메뉴 건너뛰기




Volumn 15, Issue 2, 2014, Pages 212-228

Inference of dynamic networks using time-course data

Author keywords

Dynamic network; Network inference; Spatiotemporal dynamics

Indexed keywords

ALGORITHM; BAYES THEOREM; BIOLOGY; COMPUTER PROGRAM; GENE ONTOLOGY; GENE REGULATORY NETWORK; GENETIC DATABASE; GENOMICS; HUMAN; PROCEDURES; PROTEOMICS; STATISTICS AND NUMERICAL DATA; SYSTEMS BIOLOGY;

EID: 84896484065     PISSN: 14675463     EISSN: 14774054     Source Type: Journal    
DOI: 10.1093/bib/bbt028     Document Type: Article
Times cited : (54)

References (82)
  • 1
    • 34147121646 scopus 로고    scopus 로고
    • Toward a comprehensive atlas of the physical interactome of Saccharomyces cerevisiae
    • Collins SR, Kemmeren P, Zhao XC, et al. Toward a comprehensive atlas of the physical interactome of Saccharomyces cerevisiae. Mol Cell Proteomics 2007;6:439-450.
    • (2007) Mol Cell Proteomics , vol.6 , pp. 439-450
    • Collins, S.R.1    Kemmeren, P.2    Zhao, X.C.3
  • 2
    • 70349312354 scopus 로고    scopus 로고
    • ChIP-seq: advantages and challenges of a maturing technology
    • Park PJ. ChIP-seq: advantages and challenges of a maturing technology. Nat Rev Genet 2009;10:669-680.
    • (2009) Nat Rev Genet , vol.10 , pp. 669-680
    • Park, P.J.1
  • 5
    • 0037245913 scopus 로고    scopus 로고
    • BIND: the Biomolecular Interaction Network Database
    • Bader GD, Betel D, Hogue CW. BIND: the Biomolecular Interaction Network Database. Nucleic Acids Res 2003;31: 248-250.
    • (2003) Nucleic Acids Res , vol.31 , pp. 248-250
    • Bader, G.D.1    Betel, D.2    Hogue, C.W.3
  • 6
    • 0037161731 scopus 로고    scopus 로고
    • Comparative assessment of large-scale data sets of protein-protein interactions
    • von Mering C, Krause R, Snel B, et al. Comparative assessment of large-scale data sets of protein-protein interactions. Nature 2002;417:399-403.
    • (2002) Nature , vol.417 , pp. 399-403
    • von Mering, C.1    Krause, R.2    Snel, B.3
  • 7
    • 0037432528 scopus 로고    scopus 로고
    • How reliable are experimental protein-protein interaction data?
    • Sprinzak E, Sattath S, Margalit H. How reliable are experimental protein-protein interaction data? J Mol Biol 2003; 327:919-923.
    • (2003) J Mol Biol , vol.327 , pp. 919-923
    • Sprinzak, E.1    Sattath, S.2    Margalit, H.3
  • 8
    • 0033707946 scopus 로고    scopus 로고
    • Using Bayesian networks to analyze expression data
    • Friedman N, Linial M, Nachman I, et al. Using Bayesian networks to analyze expression data. J Comp Biol 2000;7: 601-620.
    • (2000) J Comp Biol , vol.7 , pp. 601-620
    • Friedman, N.1    Linial, M.2    Nachman, I.3
  • 9
    • 18744394637 scopus 로고    scopus 로고
    • Targeting c-Myc-activated genes with a correlation method: detection of global changes in large gene expression network dynamics
    • Remondini D, O'Connell B, Intrator N, et al. Targeting c-Myc-activated genes with a correlation method: detection of global changes in large gene expression network dynamics. ProcNatl Acad SciUSA 2005;102:6902-6906.
    • (2005) ProcNatl Acad SciUSA , vol.102 , pp. 6902-6906
    • Remondini, D.1    O'Connell, B.2    Intrator, N.3
  • 10
    • 66349133213 scopus 로고    scopus 로고
    • KELLER: estimating timevarying interactions between genes
    • Song L, Kolar M, Xing EP. KELLER: estimating timevarying interactions between genes. Bioinformatics 2009;25: i128-i136.
    • (2009) Bioinformatics , vol.25
    • Song, L.1    Kolar, M.2    Xing, E.P.3
  • 12
    • 77950943011 scopus 로고    scopus 로고
    • Logic-based models for the analysis of cell signaling networks
    • Morris MK, Saez-Rodriguez J, Sorger PK, et al. Logic-based models for the analysis of cell signaling networks. Biochemistry 2010;49:3216-3224.
    • (2010) Biochemistry , vol.49 , pp. 3216-3224
    • Morris, M.K.1    Saez-Rodriguez, J.2    Sorger, P.K.3
  • 13
    • 78449275559 scopus 로고    scopus 로고
    • Subcellular fractionation methods and strategies for proteomics
    • Lee YH, Tan HT, Chung MC. Subcellular fractionation methods and strategies for proteomics. Proteomics 2010;10: 3935-3956.
    • (2010) Proteomics , vol.10 , pp. 3935-3956
    • Lee, Y.H.1    Tan, H.T.2    Chung, M.C.3
  • 14
  • 15
    • 0031742022 scopus 로고    scopus 로고
    • Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization
    • Spellman PT, Sherlock G, Zhang MQ, et al. Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization. Mol Biol Cell 1998;9:3273-3297.
    • (1998) Mol Biol Cell , vol.9 , pp. 3273-3297
    • Spellman, P.T.1    Sherlock, G.2    Zhang, M.Q.3
  • 16
    • 84896474350 scopus 로고    scopus 로고
    • Learning the Structure of Dynamic ProbabilisticNetworks, UAI
    • Friedman N, Murphy K, Russell S. (1998), Learning the Structure of Dynamic ProbabilisticNetworks,UAI.
    • (1998)
    • Friedman, N.1    Murphy, K.2    Russell, S.3
  • 17
    • 3042738945 scopus 로고    scopus 로고
    • Dynamic Bayesian network and nonparametric regression for nonlinear modeling of gene networks from time series gene expression data
    • Kim S, Imoto S, Miyano S. Dynamic Bayesian network and nonparametric regression for nonlinear modeling of gene networks from time series gene expression data. Biosystems 2004;75:57-65.
    • (2004) Biosystems , vol.75 , pp. 57-65
    • Kim, S.1    Imoto, S.2    Miyano, S.3
  • 18
    • 0344844807 scopus 로고    scopus 로고
    • Modelling regulatory pathways in E. coli from time series expression profiles
    • Ong IM, Glasner JD, Page D. Modelling regulatory pathways in E. coli from time series expression profiles. Bioinformatics 2002;18(Suppl 1):S241-S248.
    • (2002) Bioinformatics , vol.18 , Issue.SUPPL. 1
    • Ong, I.M.1    Glasner, J.D.2    Page, D.3
  • 19
    • 0842309206 scopus 로고    scopus 로고
    • Inferring gene networks from time series microarray data using dynamic Bayesian networks
    • Kim SY, Imoto S, Miyano S. Inferring gene networks from time series microarray data using dynamic Bayesian networks. Brief Bioinform 2003;4:228-235.
    • (2003) Brief Bioinform , vol.4 , pp. 228-235
    • Kim, S.Y.1    Imoto, S.2    Miyano, S.3
  • 20
    • 80053452578 scopus 로고    scopus 로고
    • GlobalMIT: learning globally optimal dynamic bayesian network with the mutual information test criterion
    • Vinh NX, Chetty M, Coppel R, et al. GlobalMIT: learning globally optimal dynamic bayesian network with the mutual information test criterion. Bioinformatics 2011;27:2765- 2766.
    • (2011) Bioinformatics , vol.27 , pp. 2765-2766
    • Vinh, N.X.1    Chetty, M.2    Coppel, R.3
  • 21
    • 58349093534 scopus 로고    scopus 로고
    • BNFinder: exact and efficient method for learning Bayesian networks
    • Wilczynski B, Dojer N. BNFinder: exact and efficient method for learning Bayesian networks. Bioinformatics 2009;25:286-287.
    • (2009) Bioinformatics , vol.25 , pp. 286-287
    • Wilczynski, B.1    Dojer, N.2
  • 22
    • 77955124773 scopus 로고    scopus 로고
    • Learning Bayesian Networks with the bnlearn R Package
    • Scutari M. Learning Bayesian Networks with the bnlearn R Package. JStat Softw 2010;35:1-22.
    • (2010) JStat Softw , vol.35 , pp. 1-22
    • Scutari, M.1
  • 23
    • 12744261506 scopus 로고    scopus 로고
    • A new dynamic Bayesian network (DBN) approach for identifying gene regulatory networks from time course microarray data
    • Zou M, Conzen SD. A new dynamic Bayesian network (DBN) approach for identifying gene regulatory networks from time course microarray data. Bioinformatics 2005;21:71- 79.
    • (2005) Bioinformatics , vol.21 , pp. 71-79
    • Zou, M.1    Conzen, S.D.2
  • 24
    • 0000552986 scopus 로고    scopus 로고
    • Mutual information relevance networks: functional genomic clustering using pairwise entropy measurements
    • Butte AJ, Kohane IS. Mutual information relevance networks: functional genomic clustering using pairwise entropy measurements. Pac Symp Biocomput 2002;415-426.
    • (2002) Pac Symp Biocomput , pp. 415-426
    • Butte, A.J.1    Kohane, I.S.2
  • 25
    • 33846400424 scopus 로고    scopus 로고
    • Large-scale mapping and validation of Escherichia coli transcriptional regulation from a compendium of expression profiles
    • Faith JJ, Hayete B, Thaden JT, et al. Large-scale mapping and validation of Escherichia coli transcriptional regulation from a compendium of expression profiles. PLoS Biol 2007;5:e8.
    • (2007) PLoS Biol , vol.5
    • Faith, J.J.1    Hayete, B.2    Thaden, J.T.3
  • 26
    • 33748654580 scopus 로고    scopus 로고
    • Inferring gene regulatory networks from time series data using the minimum description length principle
    • Zhao W, Serpedin E, Dougherty ER. Inferring gene regulatory networks from time series data using the minimum description length principle. Bioinformatics 2006;22:2129- 2135.
    • (2006) Bioinformatics , vol.22 , pp. 2129-2135
    • Zhao, W.1    Serpedin, E.2    Dougherty, E.R.3
  • 27
    • 33947305781 scopus 로고    scopus 로고
    • ARACNE: an algorithm for the reconstruction of gene regulatory networks in a mammalian cellular context
    • Margolin AA, Nemenman I, Basso K, et al. ARACNE: an algorithm for the reconstruction of gene regulatory networks in a mammalian cellular context. BMC Bioinformatics 2006;7(Suppl 1):S7.
    • (2006) BMC Bioinformatics , vol.7 , Issue.SUPPL. 1
    • Margolin, A.A.1    Nemenman, I.2    Basso, K.3
  • 28
    • 77957141016 scopus 로고    scopus 로고
    • Inferring the conservative causal core of gene regulatory networks
    • Altay G, Emmert-Streib F. Inferring the conservative causal core of gene regulatory networks. BMC Syst Biol 2010;4:132.
    • (2010) BMC Syst Biol , vol.4 , pp. 132
    • Altay, G.1    Emmert-Streib, F.2
  • 29
    • 16844376909 scopus 로고    scopus 로고
    • Reverse engineering of regulatory networks in human B cells
    • Basso K, Margolin AA, Stolovitzky G, et al. Reverse engineering of regulatory networks in human B cells. Nat Genet 2005;37:382-390.
    • (2005) Nat Genet , vol.37 , pp. 382-390
    • Basso, K.1    Margolin, A.A.2    Stolovitzky, G.3
  • 30
    • 12344321571 scopus 로고    scopus 로고
    • Discovery of meaningful associations in genomic data using partial correlation coefficients
    • de la Fuente A, Bing N, Hoeschele I, et al. Discovery of meaningful associations in genomic data using partial correlation coefficients. Bioinformatics 2004;20:3565-3574.
    • (2004) Bioinformatics , vol.20 , pp. 3565-3574
    • de la Fuente, A.1    Bing, N.2    Hoeschele, I.3
  • 31
    • 15944364151 scopus 로고    scopus 로고
    • An empirical Bayes approach to inferring large-scale gene association networks
    • Schafer J, Strimmer K. An empirical Bayes approach to inferring large-scale gene association networks. Bioinformatics 2005;21:754-764.
    • (2005) Bioinformatics , vol.21 , pp. 754-764
    • Schafer, J.1    Strimmer, K.2
  • 32
    • 36248999573 scopus 로고    scopus 로고
    • Information-theoretic inference of large transcriptional regulatory networks
    • Meyer PE, Kontos K, Lafitte F, et al. Information-theoretic inference of large transcriptional regulatory networks. EURASIP J Bioinform Syst Biol 2007;2007:79879.
    • (2007) EURASIP J Bioinform Syst Biol , vol.2007 , pp. 79879
    • Meyer, P.E.1    Kontos, K.2    Lafitte, F.3
  • 33
    • 45849134070 scopus 로고    scopus 로고
    • Sparse inverse covariance estimation with the graphical lasso
    • Friedman J, Hastie T, Tibshirani R. Sparse inverse covariance estimation with the graphical lasso. Biostatistics 2008;9: 432-441.
    • (2008) Biostatistics , vol.9 , pp. 432-441
    • Friedman, J.1    Hastie, T.2    Tibshirani, R.3
  • 34
    • 79251567361 scopus 로고    scopus 로고
    • Gaussian graphical modeling reconstructs pathway reactions from high-throughput metabolomics data
    • Krumsiek J, Suhre K, Illig T, et al. Gaussian graphical modeling reconstructs pathway reactions from high-throughput metabolomics data. BMCSyst Biol 2011;5:21.
    • (2011) BMCSyst Biol , vol.5 , pp. 21
    • Krumsiek, J.1    Suhre, K.2    Illig, T.3
  • 35
    • 33947115409 scopus 로고    scopus 로고
    • Model selection and estimation in the Gaussian graphical model
    • Yuan M, Lin Y. Model selection and estimation in the Gaussian graphical model. Biometrika 2007;94:19-35.
    • (2007) Biometrika , vol.94 , pp. 19-35
    • Yuan, M.1    Lin, Y.2
  • 36
    • 4644326931 scopus 로고    scopus 로고
    • Genomic analysis of regulatory network dynamics reveals large topological changes
    • Luscombe NM, Babu MM, Yu H, et al. Genomic analysis of regulatory network dynamics reveals large topological changes. Nature 2004;431:308-312.
    • (2004) Nature , vol.431 , pp. 308-312
    • Luscombe, N.M.1    Babu, M.M.2    Yu, H.3
  • 37
    • 63149151206 scopus 로고    scopus 로고
    • A systems approach to prion disease
    • Hwang D, Lee IY, Yoo H, et al. A systems approach to prion disease. Mol Syst Biol 2009;5:252.
    • (2009) Mol Syst Biol , vol.5 , pp. 252
    • Hwang, D.1    Lee, I.Y.2    Yoo, H.3
  • 38
    • 33750456519 scopus 로고    scopus 로고
    • Global, in vivo, and sitespecific phosphorylation dynamics in signaling networks
    • Olsen JV, Blagoev B, Gnad F, et al. Global, in vivo, and sitespecific phosphorylation dynamics in signaling networks. Cell 2006;127:635-648.
    • (2006) Cell , vol.127 , pp. 635-648
    • Olsen, J.V.1    Blagoev, B.2    Gnad, F.3
  • 39
    • 79551600768 scopus 로고    scopus 로고
    • Principal network analysis: identification of subnetworks representing major dynamics using gene expression data
    • Kim Y, Kim TK, Yoo J, et al. Principal network analysis: identification of subnetworks representing major dynamics using gene expression data. Bioinformatics 2011;27:391-398.
    • (2011) Bioinformatics , vol.27 , pp. 391-398
    • Kim, Y.1    Kim, T.K.2    Yoo, J.3
  • 41
    • 77957713914 scopus 로고    scopus 로고
    • Constructing non-stationary Dynamic Bayesian Networks with a flexible lag choosing mechanism
    • Jia Y, Huan J. Constructing non-stationary Dynamic Bayesian Networks with a flexible lag choosing mechanism. BMC Bioinformatics 2010;11(Suppl 6):S27.
    • (2010) BMC Bioinformatics , vol.11 , Issue.SUPPL. 6
    • Jia, Y.1    Huan, J.2
  • 43
    • 79958861169 scopus 로고    scopus 로고
    • Non-homogeneous dynamic Bayesian networks for continuous data
    • Grzegorczyk M, Husmeier D. Non-homogeneous dynamic Bayesian networks for continuous data. MachLearn 2011;83: 355-419.
    • (2011) MachLearn , vol.83 , pp. 355-419
    • Grzegorczyk, M.1    Husmeier, D.2
  • 44
    • 84873074998 scopus 로고    scopus 로고
    • Dynamic gene network reconstruction from gene expression data in mice after influenza A (H1N1) infection
    • Dimitrakopoulou K, Tsimpouris C, Papadopoulos G, et al. Dynamic gene network reconstruction from gene expression data in mice after influenza A (H1N1) infection. JClin Bioinforma 2011;1:27.
    • (2011) JClin Bioinforma , vol.1 , pp. 27
    • Dimitrakopoulou, K.1    Tsimpouris, C.2    Papadopoulos, G.3
  • 45
    • 77957930628 scopus 로고    scopus 로고
    • Statistical inference of the time-varying structure of gene-regulation networks
    • Lebre S, Becq J, Devaux F, et al. Statistical inference of the time-varying structure of gene-regulation networks. BMC Syst Biol 2010;4:130.
    • (2010) BMC Syst Biol , vol.4 , pp. 130
    • Lebre, S.1    Becq, J.2    Devaux, F.3
  • 47
    • 84870264927 scopus 로고    scopus 로고
    • Estimating Time-Varying Networks
    • Kolar M, Song L, Ahmed A, et al. Estimating Time-Varying Networks. Ann Appl Stat 2010;4:94-123.
    • (2010) Ann Appl Stat , vol.4 , pp. 94-123
    • Kolar, M.1    Song, L.2    Ahmed, A.3
  • 48
    • 0034091332 scopus 로고    scopus 로고
    • The Ste20 kinase misshapen regulates both photoreceptor axon targeting and dorsal closure, acting downstream of distinct signals
    • Su YC, Maurel-Zaffran C, Treisman JE, et al. The Ste20 kinase misshapen regulates both photoreceptor axon targeting and dorsal closure, acting downstream of distinct signals. Mol Cell Biol 2000;20:4736-4744.
    • (2000) Mol Cell Biol , vol.20 , pp. 4736-4744
    • Su, Y.C.1    Maurel-Zaffran, C.2    Treisman, J.E.3
  • 49
    • 42649110359 scopus 로고    scopus 로고
    • A pattern recognition approach to infer time-lagged genetic interactions
    • Chuang CL, Jen CH, Chen CM, et al. A pattern recognition approach to infer time-lagged genetic interactions. Bioinformatics 2008;24:1183-1190.
    • (2008) Bioinformatics , vol.24 , pp. 1183-1190
    • Chuang, C.L.1    Jen, C.H.2    Chen, C.M.3
  • 50
    • 77952663448 scopus 로고    scopus 로고
    • TimeDelay-ARACNE: Reverse engineering of gene networks from time-course data by an information theoretic approach
    • Zoppoli P, Morganella S, Ceccarelli M. TimeDelay-ARACNE: Reverse engineering of gene networks from time-course data by an information theoretic approach. BMC Bioinformatics 2010;11:154.
    • (2010) BMC Bioinformatics , vol.11 , pp. 154
    • Zoppoli, P.1    Morganella, S.2    Ceccarelli, M.3
  • 51
    • 4444352289 scopus 로고    scopus 로고
    • Elucidation of gene interaction networks through time-lagged correlation analysis of transcriptional data
    • Schmitt WA, Jr, Raab RM, Stephanopoulos G. Elucidation of gene interaction networks through time-lagged correlation analysis of transcriptional data. Genome Res 2004;14: 1654-1663.
    • (2004) Genome Res , vol.14 , pp. 1654-1663
    • Schmitt Jr., W.A.1    Raab, R.M.2    Stephanopoulos, G.3
  • 52
    • 79953756541 scopus 로고    scopus 로고
    • Directed partial correlation: inferring large-scale gene regulatory network through induced topology disruptions
    • Yuan Y, Li CT, Windram O. Directed partial correlation: inferring large-scale gene regulatory network through induced topology disruptions. PLoS One 2011;6:e16835.
    • (2011) PLoS One , vol.6
    • Yuan, Y.1    Li, C.T.2    Windram, O.3
  • 53
    • 3242891560 scopus 로고    scopus 로고
    • Estimating gene networks from gene expression data by combining Bayesian network model with promoter element detection
    • Tamada Y, Kim S, Bannai H, et al. Estimating gene networks from gene expression data by combining Bayesian network model with promoter element detection. Bioinformatics 2003;19(Suppl 2):ii227-ii236.
    • (2003) Bioinformatics , vol.19 , Issue.SUPPL. 2
    • Tamada, Y.1    Kim, S.2    Bannai, H.3
  • 54
    • 0036500993 scopus 로고    scopus 로고
    • Systems biology: a brief overview
    • Kitano H. Systems biology: a brief overview. Science 2002; 295:1662-1664.
    • (2002) Science , vol.295 , pp. 1662-1664
    • Kitano, H.1
  • 55
    • 72849142731 scopus 로고    scopus 로고
    • Edgetic perturbation models of human inherited disorders
    • Zhong Q, Simonis N, Li QR, et al. Edgetic perturbation models of human inherited disorders. MolSystBiol 2009;5:321.
    • (2009) MolSystBiol , vol.5 , pp. 321
    • Zhong, Q.1    Simonis, N.2    Li, Q.R.3
  • 56
    • 80052215666 scopus 로고    scopus 로고
    • NOA: a novel network ontology analysis method
    • Wang J, Huang Q, Liu ZP, et al. NOA: a novel network ontology analysis method. Nucleic Acids Res 2011;39:e87.
    • (2011) Nucleic Acids Res , vol.39
    • Wang, J.1    Huang, Q.2    Liu, Z.P.3
  • 57
    • 34249079154 scopus 로고    scopus 로고
    • Network motifs: theory and experimental approaches
    • Alon U. Network motifs: theory and experimental approaches. Nat RevGenet 2007;8:450-461.
    • (2007) Nat RevGenet , vol.8 , pp. 450-461
    • Alon, U.1
  • 58
    • 33646153295 scopus 로고    scopus 로고
    • FANMOD: a tool for fast network motif detection
    • Wernicke S, Rasche F. FANMOD: a tool for fast network motif detection. Bioinformatics 2006;22:1152-1153.
    • (2006) Bioinformatics , vol.22 , pp. 1152-1153
    • Wernicke, S.1    Rasche, F.2
  • 59
    • 24144495559 scopus 로고    scopus 로고
    • MAVisto: a tool for the exploration of network motifs
    • Schreiber F, Schwobbermeyer H. MAVisto: a tool for the exploration of network motifs. Bioinformatics 2005;21: 3572-3574.
    • (2005) Bioinformatics , vol.21 , pp. 3572-3574
    • Schreiber, F.1    Schwobbermeyer, H.2
  • 60
    • 77952701988 scopus 로고    scopus 로고
    • Dynamic network rewiring determines temporal regulatory functions in Drosophila melanogaster development processes
    • Kim MS, Kim JR, Cho KH. Dynamic network rewiring determines temporal regulatory functions in Drosophila melanogaster development processes. Bioessays 2010;32:505-513.
    • (2010) Bioessays , vol.32 , pp. 505-513
    • Kim, M.S.1    Kim, J.R.2    Cho, K.H.3
  • 61
    • 45549097452 scopus 로고    scopus 로고
    • Positive feedback in cellular control systems
    • Mitrophanov AY, Groisman EA. Positive feedback in cellular control systems. Bioessays 2008;30:542-555.
    • (2008) Bioessays , vol.30 , pp. 542-555
    • Mitrophanov, A.Y.1    Groisman, E.A.2
  • 62
    • 79957552475 scopus 로고    scopus 로고
    • Protein localization as a principal feature of the etiology and comorbidity of genetic diseases
    • Park S, Yang JS, Shin YE, et al. Protein localization as a principal feature of the etiology and comorbidity of genetic diseases. Mol Syst Biol 2011;7:494.
    • (2011) Mol Syst Biol , vol.7 , pp. 494
    • Park, S.1    Yang, J.S.2    Shin, Y.E.3
  • 63
    • 34548832558 scopus 로고    scopus 로고
    • ngLOC: an n-gram-based Bayesian method for estimating the subcellular proteomes of eukaryotes
    • King BR, Guda C. ngLOC: an n-gram-based Bayesian method for estimating the subcellular proteomes of eukaryotes. Genome Biol 2007;8:R68.
    • (2007) Genome Biol , vol.8
    • King, B.R.1    Guda, C.2
  • 64
    • 42149083808 scopus 로고    scopus 로고
    • DBMLoc: a Database of proteins with multiple subcellular localizations
    • Zhang S, Xia X, Shen J, et al. DBMLoc: a Database of proteins with multiple subcellular localizations. BMC Bioinformatics 2008;9:127.
    • (2008) BMC Bioinformatics , vol.9 , pp. 127
    • Zhang, S.1    Xia, X.2    Shen, J.3
  • 65
    • 77957662380 scopus 로고    scopus 로고
    • Balanced nuclear and cytoplasmic activities of EDS1 are required for a complete plant innate immune response
    • Garcia AV, Blanvillain-Baufume S, Huibers RP, et al. Balanced nuclear and cytoplasmic activities of EDS1 are required for a complete plant innate immune response. PLoS Pathog 2010;6:e1000970.
    • (2010) PLoS Pathog , vol.6
    • Garcia, A.V.1    Blanvillain-Baufume, S.2    Huibers, R.P.3
  • 66
    • 36749003871 scopus 로고    scopus 로고
    • Separate functions for nuclear and cytoplasmic cryptochrome 1 during photomorphogenesis of Arabidopsis seedlings
    • Wu G, Spalding EP. Separate functions for nuclear and cytoplasmic cryptochrome 1 during photomorphogenesis of Arabidopsis seedlings. Proc Natl Acad Sci USA 2007;104: 18813-18818.
    • (2007) Proc Natl Acad Sci USA , vol.104 , pp. 18813-18818
    • Wu, G.1    Spalding, E.P.2
  • 67
    • 1042278767 scopus 로고    scopus 로고
    • Nuclear transport and cancer: from mechanism to intervention
    • Kau TR, Way JC, Silver PA. Nuclear transport and cancer: from mechanism to intervention. Nat Rev Cancer 2004;4: 106-117.
    • (2004) Nat Rev Cancer , vol.4 , pp. 106-117
    • Kau, T.R.1    Way, J.C.2    Silver, P.A.3
  • 69
    • 46349103594 scopus 로고    scopus 로고
    • A mitochondrial protein compendium elucidates complex I disease biology
    • Pagliarini DJ, Calvo SE, Chang B, et al. A mitochondrial protein compendium elucidates complex I disease biology. Cell 2008;134:112-123.
    • (2008) Cell , vol.134 , pp. 112-123
    • Pagliarini, D.J.1    Calvo, S.E.2    Chang, B.3
  • 70
    • 38549141104 scopus 로고    scopus 로고
    • LOCATE: a mammalian protein subcellular localization database
    • Sprenger J, Lynn Fink J, Karunaratne S, et al. LOCATE: a mammalian protein subcellular localization database. Nucleic Acids Res 2008;36:D230-D233.
    • (2008) Nucleic Acids Res , vol.36
    • Sprenger, J.1    Lynn Fink, J.2    Karunaratne, S.3
  • 71
    • 13444263731 scopus 로고    scopus 로고
    • Organelle DB: a cross-species database of protein localization and function
    • Wiwatwattana N, Kumar A. Organelle DB: a cross-species database of protein localization and function. Nucleic Acids Res 2005;33:D598-D604.
    • (2005) Nucleic Acids Res , vol.33
    • Wiwatwattana, N.1    Kumar, A.2
  • 72
    • 3042521098 scopus 로고    scopus 로고
    • Improved prediction of signal peptides: SignalP 3 0
    • Bendtsen JD, Nielsen H, von Heijne G, et al. Improved prediction of signal peptides: SignalP 3.0. J Mol Biol 2004; 340:783-795.
    • (2004) J Mol Biol , vol.340 , pp. 783-795
    • Bendtsen, J.D.1    Nielsen, H.2    von Heijne, G.3
  • 73
    • 33645707842 scopus 로고    scopus 로고
    • PredSL: a tool for the N-terminal sequence-based prediction of protein subcellular localization
    • Petsalaki EI, Bagos PG, Litou ZI, et al. PredSL: a tool for the N-terminal sequence-based prediction of protein subcellular localization. Genomics Proteomics Bioinformatics 2006;4:48-55.
    • (2006) Genomics Proteomics Bioinformatics , vol.4 , pp. 48-55
    • Petsalaki, E.I.1    Bagos, P.G.2    Litou, Z.I.3
  • 74
    • 2942589051 scopus 로고    scopus 로고
    • Predotar: A tool for rapidly screening proteomes for N-terminal targeting sequences
    • Small I, Peeters N, Legeai F, et al. Predotar: A tool for rapidly screening proteomes for N-terminal targeting sequences. Proteomics 2004;4:1581-1590.
    • (2004) Proteomics , vol.4 , pp. 1581-1590
    • Small, I.1    Peeters, N.2    Legeai, F.3
  • 75
    • 40249110012 scopus 로고    scopus 로고
    • ProLoc-GO: utilizing informative Gene Ontology terms for sequence-based prediction of protein subcellular localization
    • Huang WL, Tung CW, Ho SW, et al. ProLoc-GO: utilizing informative Gene Ontology terms for sequence-based prediction of protein subcellular localization. BMC Bioinformatics 2008;9:80.
    • (2008) BMC Bioinformatics , vol.9 , pp. 80
    • Huang, W.L.1    Tung, C.W.2    Ho, S.W.3
  • 76
    • 19544388127 scopus 로고    scopus 로고
    • PSLpred: prediction of subcellular localization of bacterial proteins
    • Bhasin M, Garg A, Raghava GP. PSLpred: prediction of subcellular localization of bacterial proteins. Bioinformatics 2005;21:2522-2524.
    • (2005) Bioinformatics , vol.21 , pp. 2522-2524
    • Bhasin, M.1    Garg, A.2    Raghava, G.P.3
  • 77
    • 33646861792 scopus 로고    scopus 로고
    • MultiLoc: prediction of protein subcellular localization using N-terminal targeting sequences, sequence motifs and amino acid composition
    • Hoglund A, Donnes P, Blum T, et al. MultiLoc: prediction of protein subcellular localization using N-terminal targeting sequences, sequence motifs and amino acid composition. Bioinformatics 2006;22:1158-1165.
    • (2006) Bioinformatics , vol.22 , pp. 1158-1165
    • Hoglund, A.1    Donnes, P.2    Blum, T.3
  • 79
    • 67650351540 scopus 로고    scopus 로고
    • Construction of functional interaction networks through consensus localization predictions of the human proteome
    • Park S, Yang JS, Jang SK, et al. Construction of functional interaction networks through consensus localization predictions of the human proteome. J Proteome Res 2009;8: 3367-3376.
    • (2009) J Proteome Res , vol.8 , pp. 3367-3376
    • Park, S.1    Yang, J.S.2    Jang, S.K.3
  • 80
    • 84862682760 scopus 로고    scopus 로고
    • Spatial positive feedback at the onset of mitosis
    • Santos SD, Wollman R, Meyer T, et al. Spatial positive feedback at the onset of mitosis. Cell 2012;149:1500-1513.
    • (2012) Cell , vol.149 , pp. 1500-1513
    • Santos, S.D.1    Wollman, R.2    Meyer, T.3
  • 81
    • 80052826648 scopus 로고    scopus 로고
    • Spatio-temporal modelling of the NF-kappa B intracellular signalling pathway: the roles of diffusion, active transport, and cell geometry
    • Terry AJ, Chaplain MAJ. Spatio-temporal modelling of the NF-kappa B intracellular signalling pathway: the roles of diffusion, active transport, and cell geometry. J Theor Biol 2011;290:7-26.
    • (2011) J Theor Biol , vol.290 , pp. 7-26
    • Terry, A.J.1    Chaplain, M.A.J.2
  • 82
    • 59949086432 scopus 로고    scopus 로고
    • minet: A R/Bioconductor package for inferring large transcriptional networks using mutual information
    • Meyer PE, Lafitte F, Bontempi G. minet: A R/Bioconductor package for inferring large transcriptional networks using mutual information. BMC Bioinformatics 2008;9:461.
    • (2008) BMC Bioinformatics , vol.9 , pp. 461
    • Meyer, P.E.1    Lafitte, F.2    Bontempi, G.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.