메뉴 건너뛰기




Volumn 37, Issue 4, 2014, Pages 200-210

Illicit dopamine transients: Reconciling actions of abused drugs

Author keywords

[No Author keywords available]

Indexed keywords

AMPHETAMINE; COCAINE; DOPAMINE; DOPAMINE TRANSPORTER; ILLICIT DRUG; METHAMPHETAMINE; METHYLPHENIDATE; PSYCHOSTIMULANT AGENT; STREET DRUG;

EID: 84897406963     PISSN: 01662236     EISSN: 1878108X     Source Type: Journal    
DOI: 10.1016/j.tins.2014.02.002     Document Type: Review
Times cited : (71)

References (130)
  • 1
    • 0343933624 scopus 로고
    • Drugs abused by humans preferentially increase synaptic dopamine concentrations in the mesolimbic system of freely moving rats
    • Di Chiara G., Imperato A. Drugs abused by humans preferentially increase synaptic dopamine concentrations in the mesolimbic system of freely moving rats. Proc. Natl. Acad. Sci. U.S.A. 1988, 85:5274-5278.
    • (1988) Proc. Natl. Acad. Sci. U.S.A. , vol.85 , pp. 5274-5278
    • Di Chiara, G.1    Imperato, A.2
  • 2
    • 0019188610 scopus 로고
    • From motivation to action: functional interface between the limbic system and the motor system
    • Mogenson G.J., et al. From motivation to action: functional interface between the limbic system and the motor system. Prog. Neurobiol. 1980, 14:69-97.
    • (1980) Prog. Neurobiol. , vol.14 , pp. 69-97
    • Mogenson, G.J.1
  • 3
    • 22544464049 scopus 로고    scopus 로고
    • Dopaminergic modulation of limbic and cortical drive of nucleus accumbens in goal-directed behavior
    • Goto Y., Grace A.A. Dopaminergic modulation of limbic and cortical drive of nucleus accumbens in goal-directed behavior. Nat. Neurosci. 2005, 8:805-812.
    • (2005) Nat. Neurosci. , vol.8 , pp. 805-812
    • Goto, Y.1    Grace, A.A.2
  • 4
    • 33845329490 scopus 로고    scopus 로고
    • The mechanistic classification of addictive drugs
    • Luscher C., Ungless M.A. The mechanistic classification of addictive drugs. PLoS Med. 2006, 3:e437.
    • (2006) PLoS Med. , vol.3
    • Luscher, C.1    Ungless, M.A.2
  • 5
    • 79951702177 scopus 로고    scopus 로고
    • How addictive drugs disrupt presynaptic dopamine neurotransmission
    • Sulzer D. How addictive drugs disrupt presynaptic dopamine neurotransmission. Neuron 2011, 69:628-649.
    • (2011) Neuron , vol.69 , pp. 628-649
    • Sulzer, D.1
  • 6
    • 33748371601 scopus 로고    scopus 로고
    • Neural mechanisms of addiction: the role of reward-related learning and memory
    • Hyman S.E., et al. Neural mechanisms of addiction: the role of reward-related learning and memory. Annu. Rev. Neurosci. 2006, 29:565-598.
    • (2006) Annu. Rev. Neurosci. , vol.29 , pp. 565-598
    • Hyman, S.E.1
  • 7
    • 79952115723 scopus 로고    scopus 로고
    • Dopamine signaling in the nucleus accumbens of animals self-administering drugs of abuse
    • Willuhn I., et al. Dopamine signaling in the nucleus accumbens of animals self-administering drugs of abuse. Curr. Top. Behav. Neurosci. 2010, 3:29-71.
    • (2010) Curr. Top. Behav. Neurosci. , vol.3 , pp. 29-71
    • Willuhn, I.1
  • 8
    • 77958521455 scopus 로고    scopus 로고
    • Influence of phasic and tonic dopamine release on receptor activation
    • Dreyer J.K., et al. Influence of phasic and tonic dopamine release on receptor activation. J. Neurosci. 2010, 30:14273-14283.
    • (2010) J. Neurosci. , vol.30 , pp. 14273-14283
    • Dreyer, J.K.1
  • 9
    • 84868621500 scopus 로고    scopus 로고
    • Input-specific control of reward and aversion in the ventral tegmental area
    • Lammel S., et al. Input-specific control of reward and aversion in the ventral tegmental area. Nature 2012, 491:212-217.
    • (2012) Nature , vol.491 , pp. 212-217
    • Lammel, S.1
  • 10
    • 49049110977 scopus 로고    scopus 로고
    • Monitoring rapid chemical communication in the brain
    • Robinson D.L., et al. Monitoring rapid chemical communication in the brain. Chem. Rev. 2008, 108:2554-2584.
    • (2008) Chem. Rev. , vol.108 , pp. 2554-2584
    • Robinson, D.L.1
  • 11
    • 34547659151 scopus 로고    scopus 로고
    • Multiple dopamine functions at different time courses
    • Schultz W. Multiple dopamine functions at different time courses. Annu. Rev. Neurosci. 2007, 30:259-288.
    • (2007) Annu. Rev. Neurosci. , vol.30 , pp. 259-288
    • Schultz, W.1
  • 12
    • 0037459319 scopus 로고    scopus 로고
    • Discrete coding of reward probability and uncertainty by dopamine neurons
    • Fiorillo C.D., et al. Discrete coding of reward probability and uncertainty by dopamine neurons. Science 2003, 299:1898-1902.
    • (2003) Science , vol.299 , pp. 1898-1902
    • Fiorillo, C.D.1
  • 13
    • 14844349975 scopus 로고    scopus 로고
    • Adaptive coding of reward value by dopamine neurons
    • Tobler P.N., et al. Adaptive coding of reward value by dopamine neurons. Science 2005, 307:1642-1645.
    • (2005) Science , vol.307 , pp. 1642-1645
    • Tobler, P.N.1
  • 14
    • 73949098174 scopus 로고    scopus 로고
    • Dissociable cost and benefit encoding of future rewards by mesolimbic dopamine
    • Gan J.O., et al. Dissociable cost and benefit encoding of future rewards by mesolimbic dopamine. Nat. Neurosci. 2010, 13:25-27.
    • (2010) Nat. Neurosci. , vol.13 , pp. 25-27
    • Gan, J.O.1
  • 15
    • 77956566146 scopus 로고    scopus 로고
    • Delays conferred by escalating costs modulate dopamine release to rewards but not their predictors
    • Wanat M.J., et al. Delays conferred by escalating costs modulate dopamine release to rewards but not their predictors. J. Neurosci. 2010, 30:12020-12027.
    • (2010) J. Neurosci. , vol.30 , pp. 12020-12027
    • Wanat, M.J.1
  • 16
    • 0035817882 scopus 로고    scopus 로고
    • A cellular mechanism of reward-related learning
    • Reynolds J.N., et al. A cellular mechanism of reward-related learning. Nature 2001, 413:67-70.
    • (2001) Nature , vol.413 , pp. 67-70
    • Reynolds, J.N.1
  • 18
    • 84881062266 scopus 로고    scopus 로고
    • Two dimensions of value: dopamine neurons represent reward but not aversiveness
    • Fiorillo C.D. Two dimensions of value: dopamine neurons represent reward but not aversiveness. Science 2013, 341:546-549.
    • (2013) Science , vol.341 , pp. 546-549
    • Fiorillo, C.D.1
  • 19
    • 78650971061 scopus 로고    scopus 로고
    • A selective role for dopamine in stimulus-reward learning
    • Flagel S.B., et al. A selective role for dopamine in stimulus-reward learning. Nature 2011, 469:53-57.
    • (2011) Nature , vol.469 , pp. 53-57
    • Flagel, S.B.1
  • 20
    • 33847634405 scopus 로고    scopus 로고
    • The debate over dopamine's role in reward: the case for incentive salience
    • Berridge K.C. The debate over dopamine's role in reward: the case for incentive salience. Psychopharmacology (Berl.) 2007, 191:391-431.
    • (2007) Psychopharmacology (Berl.) , vol.191 , pp. 391-431
    • Berridge, K.C.1
  • 21
    • 66149139444 scopus 로고    scopus 로고
    • Disruption of NMDAR-dependent burst firing by dopamine neurons provides selective assessment of phasic dopamine-dependent behavior
    • Zweifel L.S., et al. Disruption of NMDAR-dependent burst firing by dopamine neurons provides selective assessment of phasic dopamine-dependent behavior. Proc. Natl. Acad. Sci. U.S.A. 2009, 106:7281-7288.
    • (2009) Proc. Natl. Acad. Sci. U.S.A. , vol.106 , pp. 7281-7288
    • Zweifel, L.S.1
  • 22
    • 66249125042 scopus 로고    scopus 로고
    • Phasic firing in dopaminergic neurons is sufficient for behavioral conditioning
    • Tsai H.C., et al. Phasic firing in dopaminergic neurons is sufficient for behavioral conditioning. Science 2009, 324:1080-1084.
    • (2009) Science , vol.324 , pp. 1080-1084
    • Tsai, H.C.1
  • 23
    • 83255194583 scopus 로고    scopus 로고
    • Recombinase-driver rat lines: tools, techniques, and optogenetic application to dopamine-mediated reinforcement
    • Witten I.B., et al. Recombinase-driver rat lines: tools, techniques, and optogenetic application to dopamine-mediated reinforcement. Neuron 2011, 72:721-733.
    • (2011) Neuron , vol.72 , pp. 721-733
    • Witten, I.B.1
  • 24
    • 78650883916 scopus 로고    scopus 로고
    • A behavioral genetics approach to understanding D1 receptor involvement in phasic dopamine signaling
    • Wall V.Z., et al. A behavioral genetics approach to understanding D1 receptor involvement in phasic dopamine signaling. Mol. Cell. Neurosci. 2011, 46:21-31.
    • (2011) Mol. Cell. Neurosci. , vol.46 , pp. 21-31
    • Wall, V.Z.1
  • 25
    • 2342668029 scopus 로고    scopus 로고
    • Cannabinoids enhance subsecond dopamine release in the nucleus accumbens of awake rats
    • Cheer J.F., et al. Cannabinoids enhance subsecond dopamine release in the nucleus accumbens of awake rats. J. Neurosci. 2004, 24:4393-4400.
    • (2004) J. Neurosci. , vol.24 , pp. 4393-4400
    • Cheer, J.F.1
  • 26
    • 33846596719 scopus 로고    scopus 로고
    • Phasic dopamine release evoked by abused substances requires cannabinoid receptor activation
    • Cheer J.F., et al. Phasic dopamine release evoked by abused substances requires cannabinoid receptor activation. J. Neurosci. 2007, 27:791-795.
    • (2007) J. Neurosci. , vol.27 , pp. 791-795
    • Cheer, J.F.1
  • 27
    • 67650685039 scopus 로고    scopus 로고
    • Disparity between tonic and phasic ethanol-induced dopamine increases in the nucleus accumbens of rats
    • Robinson D.L., et al. Disparity between tonic and phasic ethanol-induced dopamine increases in the nucleus accumbens of rats. Alcohol. Clin. Exp. Res. 2009, 33:1187-1196.
    • (2009) Alcohol. Clin. Exp. Res. , vol.33 , pp. 1187-1196
    • Robinson, D.L.1
  • 28
    • 52049097038 scopus 로고    scopus 로고
    • Preferential enhancement of dopamine transmission within the nucleus accumbens shell by cocaine is attributable to a direct increase in phasic dopamine release events
    • Aragona B.J., et al. Preferential enhancement of dopamine transmission within the nucleus accumbens shell by cocaine is attributable to a direct increase in phasic dopamine release events. J. Neurosci. 2008, 28:8821-8831.
    • (2008) J. Neurosci. , vol.28 , pp. 8821-8831
    • Aragona, B.J.1
  • 29
    • 0036896011 scopus 로고    scopus 로고
    • Frequency of dopamine concentration transients increases in dorsal and ventral striatum of male rats during introduction of conspecifics
    • Robinson D.L., et al. Frequency of dopamine concentration transients increases in dorsal and ventral striatum of male rats during introduction of conspecifics. J. Neurosci. 2002, 22:10477-10486.
    • (2002) J. Neurosci. , vol.22 , pp. 10477-10486
    • Robinson, D.L.1
  • 30
    • 20444397095 scopus 로고    scopus 로고
    • Extinction of cocaine self-administration reveals functionally and temporally distinct dopaminergic signals in the nucleus accumbens
    • Stuber G.D., et al. Extinction of cocaine self-administration reveals functionally and temporally distinct dopaminergic signals in the nucleus accumbens. Neuron 2005, 46:661-669.
    • (2005) Neuron , vol.46 , pp. 661-669
    • Stuber, G.D.1
  • 31
    • 17644375469 scopus 로고    scopus 로고
    • Rapid dopamine signaling in the nucleus accumbens during contingent and noncontingent cocaine administration
    • Stuber G.D., et al. Rapid dopamine signaling in the nucleus accumbens during contingent and noncontingent cocaine administration. Neuropsychopharmacology 2005, 30:853-863.
    • (2005) Neuropsychopharmacology , vol.30 , pp. 853-863
    • Stuber, G.D.1
  • 32
    • 80053446257 scopus 로고    scopus 로고
    • Cocaine must enter the brain to evoke unconditioned dopamine release within the nucleus accumbens shell
    • Porter-Stransky K.A., et al. Cocaine must enter the brain to evoke unconditioned dopamine release within the nucleus accumbens shell. Neurosci. Lett. 2011, 504:13-17.
    • (2011) Neurosci. Lett. , vol.504 , pp. 13-17
    • Porter-Stransky, K.A.1
  • 33
    • 79960630209 scopus 로고    scopus 로고
    • Differentiating the rapid actions of cocaine
    • Wise R.A., Kiyatkin E.A. Differentiating the rapid actions of cocaine. Nat. Rev. Neurosci. 2011, 12:479-484.
    • (2011) Nat. Rev. Neurosci. , vol.12 , pp. 479-484
    • Wise, R.A.1    Kiyatkin, E.A.2
  • 34
    • 0242600534 scopus 로고    scopus 로고
    • Subsecond dopamine release promotes cocaine seeking
    • Phillips P.E., et al. Subsecond dopamine release promotes cocaine seeking. Nature 2003, 422:614-618.
    • (2003) Nature , vol.422 , pp. 614-618
    • Phillips, P.E.1
  • 35
    • 70449729440 scopus 로고    scopus 로고
    • Regional specificity in the real-time development of phasic dopamine transmission patterns during acquisition of a cue-cocaine association in rats
    • Aragona B.J., et al. Regional specificity in the real-time development of phasic dopamine transmission patterns during acquisition of a cue-cocaine association in rats. Eur. J. Neurosci. 2009, 30:1889-1899.
    • (2009) Eur. J. Neurosci. , vol.30 , pp. 1889-1899
    • Aragona, B.J.1
  • 36
    • 83555179072 scopus 로고    scopus 로고
    • Primary food reward and reward-predictive stimuli evoke different patterns of phasic dopamine signaling throughout the striatum
    • Brown H.D., et al. Primary food reward and reward-predictive stimuli evoke different patterns of phasic dopamine signaling throughout the striatum. Eur. J. Neurosci. 2011, 34:1997-2006.
    • (2011) Eur. J. Neurosci. , vol.34 , pp. 1997-2006
    • Brown, H.D.1
  • 37
    • 79951701590 scopus 로고    scopus 로고
    • Potential vulnerabilities of neuronal reward, risk, and decision mechanisms to addictive drugs
    • Schultz W. Potential vulnerabilities of neuronal reward, risk, and decision mechanisms to addictive drugs. Neuron 2011, 69:603-617.
    • (2011) Neuron , vol.69 , pp. 603-617
    • Schultz, W.1
  • 38
    • 10344225664 scopus 로고    scopus 로고
    • Addiction as a computational process gone awry
    • Redish A.D. Addiction as a computational process gone awry. Science 2004, 306:1944-1947.
    • (2004) Science , vol.306 , pp. 1944-1947
    • Redish, A.D.1
  • 39
    • 2142773123 scopus 로고    scopus 로고
    • Stimuli associated with a single cocaine experience elicit long-lasting cocaine-seeking
    • Ciccocioppo R., et al. Stimuli associated with a single cocaine experience elicit long-lasting cocaine-seeking. Nat. Neurosci. 2004, 7:495-496.
    • (2004) Nat. Neurosci. , vol.7 , pp. 495-496
    • Ciccocioppo, R.1
  • 40
    • 34848829141 scopus 로고    scopus 로고
    • Dopamine release is heterogeneous within microenvironments of the rat nucleus accumbens
    • Wightman R.M., et al. Dopamine release is heterogeneous within microenvironments of the rat nucleus accumbens. Eur. J. Neurosci. 2007, 26:2046-2054.
    • (2007) Eur. J. Neurosci. , vol.26 , pp. 2046-2054
    • Wightman, R.M.1
  • 41
    • 33748770069 scopus 로고    scopus 로고
    • Dopamine beta-hydroxylase knockout mice have alterations in dopamine signaling and are hypersensitive to cocaine
    • Schank J.R., et al. Dopamine beta-hydroxylase knockout mice have alterations in dopamine signaling and are hypersensitive to cocaine. Neuropsychopharmacology 2006, 31:2221-2230.
    • (2006) Neuropsychopharmacology , vol.31 , pp. 2221-2230
    • Schank, J.R.1
  • 42
    • 84872079731 scopus 로고    scopus 로고
    • Amphetamine paradoxically augments exocytotic dopamine release and phasic dopamine signals
    • Daberkow D.P., et al. Amphetamine paradoxically augments exocytotic dopamine release and phasic dopamine signals. J. Neurosci. 2013, 33:452-463.
    • (2013) J. Neurosci. , vol.33 , pp. 452-463
    • Daberkow, D.P.1
  • 43
    • 84861202850 scopus 로고    scopus 로고
    • Differential effects of cocaine on dopamine neuron firing in awake and anesthetized rats
    • Koulchitsky S., et al. Differential effects of cocaine on dopamine neuron firing in awake and anesthetized rats. Neuropsychopharmacology 2012, 37:1559-1571.
    • (2012) Neuropsychopharmacology , vol.37 , pp. 1559-1571
    • Koulchitsky, S.1
  • 44
    • 9644265273 scopus 로고    scopus 로고
    • Psychostimulants induce low-frequency oscillations in the firing activity of dopamine neurons
    • Shi W.X., et al. Psychostimulants induce low-frequency oscillations in the firing activity of dopamine neurons. Neuropsychopharmacology 2004, 29:2160-2167.
    • (2004) Neuropsychopharmacology , vol.29 , pp. 2160-2167
    • Shi, W.X.1
  • 45
    • 0034193379 scopus 로고    scopus 로고
    • Dual effects of D-amphetamine on dopamine neurons mediated by dopamine and nondopamine receptors
    • Shi W.X., et al. Dual effects of D-amphetamine on dopamine neurons mediated by dopamine and nondopamine receptors. J. Neurosci. 2000, 20:3504-3511.
    • (2000) J. Neurosci. , vol.20 , pp. 3504-3511
    • Shi, W.X.1
  • 46
    • 77953807181 scopus 로고    scopus 로고
    • In vivo voltammetric monitoring of catecholamine release in subterritories of the nucleus accumbens shell
    • Park J., et al. In vivo voltammetric monitoring of catecholamine release in subterritories of the nucleus accumbens shell. Neuroscience 2010, 169:132-142.
    • (2010) Neuroscience , vol.169 , pp. 132-142
    • Park, J.1
  • 47
    • 0035119780 scopus 로고    scopus 로고
    • Amphetamine selectively blocks inhibitory glutamate transmission in dopamine neurons
    • Paladini C.A., et al. Amphetamine selectively blocks inhibitory glutamate transmission in dopamine neurons. Nat. Neurosci. 2001, 4:275-281.
    • (2001) Nat. Neurosci. , vol.4 , pp. 275-281
    • Paladini, C.A.1
  • 48
    • 79251472113 scopus 로고    scopus 로고
    • Drug-driven AMPA receptor redistribution mimicked by selective dopamine neuron stimulation
    • Brown M.T., et al. Drug-driven AMPA receptor redistribution mimicked by selective dopamine neuron stimulation. PLoS ONE 2010, 5:e15870.
    • (2010) PLoS ONE , vol.5
    • Brown, M.T.1
  • 49
    • 0029048034 scopus 로고
    • D1 receptors modulate glutamate transmission in the ventral tegmental area
    • Kalivas P.W., Duffy P. D1 receptors modulate glutamate transmission in the ventral tegmental area. J. Neurosci. 1995, 15:5379-5388.
    • (1995) J. Neurosci. , vol.15 , pp. 5379-5388
    • Kalivas, P.W.1    Duffy, P.2
  • 50
    • 84885584498 scopus 로고    scopus 로고
    • Cocaine disinhibits dopamine neurons by potentiation of GABA transmission in the ventral tegmental area
    • Bocklisch C., et al. Cocaine disinhibits dopamine neurons by potentiation of GABA transmission in the ventral tegmental area. Science 2013, 341:1521-1525.
    • (2013) Science , vol.341 , pp. 1521-1525
    • Bocklisch, C.1
  • 51
    • 0036784803 scopus 로고    scopus 로고
    • Dopamine transporter-mediated conductances increase excitability of midbrain dopamine neurons
    • Ingram S.L., et al. Dopamine transporter-mediated conductances increase excitability of midbrain dopamine neurons. Nat. Neurosci. 2002, 5:971-978.
    • (2002) Nat. Neurosci. , vol.5 , pp. 971-978
    • Ingram, S.L.1
  • 52
    • 84865654158 scopus 로고    scopus 로고
    • Methamphetamine produces bidirectional, concentration-dependent effects on dopamine neuron excitability and dopamine-mediated synaptic currents
    • Branch S.Y., Beckstead M.J. Methamphetamine produces bidirectional, concentration-dependent effects on dopamine neuron excitability and dopamine-mediated synaptic currents. J. Neurophysiol. 2012, 108:802-809.
    • (2012) J. Neurophysiol. , vol.108 , pp. 802-809
    • Branch, S.Y.1    Beckstead, M.J.2
  • 53
    • 0029009005 scopus 로고
    • Different effects of cocaine and nomifensine on dopamine uptake in the caudate-putamen and nucleus accumbens
    • Jones S.R., et al. Different effects of cocaine and nomifensine on dopamine uptake in the caudate-putamen and nucleus accumbens. J. Pharmacol. Exp. Ther. 1995, 274:396-403.
    • (1995) J. Pharmacol. Exp. Ther. , vol.274 , pp. 396-403
    • Jones, S.R.1
  • 54
    • 77954844323 scopus 로고    scopus 로고
    • Synapsins differentially control dopamine and serotonin release
    • Kile B.M., et al. Synapsins differentially control dopamine and serotonin release. J. Neurosci. 2010, 30:9762-9770.
    • (2010) J. Neurosci. , vol.30 , pp. 9762-9770
    • Kile, B.M.1
  • 55
    • 82955195437 scopus 로고    scopus 로고
    • High doses of amphetamine augment, rather than disrupt, exocytotic dopamine release in the dorsal and ventral striatum of the anesthetized rat
    • Ramsson E.S., et al. High doses of amphetamine augment, rather than disrupt, exocytotic dopamine release in the dorsal and ventral striatum of the anesthetized rat. J. Neurochem. 2011, 119:1162-1172.
    • (2011) J. Neurochem. , vol.119 , pp. 1162-1172
    • Ramsson, E.S.1
  • 56
    • 84877075943 scopus 로고    scopus 로고
    • Amphetamine elicits opposing actions on readily releasable and reserve pools for dopamine
    • Covey D.P., et al. Amphetamine elicits opposing actions on readily releasable and reserve pools for dopamine. PLoS ONE 2013, 8:e60763.
    • (2013) PLoS ONE , vol.8
    • Covey, D.P.1
  • 57
    • 33645228798 scopus 로고    scopus 로고
    • Cocaine increases dopamine release by mobilization of a synapsin-dependent reserve pool
    • Venton B.J., et al. Cocaine increases dopamine release by mobilization of a synapsin-dependent reserve pool. J. Neurosci. 2006, 26:3206-3209.
    • (2006) J. Neurosci. , vol.26 , pp. 3206-3209
    • Venton, B.J.1
  • 58
    • 70350567699 scopus 로고    scopus 로고
    • Real-time voltammetric detection of cocaine-induced dopamine changes in the striatum of freely moving mice
    • Oleson E.B., et al. Real-time voltammetric detection of cocaine-induced dopamine changes in the striatum of freely moving mice. Neurosci. Lett. 2009, 467:144-146.
    • (2009) Neurosci. Lett. , vol.467 , pp. 144-146
    • Oleson, E.B.1
  • 59
    • 84859942629 scopus 로고    scopus 로고
    • Methylphenidate modifies overflow and presynaptic compartmentalization of dopamine via an alpha-synuclein-dependent mechanism
    • Chadchankar H., et al. Methylphenidate modifies overflow and presynaptic compartmentalization of dopamine via an alpha-synuclein-dependent mechanism. J. Pharmacol. Exp. Ther. 2012, 341:484-492.
    • (2012) J. Pharmacol. Exp. Ther. , vol.341 , pp. 484-492
    • Chadchankar, H.1
  • 60
    • 84876694795 scopus 로고    scopus 로고
    • Amphetamine augments vesicular dopamine release in the dorsal and ventral striatum through different mechanisms
    • Avelar A.J., et al. Amphetamine augments vesicular dopamine release in the dorsal and ventral striatum through different mechanisms. J. Neurochem. 2013, 125:373-385.
    • (2013) J. Neurochem. , vol.125 , pp. 373-385
    • Avelar, A.J.1
  • 61
    • 34249742612 scopus 로고    scopus 로고
    • Voltammetric characterization of the effect of monoamine uptake inhibitors and releasers on dopamine and serotonin uptake in mouse caudate-putamen and substantia nigra slices
    • John C.E., Jones S.R. Voltammetric characterization of the effect of monoamine uptake inhibitors and releasers on dopamine and serotonin uptake in mouse caudate-putamen and substantia nigra slices. Neuropharmacology 2007, 52:1596-1605.
    • (2007) Neuropharmacology , vol.52 , pp. 1596-1605
    • John, C.E.1    Jones, S.R.2
  • 62
    • 77649311333 scopus 로고    scopus 로고
    • Methamphetamine self-administration is associated with persistent biochemical alterations in striatal and cortical dopaminergic terminals in the rat
    • Krasnova I.N., et al. Methamphetamine self-administration is associated with persistent biochemical alterations in striatal and cortical dopaminergic terminals in the rat. PLoS ONE 2010, 5:e8790.
    • (2010) PLoS ONE , vol.5
    • Krasnova, I.N.1
  • 63
    • 0034887711 scopus 로고    scopus 로고
    • Cocaine-induced increases in vesicular dopamine uptake: role of dopamine receptors
    • Brown J.M., et al. Cocaine-induced increases in vesicular dopamine uptake: role of dopamine receptors. J. Pharmacol. Exp. Ther. 2001, 298:1150-1153.
    • (2001) J. Pharmacol. Exp. Ther. , vol.298 , pp. 1150-1153
    • Brown, J.M.1
  • 64
    • 0036812515 scopus 로고    scopus 로고
    • Methylphenidate redistributes vesicular monoamine transporter-2: role of dopamine receptors
    • Sandoval V., et al. Methylphenidate redistributes vesicular monoamine transporter-2: role of dopamine receptors. J. Neurosci. 2002, 22:8705-8710.
    • (2002) J. Neurosci. , vol.22 , pp. 8705-8710
    • Sandoval, V.1
  • 65
    • 35548951840 scopus 로고    scopus 로고
    • Methylphenidate administration alters vesicular monoamine transporter-2 function in cytoplasmic and membrane-associated vesicles
    • Volz T.J., et al. Methylphenidate administration alters vesicular monoamine transporter-2 function in cytoplasmic and membrane-associated vesicles. J. Pharmacol. Exp. Ther. 2007, 323:738-745.
    • (2007) J. Pharmacol. Exp. Ther. , vol.323 , pp. 738-745
    • Volz, T.J.1
  • 66
    • 34548007949 scopus 로고    scopus 로고
    • Therapeutic doses of amphetamine and methylphenidate selectively redistribute the vesicular monoamine transporter-2
    • Riddle E.L., et al. Therapeutic doses of amphetamine and methylphenidate selectively redistribute the vesicular monoamine transporter-2. Eur. J. Pharmacol. 2007, 571:25-28.
    • (2007) Eur. J. Pharmacol. , vol.571 , pp. 25-28
    • Riddle, E.L.1
  • 67
    • 52649135145 scopus 로고    scopus 로고
    • Methylphenidate-induced increases in vesicular dopamine sequestration and dopamine release in the striatum: the role of muscarinic and dopamine D2 receptors
    • Volz T.J., et al. Methylphenidate-induced increases in vesicular dopamine sequestration and dopamine release in the striatum: the role of muscarinic and dopamine D2 receptors. J. Pharmacol. Exp. Ther. 2008, 327:161-167.
    • (2008) J. Pharmacol. Exp. Ther. , vol.327 , pp. 161-167
    • Volz, T.J.1
  • 68
    • 0032748148 scopus 로고    scopus 로고
    • Amine weak bases disrupt vesicular storage and promote exocytosis in chromaffin cells
    • Mundorf M.L., et al. Amine weak bases disrupt vesicular storage and promote exocytosis in chromaffin cells. J. Neurochem. 1999, 73:2397-2405.
    • (1999) J. Neurochem. , vol.73 , pp. 2397-2405
    • Mundorf, M.L.1
  • 69
    • 36849015325 scopus 로고    scopus 로고
    • Dopamine transport inhibitors based on GBR12909 and benztropine as potential medications to treat cocaine addiction
    • Rothman R.B., et al. Dopamine transport inhibitors based on GBR12909 and benztropine as potential medications to treat cocaine addiction. Biochem. Pharmacol. 2008, 75:2-16.
    • (2008) Biochem. Pharmacol. , vol.75 , pp. 2-16
    • Rothman, R.B.1
  • 70
    • 84879305802 scopus 로고    scopus 로고
    • Non-classical pharmacology of the dopamine transporter: atypical inhibitors, allosteric modulators and partial substrates
    • Schmitt K.C., et al. Non-classical pharmacology of the dopamine transporter: atypical inhibitors, allosteric modulators and partial substrates. J. Pharmacol. Exp. Ther. 2013, 346:2-10.
    • (2013) J. Pharmacol. Exp. Ther. , vol.346 , pp. 2-10
    • Schmitt, K.C.1
  • 71
    • 33745872563 scopus 로고    scopus 로고
    • Effect of moderate ethanol dose on dopamine uptake in rat nucleus accumbens in vivo
    • Jones S.R., et al. Effect of moderate ethanol dose on dopamine uptake in rat nucleus accumbens in vivo. Synapse 2006, 60:251-255.
    • (2006) Synapse , vol.60 , pp. 251-255
    • Jones, S.R.1
  • 72
    • 77951900618 scopus 로고    scopus 로고
    • Effects of acute amphetamine exposure on two kinds of Pavlovian approach behavior
    • Holden J.M., Peoples L.L. Effects of acute amphetamine exposure on two kinds of Pavlovian approach behavior. Behav. Brain Res. 2010, 208:270-273.
    • (2010) Behav. Brain Res. , vol.208 , pp. 270-273
    • Holden, J.M.1    Peoples, L.L.2
  • 73
    • 60849107725 scopus 로고    scopus 로고
    • Synaptic overflow of dopamine in the nucleus accumbens arises from neuronal activity in the ventral tegmental area
    • Sombers L.A., et al. Synaptic overflow of dopamine in the nucleus accumbens arises from neuronal activity in the ventral tegmental area. J. Neurosci. 2009, 29:1735-1742.
    • (2009) J. Neurosci. , vol.29 , pp. 1735-1742
    • Sombers, L.A.1
  • 74
    • 21844438972 scopus 로고    scopus 로고
    • Nicotine reinforcement and cognition restored by targeted expression of nicotinic receptors
    • Maskos U., et al. Nicotine reinforcement and cognition restored by targeted expression of nicotinic receptors. Nature 2005, 436:103-107.
    • (2005) Nature , vol.436 , pp. 103-107
    • Maskos, U.1
  • 75
    • 0037075602 scopus 로고    scopus 로고
    • Synaptic mechanisms underlie nicotine-induced excitability of brain reward areas
    • Mansvelder H.D., et al. Synaptic mechanisms underlie nicotine-induced excitability of brain reward areas. Neuron 2002, 33:905-919.
    • (2002) Neuron , vol.33 , pp. 905-919
    • Mansvelder, H.D.1
  • 76
    • 84884212732 scopus 로고    scopus 로고
    • Co-activation of VTA DA and GABA neurons mediates nicotine reinforcement
    • Tolu S., et al. Co-activation of VTA DA and GABA neurons mediates nicotine reinforcement. Mol. Psychiatry 2013, 18:382-393.
    • (2013) Mol. Psychiatry , vol.18 , pp. 382-393
    • Tolu, S.1
  • 77
    • 77956163104 scopus 로고    scopus 로고
    • Ethanol action on dopaminergic neurons in the ventral tegmental area: interaction with intrinsic ion channels and neurotransmitter inputs
    • Morikawa H., Morrisett R.A. Ethanol action on dopaminergic neurons in the ventral tegmental area: interaction with intrinsic ion channels and neurotransmitter inputs. Int. Rev. Neurobiol. 2010, 91:235-288.
    • (2010) Int. Rev. Neurobiol. , vol.91 , pp. 235-288
    • Morikawa, H.1    Morrisett, R.A.2
  • 78
    • 57849130287 scopus 로고    scopus 로고
    • Ethanol facilitates glutamatergic transmission to dopamine neurons in the ventral tegmental area
    • Xiao C., et al. Ethanol facilitates glutamatergic transmission to dopamine neurons in the ventral tegmental area. Neuropsychopharmacology 2009, 34:307-318.
    • (2009) Neuropsychopharmacology , vol.34 , pp. 307-318
    • Xiao, C.1
  • 79
    • 0035978760 scopus 로고    scopus 로고
    • Single cocaine exposure in vivo induces long-term potentiation in dopamine neurons
    • Ungless M.A., et al. Single cocaine exposure in vivo induces long-term potentiation in dopamine neurons. Nature 2001, 411:583-587.
    • (2001) Nature , vol.411 , pp. 583-587
    • Ungless, M.A.1
  • 80
    • 0037456565 scopus 로고    scopus 로고
    • Drugs of abuse and stress trigger a common synaptic adaptation in dopamine neurons
    • Saal D., et al. Drugs of abuse and stress trigger a common synaptic adaptation in dopamine neurons. Neuron 2003, 37:577-582.
    • (2003) Neuron , vol.37 , pp. 577-582
    • Saal, D.1
  • 81
    • 84856301595 scopus 로고    scopus 로고
    • Endocannabinoids shape accumbal encoding of cue-motivated behavior via CB1 receptor activation in the ventral tegmentum
    • Oleson E.B., et al. Endocannabinoids shape accumbal encoding of cue-motivated behavior via CB1 receptor activation in the ventral tegmentum. Neuron 2012, 73:360-373.
    • (2012) Neuron , vol.73 , pp. 360-373
    • Oleson, E.B.1
  • 82
    • 19444377564 scopus 로고    scopus 로고
    • Endocannabinoid release from midbrain dopamine neurons: a potential substrate for cannabinoid receptor antagonist treatment of addiction
    • Lupica C.R., Riegel A.C. Endocannabinoid release from midbrain dopamine neurons: a potential substrate for cannabinoid receptor antagonist treatment of addiction. Neuropharmacology 2005, 48:1105-1116.
    • (2005) Neuropharmacology , vol.48 , pp. 1105-1116
    • Lupica, C.R.1    Riegel, A.C.2
  • 83
    • 84886668510 scopus 로고    scopus 로고
    • A brain on cannabinoids: the role of dopamine release in reward seeking
    • Oleson E.B., Cheer J.F. A brain on cannabinoids: the role of dopamine release in reward seeking. Cold Spring Harb. Perspect. Med. 2012, 2:a012229.
    • (2012) Cold Spring Harb. Perspect. Med. , vol.2
    • Oleson, E.B.1    Cheer, J.F.2
  • 84
    • 80054812680 scopus 로고    scopus 로고
    • Opiate versus psychostimulant addiction: the differences do matter
    • Badiani A., et al. Opiate versus psychostimulant addiction: the differences do matter. Nat. Rev. Neurosci. 2011, 12:685-700.
    • (2011) Nat. Rev. Neurosci. , vol.12 , pp. 685-700
    • Badiani, A.1
  • 85
    • 84862766564 scopus 로고    scopus 로고
    • Are you or aren't you? Challenges associated with physiologically identifying dopamine neurons
    • Ungless M.A., Grace A.A. Are you or aren't you? Challenges associated with physiologically identifying dopamine neurons. Trends Neurosci. 2012, 35:422-430.
    • (2012) Trends Neurosci. , vol.35 , pp. 422-430
    • Ungless, M.A.1    Grace, A.A.2
  • 87
    • 51449122303 scopus 로고    scopus 로고
    • Review. Neural mechanisms underlying the vulnerability to develop compulsive drug-seeking habits and addiction
    • Everitt B.J., et al. Review. Neural mechanisms underlying the vulnerability to develop compulsive drug-seeking habits and addiction. Philos. Trans. R. Soc. Lond. B: Biol. Sci. 2008, 363:3125-3135.
    • (2008) Philos. Trans. R. Soc. Lond. B: Biol. Sci. , vol.363 , pp. 3125-3135
    • Everitt, B.J.1
  • 88
    • 79951708994 scopus 로고    scopus 로고
    • Drug-evoked synaptic plasticity in addiction: from molecular changes to circuit remodeling
    • Luscher C., Malenka R.C. Drug-evoked synaptic plasticity in addiction: from molecular changes to circuit remodeling. Neuron 2011, 69:650-663.
    • (2011) Neuron , vol.69 , pp. 650-663
    • Luscher, C.1    Malenka, R.C.2
  • 89
    • 27644454004 scopus 로고    scopus 로고
    • Is there a common molecular pathway for addiction?
    • Nestler E.J. Is there a common molecular pathway for addiction?. Nat. Neurosci. 2005, 8:1445-1449.
    • (2005) Nat. Neurosci. , vol.8 , pp. 1445-1449
    • Nestler, E.J.1
  • 90
    • 0029583656 scopus 로고
    • Intravenous cocaine, morphine, and amphetamine preferentially increase extracellular dopamine in the 'shell' as compared with the 'core' of the rat nucleus accumbens
    • Pontieri F.E., et al. Intravenous cocaine, morphine, and amphetamine preferentially increase extracellular dopamine in the 'shell' as compared with the 'core' of the rat nucleus accumbens. Proc. Natl. Acad. Sci. U.S.A. 1995, 92:12304-12308.
    • (1995) Proc. Natl. Acad. Sci. U.S.A. , vol.92 , pp. 12304-12308
    • Pontieri, F.E.1
  • 91
    • 27644454882 scopus 로고    scopus 로고
    • Neural systems of reinforcement for drug addiction: from actions to habits to compulsion
    • Everitt B.J., Robbins T.W. Neural systems of reinforcement for drug addiction: from actions to habits to compulsion. Nat. Neurosci. 2005, 8:1481-1489.
    • (2005) Nat. Neurosci. , vol.8 , pp. 1481-1489
    • Everitt, B.J.1    Robbins, T.W.2
  • 92
    • 33846903376 scopus 로고    scopus 로고
    • Reward system and addiction: what dopamine does and doesn't do
    • Di C.G., Bassareo V. Reward system and addiction: what dopamine does and doesn't do. Curr. Opin. Pharmacol. 2007, 7:69-76.
    • (2007) Curr. Opin. Pharmacol. , vol.7 , pp. 69-76
    • Di, C.G.1    Bassareo, V.2
  • 93
    • 79958055503 scopus 로고    scopus 로고
    • Projection-specific modulation of dopamine neuron synapses by aversive and rewarding stimuli
    • Lammel S., et al. Projection-specific modulation of dopamine neuron synapses by aversive and rewarding stimuli. Neuron 2011, 70:855-862.
    • (2011) Neuron , vol.70 , pp. 855-862
    • Lammel, S.1
  • 94
    • 12344264879 scopus 로고    scopus 로고
    • Synaptic plasticity and drug addiction
    • Jones S., Bonci A. Synaptic plasticity and drug addiction. Curr. Opin. Pharmacol. 2005, 5:20-25.
    • (2005) Curr. Opin. Pharmacol. , vol.5 , pp. 20-25
    • Jones, S.1    Bonci, A.2
  • 95
    • 84878978808 scopus 로고    scopus 로고
    • Cocaine-evoked synaptic plasticity of excitatory transmission in the ventral tegmental area
    • Luscher C. Cocaine-evoked synaptic plasticity of excitatory transmission in the ventral tegmental area. Cold Spring Harb. Perspect. Med. 2013, 3:a012013.
    • (2013) Cold Spring Harb. Perspect. Med. , vol.3
    • Luscher, C.1
  • 96
    • 68149148934 scopus 로고    scopus 로고
    • Cocaine-evoked synaptic plasticity: persistence in the VTA triggers adaptations in the NAc
    • Mameli M., et al. Cocaine-evoked synaptic plasticity: persistence in the VTA triggers adaptations in the NAc. Nat. Neurosci. 2009, 12:1036-1041.
    • (2009) Nat. Neurosci. , vol.12 , pp. 1036-1041
    • Mameli, M.1
  • 97
    • 0034654526 scopus 로고    scopus 로고
    • Striatonigrostriatal pathways in primates form an ascending spiral from the shell to the dorsolateral striatum
    • Haber S.N., et al. Striatonigrostriatal pathways in primates form an ascending spiral from the shell to the dorsolateral striatum. J. Neurosci. 2000, 20:2369-2382.
    • (2000) J. Neurosci. , vol.20 , pp. 2369-2382
    • Haber, S.N.1
  • 98
    • 84874440008 scopus 로고    scopus 로고
    • Hierarchical recruitment of phasic dopamine signaling in the striatum during the progression of cocaine use
    • Willuhn I., et al. Hierarchical recruitment of phasic dopamine signaling in the striatum during the progression of cocaine use. Proc. Natl. Acad. Sci. U.S.A. 2012, 109:20703-20708.
    • (2012) Proc. Natl. Acad. Sci. U.S.A. , vol.109 , pp. 20703-20708
    • Willuhn, I.1
  • 99
    • 38749123491 scopus 로고    scopus 로고
    • Cocaine seeking habits depend upon dopamine-dependent serial connectivity linking the ventral with the dorsal striatum
    • Belin D., Everitt B.J. Cocaine seeking habits depend upon dopamine-dependent serial connectivity linking the ventral with the dorsal striatum. Neuron 2008, 57:432-441.
    • (2008) Neuron , vol.57 , pp. 432-441
    • Belin, D.1    Everitt, B.J.2
  • 100
    • 79955769962 scopus 로고    scopus 로고
    • Opposing roles of nucleus accumbens core and shell dopamine in the modulation of limbic information processing
    • Ito R., Hayen A. Opposing roles of nucleus accumbens core and shell dopamine in the modulation of limbic information processing. J. Neurosci. 2011, 31:6001-6007.
    • (2011) J. Neurosci. , vol.31 , pp. 6001-6007
    • Ito, R.1    Hayen, A.2
  • 101
    • 84883024809 scopus 로고    scopus 로고
    • Cue-evoked cocaine 'craving': role of dopamine in the accumbens core
    • Saunders B.T., et al. Cue-evoked cocaine 'craving': role of dopamine in the accumbens core. J. Neurosci. 2013, 33:13989-14000.
    • (2013) J. Neurosci. , vol.33 , pp. 13989-14000
    • Saunders, B.T.1
  • 102
    • 36549053586 scopus 로고    scopus 로고
    • Drug addiction as a pathology of staged neuroplasticity
    • Kalivas P.W., O'Brien C. Drug addiction as a pathology of staged neuroplasticity. Neuropsychopharmacology 2008, 33:166-180.
    • (2008) Neuropsychopharmacology , vol.33 , pp. 166-180
    • Kalivas, P.W.1    O'Brien, C.2
  • 103
    • 84887083311 scopus 로고    scopus 로고
    • Neurocircuitry of drug reward
    • Ikemoto S., Bonci A. Neurocircuitry of drug reward. Neuropharmacology 2014, 76(Pt B):329-341.
    • (2014) Neuropharmacology , vol.76 , Issue.PART B , pp. 329-341
    • Ikemoto, S.1    Bonci, A.2
  • 104
    • 0037264650 scopus 로고    scopus 로고
    • Plasma membrane monoamine transporters: structure, regulation and function
    • Torres G.E., et al. Plasma membrane monoamine transporters: structure, regulation and function. Nat. Rev. Neurosci. 2003, 4:13-25.
    • (2003) Nat. Rev. Neurosci. , vol.4 , pp. 13-25
    • Torres, G.E.1
  • 105
    • 36849051843 scopus 로고    scopus 로고
    • Monoamine transporters and psychostimulant addiction
    • Howell L.L., Kimmel H.L. Monoamine transporters and psychostimulant addiction. Biochem. Pharmacol. 2008, 75:196-217.
    • (2008) Biochem. Pharmacol. , vol.75 , pp. 196-217
    • Howell, L.L.1    Kimmel, H.L.2
  • 106
    • 84862203483 scopus 로고    scopus 로고
    • Striatal mechanisms underlying movement, reinforcement, and punishment
    • Kravitz A.V., Kreitzer A.C. Striatal mechanisms underlying movement, reinforcement, and punishment. Physiology 2012, 27:167-177.
    • (2012) Physiology , vol.27 , pp. 167-177
    • Kravitz, A.V.1    Kreitzer, A.C.2
  • 107
    • 0030896968 scopus 로고    scopus 로고
    • A neural substrate of prediction and reward
    • Schultz W., et al. A neural substrate of prediction and reward. Science 1997, 275:1593-1599.
    • (1997) Science , vol.275 , pp. 1593-1599
    • Schultz, W.1
  • 108
    • 77449137156 scopus 로고    scopus 로고
    • Chronic microsensors for longitudinal, subsecond dopamine detection in behaving animals
    • Clark J.J., et al. Chronic microsensors for longitudinal, subsecond dopamine detection in behaving animals. Nat. Methods 2010, 7:126-129.
    • (2010) Nat. Methods , vol.7 , pp. 126-129
    • Clark, J.J.1
  • 109
    • 84879845407 scopus 로고    scopus 로고
    • Methamphetamine-induced neurotoxicity disrupts naturally occurring phasic dopamine signaling
    • Howard C.D., et al. Methamphetamine-induced neurotoxicity disrupts naturally occurring phasic dopamine signaling. Eur. J. Neurosci. 2013, 38:2078-2088.
    • (2013) Eur. J. Neurosci. , vol.38 , pp. 2078-2088
    • Howard, C.D.1
  • 110
    • 0033816276 scopus 로고    scopus 로고
    • Different mechanisms for dopaminergic excitation induced by opiates and cannabinoids in the rat midbrain
    • Melis M., et al. Different mechanisms for dopaminergic excitation induced by opiates and cannabinoids in the rat midbrain. Prog. Neuropsychopharmacol. Biol. Psychiatry 2000, 24:993-1006.
    • (2000) Prog. Neuropsychopharmacol. Biol. Psychiatry , vol.24 , pp. 993-1006
    • Melis, M.1
  • 111
    • 8444244974 scopus 로고    scopus 로고
    • Nicotine enhancement of dopamine release by a calcium-dependent increase in the size of the readily releasable pool of synaptic vesicles
    • Turner T.J. Nicotine enhancement of dopamine release by a calcium-dependent increase in the size of the readily releasable pool of synaptic vesicles. J. Neurosci. 2004, 24:11328-11336.
    • (2004) J. Neurosci. , vol.24 , pp. 11328-11336
    • Turner, T.J.1
  • 112
    • 2542466748 scopus 로고    scopus 로고
    • Nicotine amplifies reward-related dopamine signals in striatum
    • Rice M.E., Cragg S.J. Nicotine amplifies reward-related dopamine signals in striatum. Nat. Neurosci. 2004, 7:583-584.
    • (2004) Nat. Neurosci. , vol.7 , pp. 583-584
    • Rice, M.E.1    Cragg, S.J.2
  • 113
    • 39549116087 scopus 로고    scopus 로고
    • Presynaptic opioid and nicotinic receptor modulation of dopamine overflow in the nucleus accumbens
    • Britt J.P., McGehee D.S. Presynaptic opioid and nicotinic receptor modulation of dopamine overflow in the nucleus accumbens. J. Neurosci. 2008, 28:1672-1681.
    • (2008) J. Neurosci. , vol.28 , pp. 1672-1681
    • Britt, J.P.1    McGehee, D.S.2
  • 114
    • 58149385076 scopus 로고    scopus 로고
    • Crucial role of alpha4 and alpha6 nicotinic acetylcholine receptor subunits from ventral tegmental area in systemic nicotine self-administration
    • Pons S., et al. Crucial role of alpha4 and alpha6 nicotinic acetylcholine receptor subunits from ventral tegmental area in systemic nicotine self-administration. J. Neurosci. 2008, 28:12318-12327.
    • (2008) J. Neurosci. , vol.28 , pp. 12318-12327
    • Pons, S.1
  • 115
    • 84885607317 scopus 로고    scopus 로고
    • Nicotinic acetylcholine receptors containing the alpha6 subunit contribute to ethanol activation of ventral tegmental area dopaminergic neurons
    • Liu L., et al. Nicotinic acetylcholine receptors containing the alpha6 subunit contribute to ethanol activation of ventral tegmental area dopaminergic neurons. Biochem. Pharmacol. 2013, 86:1194-1200.
    • (2013) Biochem. Pharmacol. , vol.86 , pp. 1194-1200
    • Liu, L.1
  • 116
    • 84861611116 scopus 로고    scopus 로고
    • Optogenetic modulation of neural circuits that underlie reward seeking
    • Stuber G.D., et al. Optogenetic modulation of neural circuits that underlie reward seeking. Biol. Psychiatry 2012, 71:1061-1067.
    • (2012) Biol. Psychiatry , vol.71 , pp. 1061-1067
    • Stuber, G.D.1
  • 117
    • 84887123761 scopus 로고    scopus 로고
    • Reward, interrupted: Inhibitory control and its relevance to addictions
    • Jentsch J.D., Pennington Z.T. Reward, interrupted: Inhibitory control and its relevance to addictions. Neuropharmacology 2014, 76(Pt B):479-486.
    • (2014) Neuropharmacology , vol.76 , Issue.PART B , pp. 479-486
    • Jentsch, J.D.1    Pennington, Z.T.2
  • 118
    • 84861936797 scopus 로고    scopus 로고
    • Whole-brain mapping of direct inputs to midbrain dopamine neurons
    • Watabe-Uchida M., et al. Whole-brain mapping of direct inputs to midbrain dopamine neurons. Neuron 2012, 74:858-873.
    • (2012) Neuron , vol.74 , pp. 858-873
    • Watabe-Uchida, M.1
  • 119
    • 54049129747 scopus 로고    scopus 로고
    • Midbrain dopamine neurons: projection target determines action potential duration and dopamine D(2) receptor inhibition
    • Margolis E.B., et al. Midbrain dopamine neurons: projection target determines action potential duration and dopamine D(2) receptor inhibition. J. Neurosci. 2008, 28:8908-8913.
    • (2008) J. Neurosci. , vol.28 , pp. 8908-8913
    • Margolis, E.B.1
  • 120
    • 40249097514 scopus 로고    scopus 로고
    • Unique properties of mesoprefrontal neurons within a dual mesocorticolimbic dopamine system
    • Lammel S., et al. Unique properties of mesoprefrontal neurons within a dual mesocorticolimbic dopamine system. Neuron 2008, 57:760-773.
    • (2008) Neuron , vol.57 , pp. 760-773
    • Lammel, S.1
  • 121
    • 84887041146 scopus 로고    scopus 로고
    • New insights into the specificity and plasticity of reward and aversion encoding in the mesolimbic system
    • Volman S.F., et al. New insights into the specificity and plasticity of reward and aversion encoding in the mesolimbic system. J. Neurosci. 2013, 33:17569-17576.
    • (2013) J. Neurosci. , vol.33 , pp. 17569-17576
    • Volman, S.F.1
  • 122
    • 84888986278 scopus 로고    scopus 로고
    • Pharmacological treatment of comorbid PTSD and substance use disorder: Recent progress
    • Sofuoglu M., et al. Pharmacological treatment of comorbid PTSD and substance use disorder: Recent progress. Addict. Behav. 2013, 39:428-433.
    • (2013) Addict. Behav. , vol.39 , pp. 428-433
    • Sofuoglu, M.1
  • 123
    • 79958079437 scopus 로고    scopus 로고
    • Psychostimulants as cognitive enhancers: the prefrontal cortex, catecholamines, and attention-deficit/hyperactivity disorder
    • Berridge C.W., Devilbiss D.M. Psychostimulants as cognitive enhancers: the prefrontal cortex, catecholamines, and attention-deficit/hyperactivity disorder. Biol. Psychiatry 2011, 69:e101-e111.
    • (2011) Biol. Psychiatry , vol.69
    • Berridge, C.W.1    Devilbiss, D.M.2
  • 124
    • 67649479358 scopus 로고    scopus 로고
    • Persistent cognitive dysfunction after traumatic brain injury: A dopamine hypothesis
    • Bales J.W., et al. Persistent cognitive dysfunction after traumatic brain injury: A dopamine hypothesis. Neurosci. Biobehav. Rev. 2009, 33:981-1003.
    • (2009) Neurosci. Biobehav. Rev. , vol.33 , pp. 981-1003
    • Bales, J.W.1
  • 125
    • 24144437047 scopus 로고    scopus 로고
    • Voltammetric study of extracellular dopamine near microdialysis probes acutely implanted in the striatum of the anesthetized rat
    • Borland L.M., et al. Voltammetric study of extracellular dopamine near microdialysis probes acutely implanted in the striatum of the anesthetized rat. J. Neurosci. Methods 2005, 146:149-158.
    • (2005) J. Neurosci. Methods , vol.146 , pp. 149-158
    • Borland, L.M.1
  • 126
    • 0035793028 scopus 로고    scopus 로고
    • Glutamate regulates the spontaneous and evoked release of dopamine in the rat striatum
    • Kulagina N.V., et al. Glutamate regulates the spontaneous and evoked release of dopamine in the rat striatum. Neuroscience 2001, 102:121-128.
    • (2001) Neuroscience , vol.102 , pp. 121-128
    • Kulagina, N.V.1
  • 127
    • 84859631231 scopus 로고    scopus 로고
    • Sources contributing to the average extracellular concentration of dopamine in the nucleus accumbens
    • Owesson-White C.A., et al. Sources contributing to the average extracellular concentration of dopamine in the nucleus accumbens. J. Neurochem. 2012, 121:252-262.
    • (2012) J. Neurochem. , vol.121 , pp. 252-262
    • Owesson-White, C.A.1
  • 128
    • 77749295404 scopus 로고    scopus 로고
    • Regulation of dopamine transporter function by protein-protein interactions: new discoveries and methodological challenges
    • Eriksen J., et al. Regulation of dopamine transporter function by protein-protein interactions: new discoveries and methodological challenges. J. Neurochem. 2010, 113:27-41.
    • (2010) J. Neurochem. , vol.113 , pp. 27-41
    • Eriksen, J.1
  • 129
    • 84878572201 scopus 로고    scopus 로고
    • Dissecting the diversity of midbrain dopamine neurons
    • Roeper J. Dissecting the diversity of midbrain dopamine neurons. Trends Neurosci. 2013, 36:336-342.
    • (2013) Trends Neurosci. , vol.36 , pp. 336-342
    • Roeper, J.1
  • 130
    • 78649966665 scopus 로고    scopus 로고
    • Dopamine in motivational control: rewarding, aversive, and alerting
    • Bromberg-Martin E.S., et al. Dopamine in motivational control: rewarding, aversive, and alerting. Neuron 2010, 68:815-834.
    • (2010) Neuron , vol.68 , pp. 815-834
    • Bromberg-Martin, E.S.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.