopus 로고
    • Expression cloning of a Na+-independent aromatic amino acid transporter with structural similarity to H+/monocarboxylate transporters
    • Kim DK, Kanai Y, Chairoungdua A, Matsuo H, Cha SH, Endou H. Expression cloning of a Na+-independent aromatic amino acid transporter with structural similarity to H+/monocarboxylate transporters. J Biol Chem 2001; 276: 17221-8.
    • (2001) J Biol Chem , vol.276 , pp. 17221-17228
    • Kim, D.K.1    Kanai, Y.2    Chairoungdua, A.3    Matsuo, H.4    Cha, S.H.5    Endou, H.6
  • 51
    • 48749086146 scopus 로고    scopus 로고
    • The SLC16 monocaboxylate transporter family
    • Meredith D, Christian HC. The SLC16 monocaboxylate transporter family. Xenobiotica 2008; 38: 1072-106.
    • (2008) Xenobiotica , vol.38 , pp. 1072-1106
    • Meredith, D.1    Christian, H.C.2
  • 52
    • 84872072151 scopus 로고    scopus 로고
    • MCT8 Deficiency: Extrapyramidal Symptoms and Delayed Myelination as Prominent Features
    • Tonduti D, Vanderver A, Berardinelli A, et al. MCT8 Deficiency: Extrapyramidal Symptoms and Delayed Myelination as Prominent Features. J Child Neurol 2012.
    • (2012) J Child Neurol
    • Tonduti, D.1    Vanderver, A.2    Berardinelli, A.3
  • 54
    • 51249118120 scopus 로고    scopus 로고
    • Sodium-coupled monocarboxylate transporters in normal tissues and in cancer
    • Ganapathy V, Thangaraju M, Gopal E, et al. Sodium-coupled monocarboxylate transporters in normal tissues and in cancer. AAPS J 2008; 10: 193-9.
    • (2008) AAPS J , vol.10 , pp. 193-199
    • Ganapathy, V.1    Thangaraju, M.2    Gopal, E.3
  • 55
    • 0038153876 scopus 로고    scopus 로고
    • SLC5A8, a sodium transporter, is a tumor suppressor gene silenced by methylation in human colon aberrant crypt foci and cancers
    • Li H, Myeroff L, Smiraglia D, et al. SLC5A8, a sodium transporter, is a tumor suppressor gene silenced by methylation in human colon aberrant crypt foci and cancers. Proc Natl Acad Sci U S A 2003; 100: 8412-7.
    • (2003) Proc Natl Acad Sci U S A , vol.100 , pp. 8412-8417
    • Li, H.1    Myeroff, L.2    Smiraglia, D.3
  • 56
    • 0019082780 scopus 로고
    • Lactate-sodium cotransport in rat renal brush border membranes
    • Barac-Nieto M, Murer H, Kinne R. Lactate-sodium cotransport in rat renal brush border membranes. Am J Physiol 1980; 239: F496-506.
    • (1980) Am J Physiol , vol.239
    • Barac-Nieto, M.1    Murer, H.2    Kinne, R.3
  • 57
    • 35848971238 scopus 로고    scopus 로고
    • Cloning and functional characterization of human SMCT2 (SLC5A12) and expression pattern of the transporter in kidney
    • Gopal E, Umapathy NS, Martin PM, et al. Cloning and functional characterization of human SMCT2 (SLC5A12) and expression pattern of the transporter in kidney. Biochim Biophys Acta 2007; 1768: 2690-7.
    • (2007) Biochim Biophys Acta , vol.1768 , pp. 2690-2697
    • Gopal, E.1    Umapathy, N.S.2    Martin, P.M.3
  • 58
    • 4143051638 scopus 로고    scopus 로고
    • Energy metabolism in mammalian brain during development
    • Erecinska M, Cherian S, Silver IA. Energy metabolism in mammalian brain during development. Prog Neurobiol 2004; 73: 397-445.
    • (2004) Prog Neurobiol , vol.73 , pp. 397-445
    • Erecinska, M.1    Cherian, S.2    Silver, I.A.3
  • 59
    • 0032584084 scopus 로고    scopus 로고
    • Expression of monocarboxylate transporter mRNAs in mouse brain: Support for a distinct role of lactate as an energy substrate for the neonatal vs. adult brain
    • Pellerin L, Pellegri G, Martin JL, Magistretti PJ. Expression of monocarboxylate transporter mRNAs in mouse brain: support for a distinct role of lactate as an energy substrate for the neonatal vs. adult brain. Proc Natl Acad Sci U S A 1998; 95: 3990-5.
    • (1998) Proc Natl Acad Sci U S A , vol.95 , pp. 3990-3995
    • Pellerin, L.1    Pellegri, G.2    Martin, J.L.3    Magistretti, P.J.4
  • 60
    • 0018876377 scopus 로고
    • Physiological roles of ketone bodies as substrates and signals in mammalian tissues
    • Robinson AM, Williamson DH. Physiological roles of ketone bodies as substrates and signals in mammalian tissues. Physiol Rev 1980; 60: 143-87.
    • (1980) Physiol Rev , vol.60 , pp. 143-187
    • Robinson, A.M.1    Williamson, D.H.2
  • 61
    • 0022442548 scopus 로고
    • Lactate utilization by the neonatal rat brain in vitro. Competition with glucose and 3-hydroxybutyrate
    • Fernandez E, Medina JM. Lactate utilization by the neonatal rat brain in vitro. Competition with glucose and 3-hydroxybutyrate. Biochem J 1986; 234: 489-92.
    • (1986) Biochem J , vol.234 , pp. 489-492
    • Fernandez, E.1    Medina, J.M.2
  • 62
    • 0022552442 scopus 로고
    • Regional ketone body utilization by rat brain in starvation and diabetes
    • Hawkins RA, Mans AM, Davis DW. Regional ketone body utilization by rat brain in starvation and diabetes. Am J Physiol 1986; 250: E169-78.
    • (1986) Am J Physiol , vol.250
    • Hawkins, R.A.1    Mans, A.M.2    Davis, D.W.3
  • 63
    • 0036130456 scopus 로고    scopus 로고
    • Immunogold cytochemistry identifies specialized membrane domains for monocarboxylate transport in the central nervous system
    • Bergersen L, Rafiki A, Ottersen OP. Immunogold cytochemistry identifies specialized membrane domains for monocarboxylate transport in the central nervous system. Neurochem Res 2002; 27: 89-96.
    • (2002) Neurochem Res , vol.27 , pp. 89-96
    • Bergersen, L.1    Rafiki, A.2    Ottersen, O.P.3
  • 64
    • 0034721575 scopus 로고    scopus 로고
    • Cell-specific localization of monocarboxylate transporters, MCT1 and MCT2, in the adult mouse brain revealed by double immunohistochemical labeling and confocal microscopy
    • Pierre K, Pellerin L, Debernardi R, Riederer BM, Magistretti PJ. Cell-specific localization of monocarboxylate transporters, MCT1 and MCT2, in the adult mouse brain revealed by double immunohistochemical labeling and confocal microscopy. Neuroscience 2000; 100: 617-27.
    • (2000) Neuroscience , vol.100 , pp. 617-627
    • Pierre, K.1    Pellerin, L.2    Debernardi, R.3    Riederer, B.M.4    Magistretti, P.J.5
  • 65
    • 0030774069 scopus 로고    scopus 로고
    • Comparison of lactate transport in astroglial cells and monocarboxylate transporter 1 (MCT 1) expressing Xenopus laevis oocytes. Expression of two different monocarboxylate transporters in astroglial cells and neurons
    • Broer S, Rahman B, Pellegri G, et al. Comparison of lactate transport in astroglial cells and monocarboxylate transporter 1 (MCT 1) expressing Xenopus laevis oocytes. Expression of two different monocarboxylate transporters in astroglial cells and neurons. J Biol Chem 1997; 272: 30096-102.
    • (1997) J Biol Chem , vol.272 , pp. 30096-30102
    • Broer, S.1    Rahman, B.2    Pellegri, G.3
  • 67
    • 0037446874 scopus 로고    scopus 로고
    • Dichloroacetate effects on glucose and lactate oxidation by neurons and astroglia in vitro and on glucose utilization by brain in vivo
    • Itoh Y, Esaki T, Shimoji K, et al. Dichloroacetate effects on glucose and lactate oxidation by neurons and astroglia in vitro and on glucose utilization by brain in vivo. Proc Natl Acad Sci U S A 2003; 100: 4879-84.
    • (2003) Proc Natl Acad Sci U S A , vol.100 , pp. 4879-4884
    • Itoh, Y.1    Esaki, T.2    Shimoji, K.3
  • 68
    • 79952305803 scopus 로고    scopus 로고
    • Astrocyte-neuron lactate transport is required for long-term memory formation
    • Suzuki A, Stern SA, Bozdagi O, et al. Astrocyte-neuron lactate transport is required for long-term memory formation. Cell 2011; 144: 810-23.
    • (2011) Cell , vol.144 , pp. 810-823
    • Suzuki, A.1    Stern, S.A.2    Bozdagi, O.3
  • 69
    • 0028080101 scopus 로고
    • Glutamate uptake into astrocytes stimulates aerobic glycolysis: A mechanism coupling neuronal activity to glucose utilization
    • Pellerin L, Magistretti PJ. Glutamate uptake into astrocytes stimulates aerobic glycolysis: a mechanism coupling neuronal activity to glucose utilization. Proc Natl Acad Sci U S A 1994; 91: 10625-9.
    • (1994) Proc Natl Acad Sci U S A , vol.91 , pp. 10625-10629
    • Pellerin, L.1    Magistretti, P.J.2
  • 70
    • 0027763898 scopus 로고
    • Neurotransmitters regulate energy metabolism in astrocytes: Implications for the metabolic trafficking between neural cells
    • Magistretti PJ, Sorg O, Yu N, Martin JL, Pellerin L. Neurotransmitters regulate energy metabolism in astrocytes: implications for the metabolic trafficking between neural cells. Dev Neurosci 1993; 15: 306-12.
    • (1993) Dev Neurosci , vol.15 , pp. 306-312
    • Magistretti, P.J.1    Sorg, O.2    Yu, N.3    Martin, J.L.4    Pellerin, L.5
  • 71
    • 0031788835 scopus 로고    scopus 로고
    • Lactate transport by cortical synaptosomes from adult rat brain: Characterization of kinetics and inhibitor specificity
    • McKenna MC, Tildon JT, Stevenson JH, Hopkins IB, Huang X, Couto R. Lactate transport by cortical synaptosomes from adult rat brain: characterization of kinetics and inhibitor specificity. Dev Neurosci 1998; 20: 300-9.
    • (1998) Dev Neurosci , vol.20 , pp. 300-309
    • McKenna, M.C.1    Tildon, J.T.2    Stevenson, J.H.3    Hopkins, I.B.4    Huang, X.5    Couto, R.6
  • 72
    • 0029990892 scopus 로고    scopus 로고
    • Selective distribution of lactate dehydrogenase isoenzymes in neurons and astrocytes of human brain
    • Bittar PG, Charnay Y, Pellerin L, Bouras C, Magistretti PJ. Selective distribution of lactate dehydrogenase isoenzymes in neurons and astrocytes of human brain. J Cereb Blood Flow Metab 1996; 16: 1079-89.
    • (1996) J Cereb Blood Flow Metab , vol.16 , pp. 1079-1089
    • Bittar, P.G.1    Charnay, Y.2    Pellerin, L.3    Bouras, C.4    Magistretti, P.J.5
  • 73
    • 0030837750 scopus 로고    scopus 로고
    • Expression of monocarboxylate transporter MCT1 by brain endothelium and glia in adult and suckling rats
    • Gerhart DZ, Enerson BE, Zhdankina OY, Leino RL, Drewes LR. Expression of monocarboxylate transporter MCT1 by brain endothelium and glia in adult and suckling rats. Am J Physiol 1997; 273: E207-13.
    • (1997) Am J Physiol , vol.273
    • Gerhart, D.Z.1    Enerson, B.E.2    Zhdankina, O.Y.3    Leino, R.L.4    Drewes, L.R.5
  • 74
    • 0018287463 scopus 로고
    • Kinetics of blood-brain barrier transport of pyruvate, lactate and glucose in suckling, weanling and adult rats
    • Cremer JE, Cunningham VJ, Pardridge WM, Braun LD, Oldendorf WH. Kinetics of blood-brain barrier transport of pyruvate, lactate and glucose in suckling, weanling and adult rats. J Neurochem 1979; 33: 439-45.
    • (1979) J Neurochem , vol.33 , pp. 439-445
    • Cremer, J.E.1    Cunningham, V.J.2    Pardridge, W.M.3    Braun, L.D.4    Oldendorf, W.H.5
  • 75
    • 0033548527 scopus 로고    scopus 로고
    • Monocarboxylate transporter (MCT1) abundance in brains of suckling and adult rats: A quantitative electron microscopic immunogold study
    • Leino RL, Gerhart DZ, Drewes LR. Monocarboxylate transporter (MCT1) abundance in brains of suckling and adult rats: a quantitative electron microscopic immunogold study. Brain Res Dev Brain Res 1999; 113: 47-54.
    • (1999) Brain Res Dev Brain Res , vol.113 , pp. 47-54
    • Leino, R.L.1    Gerhart, D.Z.2    Drewes, L.R.3
  • 76
    • 0142084655 scopus 로고    scopus 로고
    • Developmental switch in brain nutrient transporter expression in the rat
    • Vannucci SJ, Simpson IA. Developmental switch in brain nutrient transporter expression in the rat. Am J Physiol Endocrinol Metab 2003; 285: E1127-34.
    • (2003) Am J Physiol Endocrinol Metab , vol.285
    • Vannucci, S.J.1    Simpson, I.A.2
  • 77
    • 79960407068 scopus 로고    scopus 로고
    • Monocarboxylate transporter 2 and stroke severity in a rodent model of sleep apnea
    • Wang Y, Guo SZ, Bonen A, et al. Monocarboxylate transporter 2 and stroke severity in a rodent model of sleep apnea. J Neurosci 2011; 31: 10241-8.
    • (2011) J Neurosci , vol.31 , pp. 10241-10248
    • Wang, Y.1    Guo, S.Z.2    Bonen, A.3
  • 78
    • 84871451510 scopus 로고    scopus 로고
    • Significance of Short Chain Fatty Acid Transport by Members of the Monocarboxylate Transporter Family (MCT)
    • Moschen I, Broer A, Galic S, Lang F, Broer S. Significance of Short Chain Fatty Acid Transport by Members of the Monocarboxylate Transporter Family (MCT). Neurochem Res 2012.
    • (2012) Neurochem Res
    • Moschen, I.1    Broer, A.2    Galic, S.3    Lang, F.4    Broer, S.5
  • 79
    • 0034041755 scopus 로고    scopus 로고
    • Monocarboxylic acid transporters, MCT1 and MCT2, in cortical astrocytes in vitro and in vivo
    • Hanu R, McKenna M, O'Neill A, Resneck WG, Bloch RJ. Monocarboxylic acid transporters, MCT1 and MCT2, in cortical astrocytes in vitro and in vivo. Am J Physiol Cell Physiol 2000; 278: C921-30.
    • (2000) Am J Physiol Cell Physiol , vol.278
    • Hanu, R.1    McKenna, M.2    O'Neill, A.3    Resneck, W.G.4    Bloch, R.J.5
  • 80
    • 0037963512 scopus 로고    scopus 로고
    • Cell-specific expression pattern of monocarboxylate transporters in astrocytes and neurons observed in different mouse brain cortical cell cultures
    • Debernardi R, Pierre K, Lengacher S, Magistretti PJ, Pellerin L. Cell-specific expression pattern of monocarboxylate transporters in astrocytes and neurons observed in different mouse brain cortical cell cultures. J Neurosci Res 2003; 73: 141-55.
    • (2003) J Neurosci Res , vol.73 , pp. 141-155
    • Debernardi, R.1    Pierre, K.2    Lengacher, S.3    Magistretti, P.J.4    Pellerin, L.5
  • 81
    • 79961096875 scopus 로고    scopus 로고
    • Transcriptomic and quantitative proteomic analysis of transporters and drug metabolizing enzymes in freshly isolated human brain microvessels
    • Shawahna R, Uchida Y, Decleves X, et al. Transcriptomic and quantitative proteomic analysis of transporters and drug metabolizing enzymes in freshly isolated human brain microvessels. Mol Pharm 2011; 8: 1332-41.
    • (2011) Mol Pharm , vol.8 , pp. 1332-1341
    • Shawahna, R.1    Uchida, Y.2    Decleves, X.3
  • 83
    • 0036254152 scopus 로고    scopus 로고
    • MCT2 is a major neuronal monocarboxylate transporter in the adult mouse brain
    • Pierre K, Magistretti PJ, Pellerin L. MCT2 is a major neuronal monocarboxylate transporter in the adult mouse brain. J Cereb Blood Flow Metab 2002; 22: 586-95.
    • (2002) J Cereb Blood Flow Metab , vol.22 , pp. 586-595
    • Pierre, K.1    Magistretti, P.J.2    Pellerin, L.3
  • 84
    • 0035114149 scopus 로고    scopus 로고
    • A novel postsynaptic density protein: The monocarboxylate transporter MCT2 is colocalized with delta-glutamate receptors in postsynaptic densities of parallel fiber-Purkinje cell synapses
    • Bergersen L, Waerhaug O, Helm J, et al. A novel postsynaptic density protein: the monocarboxylate transporter MCT2 is colocalized with delta-glutamate receptors in postsynaptic densities of parallel fiber-Purkinje cell synapses. Exp Brain Res 2001; 136: 523-34.
    • (2001) Exp Brain Res , vol.136 , pp. 523-534
    • Bergersen, L.1    Waerhaug, O.2    Helm, J.3
  • 86
    • 0038742068 scopus 로고    scopus 로고
    • Expression of monocarboxylic acid transporters (MCT) in brain cells. Implication for branched chain alpha-ketoacids transport in neurons
    • Mac M, Nalecz KA. Expression of monocarboxylic acid transporters (MCT) in brain cells. Implication for branched chain alpha-ketoacids transport in neurons. Neurochem Int 2003; 43: 305-9.
    • (2003) Neurochem Int , vol.43 , pp. 305-309
    • Mac, M.1    Nalecz, K.A.2
  • 87
    • 12244262261 scopus 로고    scopus 로고
    • Cellular and subcellular distribution of monocarboxylate transporters in cultured brain cells and in the adult brain
    • Pellerin L, Bergersen LH, Halestrap AP, Pierre K. Cellular and subcellular distribution of monocarboxylate transporters in cultured brain cells and in the adult brain. J Neurosci Res 2005; 79: 55-64.
    • (2005) J Neurosci Res , vol.79 , pp. 55-64
    • Pellerin, L.1    Bergersen, L.H.2    Halestrap, A.P.3    Pierre, K.4
  • 88
    • 33745081830 scopus 로고    scopus 로고
    • Identity of SMCT1 (SLC5A8) as a neuron-specific Na+-coupled transporter for active uptake of L-lactate and ketone bodies in the brain
    • Martin PM, Gopal E, Ananth S, et al. Identity of SMCT1 (SLC5A8) as a neuron-specific Na+-coupled transporter for active uptake of L-lactate and ketone bodies in the brain. J Neurochem 2006; 98: 279-88.
    • (2006) J Neurochem , vol.98 , pp. 279-288
    • Martin, P.M.1    Gopal, E.2    Ananth, S.3
  • 89
    • 0025322779 scopus 로고
    • Acidic drug transport in vivo through the blood-brain barrier. A role of the transport carrier for monocarboxylic acids
    • Kang YS, Terasaki T, Tsuji A. Acidic drug transport in vivo through the blood-brain barrier. A role of the transport carrier for monocarboxylic acids. J Pharmacobiodyn 1990; 13: 158-63.
    • (1990) J Pharmacobiodyn , vol.13 , pp. 158-163
    • Kang, Y.S.1    Terasaki, T.2    Tsuji, A.3
  • 90
    • 0025989302 scopus 로고
    • Transport of monocarboxylic acids at the blood-brain barrier: Studies with monolayers of primary cultured bovine brain capillary endothelial cells
    • Terasaki T, Takakuwa S, Moritani S, Tsuji A. Transport of monocarboxylic acids at the blood-brain barrier: studies with monolayers of primary cultured bovine brain capillary endothelial cells. J Pharmacol Exp Ther 1991; 258: 932-7.
    • (1991) J Pharmacol Exp Ther , vol.258 , pp. 932-937
    • Terasaki, T.1    Takakuwa, S.2    Moritani, S.3    Tsuji, A.4
  • 91
    • 28444498930 scopus 로고    scopus 로고
    • Functional characteristics of H+-dependent nicotinate transport in primary cultures of astrocytes from rat cerebral cortex
    • Shimada A, Nakagawa Y, Morishige H, Yamamoto A, Fujita T. Functional characteristics of H+-dependent nicotinate transport in primary cultures of astrocytes from rat cerebral cortex. Neurosci Lett 2006; 392: 207-12.
    • (2006) Neurosci Lett , vol.392 , pp. 207-212
    • Shimada, A.1    Nakagawa, Y.2    Morishige, H.3    Yamamoto, A.4    Fujita, T.5
  • 92
    • 19544379492 scopus 로고    scopus 로고
    • Sodium-coupled and electrogenic transport of B-complex vitamin nicotinic acid by slc5a8, a member of the Na/glucose co-transporter gene family
    • Gopal E, Fei YJ, Miyauchi S, Zhuang L, Prasad PD, Ganapathy V. Sodium-coupled and electrogenic transport of B-complex vitamin nicotinic acid by slc5a8, a member of the Na/glucose co-transporter gene family. Biochem J 2005; 388: 309-16.
    • (2005) Biochem J , vol.388 , pp. 309-316
    • Gopal, E.1    Fei, Y.J.2    Miyauchi, S.3    Zhuang, L.4    Prasad, P.D.5    Ganapathy, V.6
  • 93
    • 3442875363 scopus 로고    scopus 로고
    • Dietary niacin and the risk of incident Alzheimer's disease and of cognitive decline
    • Morris MC, Evans DA, Bienias JL, et al. Dietary niacin and the risk of incident Alzheimer's disease and of cognitive decline. J Neurol Neurosurg Psychiatry 2004; 75: 1093-9.
    • (2004) J Neurol Neurosurg Psychiatry , vol.75 , pp. 1093-1099
    • Morris, M.C.1    Evans, D.A.2    Bienias, J.L.3
  • 94
    • 0028281788 scopus 로고
    • In vivo and in vitro bloodbrain barrier transport of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitors
    • Saheki A, Terasaki T, Tamai I, Tsuji A. In vivo and in vitro bloodbrain barrier transport of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitors. Pharm Res 1994; 11: 305-11.
    • (1994) Pharm Res , vol.11 , pp. 305-311
    • Saheki, A.1    Terasaki, T.2    Tamai, I.3    Tsuji, A.4
  • 95
    • 0027723663 scopus 로고
    • Transport mechanism of 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors at the blood-brain barrier
    • Tsuji A, Saheki A, Tamai I, Terasaki T. Transport mechanism of 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors at the blood-brain barrier. J Pharmacol Exp Ther 1993; 267: 1085-90.
    • (1993) J Pharmacol Exp Ther , vol.267 , pp. 1085-1090
    • Tsuji, A.1    Saheki, A.2    Tamai, I.3    Terasaki, T.4
  • 96
    • 33745000275 scopus 로고    scopus 로고
    • Inhibitory effects of statins on human monocarboxylate transporter 4
    • Kobayashi M, Otsuka Y, Itagaki S, Hirano T, Iseki K. Inhibitory effects of statins on human monocarboxylate transporter 4. Int J Pharm 2006; 317: 19-25.
    • (2006) Int J Pharm , vol.317 , pp. 19-25
    • Kobayashi, M.1    Otsuka, Y.2    Itagaki, S.3    Hirano, T.4    Iseki, K.5
  • 97
    • 77649180644 scopus 로고    scopus 로고
    • In vitro antioxidant activity of pravastatin provides vascular protection
    • Kassan M, Montero MJ, Sevilla MA. In vitro antioxidant activity of pravastatin provides vascular protection. Eur J Pharmacol 2010; 630: 107-11.
    • (2010) Eur J Pharmacol , vol.630 , pp. 107-111
    • Kassan, M.1    Montero, M.J.2    Sevilla, M.A.3
  • 98
    • 79751532850 scopus 로고    scopus 로고
    • Long-term high-dose atorvastatin decreases brain oxidative and nitrosative stress in a preclinical model of Alzheimer disease: A novel mechanism of action
    • Barone E, Cenini G, Di Domenico F, et al. Long-term high-dose atorvastatin decreases brain oxidative and nitrosative stress in a preclinical model of Alzheimer disease: a novel mechanism of action. Pharmacol Res 2011; 63: 172-80.
    • (2011) Pharmacol Res , vol.63 , pp. 172-180
    • Barone, E.1    Cenini, G.2    Di Domenico, F.3
  • 99
    • 0030942484 scopus 로고    scopus 로고
    • Quantitative evaluation of brain distribution and blood-brain barrier efflux transport of probenecid in rats by microdialysis: Possible involvement of the monocarboxylic acid transport system
    • Deguchi Y, Nozawa K, Yamada S, Yokoyama Y, Kimura R. Quantitative evaluation of brain distribution and blood-brain barrier efflux transport of probenecid in rats by microdialysis: possible involvement of the monocarboxylic acid transport system. J Pharmacol Exp Ther 1997; 280: 551-60.
    • (1997) J Pharmacol Exp Ther , vol.280 , pp. 551-560
    • Deguchi, Y.1    Nozawa, K.2    Yamada, S.3    Yokoyama, Y.4    Kimura, R.5
  • 100
    • 0034614361 scopus 로고    scopus 로고
    • Brain distribution of 6-mercaptopurine is regulated by the efflux transport system in the blood-brain barrier
    • Deguchi Y, Yokoyama Y, Sakamoto T, et al. Brain distribution of 6-mercaptopurine is regulated by the efflux transport system in the blood-brain barrier. Life Sci 2000; 66: 649-62.
    • (2000) Life Sci , vol.66 , pp. 649-662
    • Deguchi, Y.1    Yokoyama, Y.2    Sakamoto, T.3
  • 101
    • 4644328982 scopus 로고    scopus 로고
    • XP13512 [(+/-)-1-([(alpha-isobutanoyloxyethoxy)carbonyl] aminomethyl)-1-cyclohexane acetic acid], a novel gabapentin prodrug: I. Design, synthesis, enzymatic conversion to gabapentin, and transport by intestinal solute transporters
    • Cundy KC, Branch R, Chernov-Rogan T, et al. XP13512 [(+/-)-1-([(alpha-isobutanoyloxyethoxy)carbonyl] aminomethyl)-1-cyclohexane acetic acid], a novel gabapentin prodrug: I. Design, synthesis, enzymatic conversion to gabapentin, and transport by intestinal solute transporters. J Pharmacol Exp Ther 2004; 311: 315-23.
    • (2004) J Pharmacol Exp Ther , vol.311 , pp. 315-323
    • Cundy, K.C.1    Branch, R.2    Chernov-Rogan, T.3
  • 102
    • 4644251930 scopus 로고    scopus 로고
    • XP13512 [(+/-)-1-([(alphaisobutanoyloxyethoxy) carbonyl] aminomethyl)-1-cyclohexane acetic acid], a novel gabapentin prodrug: II. Improved oral bioavailability, dose proportionality, and colonic absorption compared with gabapentin in rats and monkeys
    • Cundy KC, Annamalai T, Bu L, et al. XP13512 [(+/-)-1-([(alphaisobutanoyloxyethoxy) carbonyl] aminomethyl)-1-cyclohexane acetic acid], a novel gabapentin prodrug: II. Improved oral bioavailability, dose proportionality, and colonic absorption compared with gabapentin in rats and monkeys. J Pharmacol Exp Ther 2004; 311: 324-33.
    • (2004) J Pharmacol Exp Ther , vol.311 , pp. 324-333
    • Cundy, K.C.1    Annamalai, T.2    Bu, L.3
  • 103
    • 57449097189 scopus 로고    scopus 로고
    • Clinical pharmacokinetics of XP13512, a novel transported prodrug of gabapentin
    • Cundy KC, Sastry S, Luo W, Zou J, Moors TL, Canafax DM. Clinical pharmacokinetics of XP13512, a novel transported prodrug of gabapentin. J Clin Pharmacol 2008; 48: 1378-88.
    • (2008) J Clin Pharmacol , vol.48 , pp. 1378-1388
    • Cundy, K.C.1    Sastry, S.2    Luo, W.3    Zou, J.4    Moors, T.L.5    Canafax, D.M.6
  • 104
    • 0030895783 scopus 로고    scopus 로고
    • The gamma-hydroxybutyrate signalling system in brain: Organization and functional implications
    • Maitre M. The gamma-hydroxybutyrate signalling system in brain: organization and functional implications. Prog Neurobiol 1997; 51: 337-61.
    • (1997) Prog Neurobiol , vol.51 , pp. 337-361
    • Maitre, M.1
  • 105
    • 0022842842 scopus 로고
    • Treatment of narcolepsy with gamma-hydroxybutyrate. A review of clinical and sleep laboratory findings
    • Mamelak M, Scharf MB, Woods M. Treatment of narcolepsy with gamma-hydroxybutyrate. A review of clinical and sleep laboratory findings. Sleep 1986; 9: 285-9.
    • (1986) Sleep , vol.9 , pp. 285-289
    • Mamelak, M.1    Scharf, M.B.2    Woods, M.3
  • 107
    • 0018372970 scopus 로고
    • Dose-dependent pharmacokinetics and hypnotic effects of sodium gamma-hydroxybutyrate in the rat
    • Lettieri JT, Fung HL. Dose-dependent pharmacokinetics and hypnotic effects of sodium gamma-hydroxybutyrate in the rat. J Pharmacol Exp Ther 1979; 208: 7-11.
    • (1979) J Pharmacol Exp Ther , vol.208 , pp. 7-11
    • Lettieri, J.T.1    Fung, H.L.2
  • 108
    • 0027364308 scopus 로고
    • Dose-dependent absorption and elimination of gamma-hydroxybutyric acid in healthy volunteers
    • Palatini P, Tedeschi L, Frison G, et al. Dose-dependent absorption and elimination of gamma-hydroxybutyric acid in healthy volunteers. Eur J Clin Pharmacol 1993; 45: 353-6.
    • (1993) Eur J Clin Pharmacol , vol.45 , pp. 353-356
    • Palatini, P.1    Tedeschi, L.2    Frison, G.3
  • 109
    • 0026794477 scopus 로고
    • Pharmacokinetics of gammahydroxybutyric acid in alcohol dependent patients after single and repeated oral doses
    • Ferrara SD, Zotti S, Tedeschi L, et al. Pharmacokinetics of gammahydroxybutyric acid in alcohol dependent patients after single and repeated oral doses. Br J Clin Pharmacol 1992; 34: 231-5.
    • (1992) Br J Clin Pharmacol , vol.34 , pp. 231-235
    • Ferrara, S.D.1    Zotti, S.2    Tedeschi, L.3
  • 110
    • 0018176540 scopus 로고
    • Improved pharmacological activity via prodrug modification: Comparative pharmacokinetics of sodium gamma-hydroxybutyrate and gamma-butyrolactone
    • Lettieri J, Fung HL. Improved pharmacological activity via prodrug modification: comparative pharmacokinetics of sodium gamma-hydroxybutyrate and gamma-butyrolactone. Res Commun Chem Pathol Pharmacol 1978; 22: 107-18.
    • (1978) Res Commun Chem Pathol Pharmacol , vol.22 , pp. 107-118
    • Lettieri, J.1    Fung, H.L.2
  • 111
    • 0018894476 scopus 로고
    • Absorption of sodium gamma-hydroxybutyrate and its prodrug gamma-butyrolactone: Relationship between in vitro transport and in vivo absorption
    • Arena C, Fung HL. Absorption of sodium gamma-hydroxybutyrate and its prodrug gamma-butyrolactone: relationship between in vitro transport and in vivo absorption. J Pharm Sci 1980; 69: 356-8.
    • (1980) J Pharm Sci , vol.69 , pp. 356-358
    • Arena, C.1    Fung, H.L.2
  • 112
    • 19444362090 scopus 로고    scopus 로고
    • Renal clearance of gammahydroxybutyric acid in rats: Increasing renal elimination as a detoxification strategy
    • Morris ME, Hu K, Wang Q. Renal clearance of gammahydroxybutyric acid in rats: increasing renal elimination as a detoxification strategy. J Pharmacol Exp Ther 2005; 313: 1194-202.
    • (2005) J Pharmacol Exp Ther , vol.313 , pp. 1194-1202
    • Morris, M.E.1    Hu, K.2    Wang, Q.3
  • 113
    • 76749149579 scopus 로고    scopus 로고
    • Monocarboxylate transportermediated transport of gamma-hydroxybutyric acid in human intestinal Caco-2 cells
    • Lam WK, Felmlee MA, Morris ME. Monocarboxylate transportermediated transport of gamma-hydroxybutyric acid in human intestinal Caco-2 cells. Drug Metab Dispos 2010; 38: 441-7.
    • (2010) Drug Metab Dispos , vol.38 , pp. 441-447
    • Lam, W.K.1    Felmlee, M.A.2    Morris, M.E.3
  • 114
    • 4644337779 scopus 로고    scopus 로고
    • GHB (gamma-hydroxybutyrate) carriermediated transport across the blood-brain barrier
    • Bhattacharya I, Boje KM. GHB (gamma-hydroxybutyrate) carriermediated transport across the blood-brain barrier. J Pharmacol Exp Ther 2004; 311: 92-8.
    • (2004) J Pharmacol Exp Ther , vol.311 , pp. 92-98
    • Bhattacharya, I.1    Boje, K.M.2
  • 115
    • 33748668794 scopus 로고    scopus 로고
    • Potential gamma-hydroxybutyric acid (GHB) drug interactions through blood-brain barrier transport inhibition: A pharmacokinetic simulation-based evaluation
    • Bhattacharya I, Boje KM. Potential gamma-hydroxybutyric acid (GHB) drug interactions through blood-brain barrier transport inhibition: a pharmacokinetic simulation-based evaluation. J Pharmacokinet Pharmacodyn 2006; 33: 657-81.
    • (2006) J Pharmacokinet Pharmacodyn , vol.33 , pp. 657-681
    • Bhattacharya, I.1    Boje, K.M.2
  • 116
    • 84455174556 scopus 로고    scopus 로고
    • Brain uptake of the drug of abuse gamma-hydroxybutyric acid in rats
    • Roiko SA, Felmlee MA, Morris ME. Brain uptake of the drug of abuse gamma-hydroxybutyric acid in rats. Drug Metab Dispos 2012; 40: 212-8.
    • (2012) Drug Metab Dispos , vol.40 , pp. 212-218
    • Roiko, S.A.1    Felmlee, M.A.2    Morris, M.E.3
  • 117
    • 84455171517 scopus 로고    scopus 로고
    • gamma-Hydroxybutyrate blood/plasma partitioning: Effect of physiologic pH on transport by monocarboxylate transporters
    • Morse BL, Felmlee MA, Morris ME. gamma-Hydroxybutyrate blood/plasma partitioning: effect of physiologic pH on transport by monocarboxylate transporters. Drug Metab Dispos 2012; 40: 64-9.
    • (2012) Drug Metab Dispos , vol.40 , pp. 64-69
    • Morse, B.L.1    Felmlee, M.A.2    Morris, M.E.3
  • 119
    • 10044278250 scopus 로고    scopus 로고
    • Silencing of monocarboxylate transporters via small interfering ribonucleic acid inhibits glycolysis and induces cell death in malignant glioma: An in vitro study
    • discussion 1419
    • Mathupala SP, Parajuli P, Sloan AE. Silencing of monocarboxylate transporters via small interfering ribonucleic acid inhibits glycolysis and induces cell death in malignant glioma: an in vitro study. Neurosurgery 2004; 55: 1410-9; discussion 1419.
    • (2004) Neurosurgery , vol.55 , pp. 1410-1419
    • Mathupala, S.P.1    Parajuli, P.2    Sloan, A.E.3
  • 120
    • 79960039507 scopus 로고    scopus 로고
    • Metabolic targeting of lactate efflux by malignant glioma inhibits invasiveness and induces necrosis: An in vivo study
    • Colen CB, Shen Y, Ghoddoussi F, et al. Metabolic targeting of lactate efflux by malignant glioma inhibits invasiveness and induces necrosis: an in vivo study. Neoplasia 2011; 13: 620-32.
    • (2011) Neoplasia , vol.13 , pp. 620-632
    • Colen, C.B.1    Shen, Y.2    Ghoddoussi, F.3
  • 121
    • 84870048116 scopus 로고    scopus 로고
    • Alterations of monocarboxylate transporter densities during hypoxia in brain and breast tumour cells
    • Cheng C, Edin NF, Lauritzen KH, et al. Alterations of monocarboxylate transporter densities during hypoxia in brain and breast tumour cells. Cell Oncol (Dordr) 2012; 35: 217-27.
    • (2012) Cell Oncol (Dordr) , vol.35 , pp. 217-227
    • Cheng, C.1    Edin, N.F.2    Lauritzen, K.H.3
  • 122
    • 84878218093 scopus 로고    scopus 로고
    • Expression of monocarboxylate transporter 8 mRNA in the brain tissue of rats with cerebral ischemia
    • Cui D, Guan Y, Jang H, Wang J, Xi L, Wang Q. Expression of monocarboxylate transporter 8 mRNA in the brain tissue of rats with cerebral ischemia. J Southern Med Univ 2012; 32: 913-5.
    • (2012) J Southern Med Univ , vol.32 , pp. 913-915
    • Cui, D.1    Guan, Y.2    Jang, H.3    Wang, J.4    Xi, L.5    Wang, Q.6
  • 123
    • 33644790739 scopus 로고    scopus 로고
    • Monocarboxylate transporter MCT1 is a target for immunosuppression
    • Murray CM, Hutchinson R, Bantick JR, et al. Monocarboxylate transporter MCT1 is a target for immunosuppression. Nat Chem Biol 2005; 1: 371-6.
    • (2005) Nat Chem Biol , vol.1 , pp. 371-376
    • Murray, C.M.1    Hutchinson, R.2    Bantick, J.R.3
  • 124
    • 74349094033 scopus 로고    scopus 로고
    • AR-C155858 is a potent inhibitor of monocarboxylate transporters MCT1 and MCT2 that binds to an intracellular site involving transmembrane helices 7-10
    • Ovens MJ, Davies AJ, Wilson MC, Murray CM, Halestrap AP. AR-C155858 is a potent inhibitor of monocarboxylate transporters MCT1 and MCT2 that binds to an intracellular site involving transmembrane helices 7-10. Biochem J 2010; 425: 523-30.
    • (2010) Biochem J , vol.425 , pp. 523-530
    • Ovens, M.J.1    Davies, A.J.2    Wilson, M.C.3    Murray, C.M.4    Halestrap, A.P.5
  • 125
    • 34547624611 scopus 로고    scopus 로고
    • Supply and demand in cerebral energy metabolism: The role of nutrient transporters
    • Simpson IA, Carruthers A, Vannucci SJ. Supply and demand in cerebral energy metabolism: the role of nutrient transporters. J Cereb Blood Flow Metab 2007; 27: 1766-91.
    • (2007) J Cereb Blood Flow Metab , vol.27 , pp. 1766-1791
    • Simpson, I.A.1    Carruthers, A.2    Vannucci, S.J.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.