메뉴 건너뛰기




Volumn 1, Issue 1, 2011, Pages

Dynamic gene network reconstruction from gene expression data in mice after influenza A (H1N1) infection

Author keywords

Gene Regulatory Network; Immune System; Influenza A; Time Varying Dynamic Bayesian Network

Indexed keywords


EID: 84873074998     PISSN: None     EISSN: 20439113     Source Type: Journal    
DOI: 10.1186/2043-9113-1-27     Document Type: Article
Times cited : (19)

References (59)
  • 1
    • 14844286390 scopus 로고    scopus 로고
    • Reverse-engineering transcription control networks
    • Gardner TS, Faith JJ. Reverse-engineering transcription control networks. Physics of Life Reviews 2005, 2:65-88.
    • (2005) Physics of Life Reviews , vol.2 , pp. 65-88
    • Gardner, T.S.1    Faith, J.J.2
  • 3
    • 38449088751 scopus 로고    scopus 로고
    • Inferring cellular networks-a review
    • 10.1186/1471-2105-8-S6-S5, 2230506, 18269699
    • Markowetz F, Spang R. Inferring cellular networks-a review. BMC Bioinformatics 2007, 8(Suppl 6):S5. 10.1186/1471-2105-8-S6-S5, 2230506, 18269699.
    • (2007) BMC Bioinformatics , vol.8 , Issue.SUPPL. 6
    • Markowetz, F.1    Spang, R.2
  • 4
    • 61349180117 scopus 로고    scopus 로고
    • Gene regulatory network inference: Data integration in dynamic models-A review
    • Hecker M, Lambeck S, Toepfer S, van Someren E, Guthke R. Gene regulatory network inference: Data integration in dynamic models-A review. Bio Systems 2008, 96:86-103.
    • (2008) Bio Systems , vol.96 , pp. 86-103
    • Hecker, M.1    Lambeck, S.2    Toepfer, S.3    van Someren, E.4    Guthke, R.5
  • 5
    • 67449095889 scopus 로고    scopus 로고
    • Computational methods for discovering gene networks from expression data
    • Lee WP, Tzou WS. Computational methods for discovering gene networks from expression data. Brief Bioinform 2009, 10:408-423.
    • (2009) Brief Bioinform , vol.10 , pp. 408-423
    • Lee, W.P.1    Tzou, W.S.2
  • 6
    • 0345983657 scopus 로고    scopus 로고
    • From boolean to probabilistic boolean networks as models of genetic regulatory networks
    • Shmulevich I, Dougherty E, Zhang W. From boolean to probabilistic boolean networks as models of genetic regulatory networks. Proc IEEE 2002, 90:1778-1792.
    • (2002) Proc IEEE , vol.90 , pp. 1778-1792
    • Shmulevich, I.1    Dougherty, E.2    Zhang, W.3
  • 7
    • 0033707946 scopus 로고    scopus 로고
    • Using Bayesian networks to analyze expression data
    • Friedman N, Linial M, Nachman I, Pe'er D. Using Bayesian networks to analyze expression data. J Comp Biol 2000, 7:601-620.
    • (2000) J Comp Biol , vol.7 , pp. 601-620
    • Friedman, N.1    Linial, M.2    Nachman, I.3    Pe'er, D.4
  • 9
    • 12344259602 scopus 로고    scopus 로고
    • Advances to Bayesian network inference for generating causal networks from observational biological data
    • 10.1093/bioinformatics/bth448, 15284094
    • Yu J, Smith V, Wang P, Hartemink A, Jarvis E. Advances to Bayesian network inference for generating causal networks from observational biological data. Bioinformatics 2004, 20:3594-603. 10.1093/bioinformatics/bth448, 15284094.
    • (2004) Bioinformatics , vol.20 , pp. 3594-3603
    • Yu, J.1    Smith, V.2    Wang, P.3    Hartemink, A.4    Jarvis, E.5
  • 11
    • 3343020085 scopus 로고    scopus 로고
    • Integrative analysis of cell cycle control in budding yeast
    • 10.1091/mbc.E03-11-0794, 491841, 15169868
    • Chen KC, Calzone L, Csikasz-Nagy A, Cross FR, Novak B, Tyson JJ. Integrative analysis of cell cycle control in budding yeast. Mol Biol Cell 2004, 15:3841-3862. 10.1091/mbc.E03-11-0794, 491841, 15169868.
    • (2004) Mol Biol Cell , vol.15 , pp. 3841-3862
    • Chen, K.C.1    Calzone, L.2    Csikasz-Nagy, A.3    Cross, F.R.4    Novak, B.5    Tyson, J.J.6
  • 12
    • 52649087274 scopus 로고    scopus 로고
    • Modelling and analysis of gene regulatory networks
    • 10.1038/nrm2503, 18797474
    • Karlebach G, Shamir R. Modelling and analysis of gene regulatory networks. Nature Reviews Molecular Cell Biology 2008, 9:770-780. 10.1038/nrm2503, 18797474.
    • (2008) Nature Reviews Molecular Cell Biology , vol.9 , pp. 770-780
    • Karlebach, G.1    Shamir, R.2
  • 13
    • 33645307955 scopus 로고    scopus 로고
    • Inference of gene regulatory networks and compound mode of action from time course gene expression profiles
    • 10.1093/bioinformatics/btl003, 16418235
    • Bansal M, Della Gatta G, di Bernardo D. Inference of gene regulatory networks and compound mode of action from time course gene expression profiles. Bioinformatics 2006, 22:815-22. 10.1093/bioinformatics/btl003, 16418235.
    • (2006) Bioinformatics , vol.22 , pp. 815-822
    • Bansal, M.1    Della Gatta, G.2    di Bernardo, D.3
  • 14
    • 78149421254 scopus 로고    scopus 로고
    • DREAM4: Combining genetic and dynamic information to identify biological networks and dynamical models
    • 10.1371/journal.pone.0013397, 2963605, 21049040
    • Greenfield A, Madar A, Ostrer H, Bonneau R. DREAM4: Combining genetic and dynamic information to identify biological networks and dynamical models. PLoS One 2010, 5:e13397. 10.1371/journal.pone.0013397, 2963605, 21049040.
    • (2010) PLoS One , vol.5
    • Greenfield, A.1    Madar, A.2    Ostrer, H.3    Bonneau, R.4
  • 15
    • 41349101972 scopus 로고    scopus 로고
    • Statistical inference of transcriptional module-based gene networks from time course gene expression profiles by using state space models
    • 10.1093/bioinformatics/btm639, 18292116
    • Hirose O, Yoshida R, Imoto S, Yamaguchi R, Higuchi T, Charnock-Jones DS, Print C, Miyano S. Statistical inference of transcriptional module-based gene networks from time course gene expression profiles by using state space models. Bioinformatics 2008, 24:932-42. 10.1093/bioinformatics/btm639, 18292116.
    • (2008) Bioinformatics , vol.24 , pp. 932-942
    • Hirose, O.1    Yoshida, R.2    Imoto, S.3    Yamaguchi, R.4    Higuchi, T.5    Charnock-Jones, D.S.6    Print, C.7    Miyano, S.8
  • 16
    • 3142744689 scopus 로고    scopus 로고
    • Modeling T-cell activation using gene expression profiling and state-space models
    • 10.1093/bioinformatics/bth093, 14962938
    • Rangel C, Angus J, Ghahramani Z, Lioumi M, Sotheran E, Gaiba A, Wild DL, Falciani F. Modeling T-cell activation using gene expression profiling and state-space models. Bioinformatics 2004, 20:1361-72. 10.1093/bioinformatics/bth093, 14962938.
    • (2004) Bioinformatics , vol.20 , pp. 1361-1372
    • Rangel, C.1    Angus, J.2    Ghahramani, Z.3    Lioumi, M.4    Sotheran, E.5    Gaiba, A.6    Wild, D.L.7    Falciani, F.8
  • 17
    • 34848903220 scopus 로고    scopus 로고
    • From correlation to causation networks: a simple approximate learning algorithm and its application to high-dimensional plant gene expression data
    • 10.1186/1752-0509-1-37, 1995222, 17683609
    • Opgen-Rhein R, Strimmer K. From correlation to causation networks: a simple approximate learning algorithm and its application to high-dimensional plant gene expression data. BMC Syst Biol 2007, 1:37. 10.1186/1752-0509-1-37, 1995222, 17683609.
    • (2007) BMC Syst Biol , vol.1 , pp. 37
    • Opgen-Rhein, R.1    Strimmer, K.2
  • 18
    • 66749164082 scopus 로고    scopus 로고
    • Recursive regularization for inferring gene networks from time-course gene expression profiles
    • 10.1186/1752-0509-3-41, 2686685, 19386091
    • Shimamura T, Imoto S, Yamaguchi R, Fujita A, Nagasaki M, Miyano S. Recursive regularization for inferring gene networks from time-course gene expression profiles. BMC Syst Biol 2009, 3:41. 10.1186/1752-0509-3-41, 2686685, 19386091.
    • (2009) BMC Syst Biol , vol.3 , pp. 41
    • Shimamura, T.1    Imoto, S.2    Yamaguchi, R.3    Fujita, A.4    Nagasaki, M.5    Miyano, S.6
  • 19
    • 77952663448 scopus 로고    scopus 로고
    • TimeDelay-ARACNE: Reverse engineering of gene networks from time-course data by an information theoretic approach
    • 10.1186/1471-2105-11-154, 2862045, 20338053
    • Zoppoli P, Morganella S, Ceccarelli M. TimeDelay-ARACNE: Reverse engineering of gene networks from time-course data by an information theoretic approach. BMC Bioinformatics 2010, 11:154. 10.1186/1471-2105-11-154, 2862045, 20338053.
    • (2010) BMC Bioinformatics , vol.11 , pp. 154
    • Zoppoli, P.1    Morganella, S.2    Ceccarelli, M.3
  • 20
    • 20744459144 scopus 로고    scopus 로고
    • Structural learning with time-varying components: Tracking the crosssection of financial time series
    • Talih M, Hengartner N. Structural learning with time-varying components: Tracking the crosssection of financial time series. J Royal Stat Soc 2005, B67:321-341.
    • (2005) J Royal Stat Soc , vol.B67 , pp. 321-341
    • Talih, M.1    Hengartner, N.2
  • 24
    • 77956500503 scopus 로고    scopus 로고
    • Non-stationary dynamic bayesian networks
    • NIPS '08: Neural Information Processing Systems
    • Robinson J, Hartemink A. Non-stationary dynamic bayesian networks. 2008, 1369-1376. NIPS '08: Neural Information Processing Systems.
    • (2008) , pp. 1369-1376
    • Robinson, J.1    Hartemink, A.2
  • 25
    • 67849135609 scopus 로고    scopus 로고
    • Recovering time-varying networks of dependencies in social and biological studies
    • 10.1073/pnas.0901910106, 2704856, 19570995
    • Ahmed A, Xing EP. Recovering time-varying networks of dependencies in social and biological studies. PNAS 2009, 106:11878-11883. 10.1073/pnas.0901910106, 2704856, 19570995.
    • (2009) PNAS , vol.106 , pp. 11878-11883
    • Ahmed, A.1    Xing, E.P.2
  • 27
    • 27744598497 scopus 로고    scopus 로고
    • Pathogenicity of Influenza viruses with genes from the 1918 pandemic virus: functional roles of alveolar macrophages and neutrophils in limiting virus replication and mortality in mice
    • 10.1128/JVI.79.23.14933-14944.2005, 1287592, 16282492
    • Tumpey TM, Garcia-Sastre A, Taubenberger JK, Palese P, Swayne DE, Pantin-Jackwood MJ, Schultz-Cherry S, Solorzano A, Van Rooijen N, Katz JM, Basler CF. Pathogenicity of Influenza viruses with genes from the 1918 pandemic virus: functional roles of alveolar macrophages and neutrophils in limiting virus replication and mortality in mice. J Virol 2005, 79:14933-14944. 10.1128/JVI.79.23.14933-14944.2005, 1287592, 16282492.
    • (2005) J Virol , vol.79 , pp. 14933-14944
    • Tumpey, T.M.1    Garcia-Sastre, A.2    Taubenberger, J.K.3    Palese, P.4    Swayne, D.E.5    Pantin-Jackwood, M.J.6    Schultz-Cherry, S.7    Solorzano, A.8    Van Rooijen, N.9    Katz, J.M.10    Basler, C.F.11
  • 29
    • 42649085344 scopus 로고    scopus 로고
    • Forward genetic dissection of immunity to infection in the mouse
    • 10.1146/annurev.immunol.26.021607.090304, 17953509
    • Vidal SM, Malo D, Marquis JF, Gros P. Forward genetic dissection of immunity to infection in the mouse. Annu Rev Immunol 2008, 26:81-132. 10.1146/annurev.immunol.26.021607.090304, 17953509.
    • (2008) Annu Rev Immunol , vol.26 , pp. 81-132
    • Vidal, S.M.1    Malo, D.2    Marquis, J.F.3    Gros, P.4
  • 30
    • 62849105626 scopus 로고    scopus 로고
    • Host genetic background strongly influences the response to influenza a virus infections
    • 10.1371/journal.pone.0004857, 2654507, 19293935
    • Srivastava B, Blazejewska P, Hessmann M, Bruder D, Geffers R, Mauel S, Gruber AD, Schughart K. Host genetic background strongly influences the response to influenza a virus infections. PLoS One 2009, 4:e4857. 10.1371/journal.pone.0004857, 2654507, 19293935.
    • (2009) PLoS One , vol.4
    • Srivastava, B.1    Blazejewska, P.2    Hessmann, M.3    Bruder, D.4    Geffers, R.5    Mauel, S.6    Gruber, A.D.7    Schughart, K.8
  • 31
    • 77649272873 scopus 로고    scopus 로고
    • Gene expression changes in the host response between resistant and susceptible inbred mouse strains after influenza A infection
    • 10.1016/j.micinf.2010.01.008, 20114087
    • Alberts R, Srivastava B, Wu H, Viegas N, Geffers R, Klawonn F, Novoselova N, do Valle TZ, Panthier JJ, Schughart K. Gene expression changes in the host response between resistant and susceptible inbred mouse strains after influenza A infection. Microbes Infect 2010, 12:309-18. 10.1016/j.micinf.2010.01.008, 20114087.
    • (2010) Microbes Infect , vol.12 , pp. 309-318
    • Alberts, R.1    Srivastava, B.2    Wu, H.3    Viegas, N.4    Geffers, R.5    Klawonn, F.6    Novoselova, N.7    do Valle, T.Z.8    Panthier, J.J.9    Schughart, K.10
  • 32
    • 66349133213 scopus 로고    scopus 로고
    • KELLER: estimating time-varying interactions between genes
    • 10.1093/bioinformatics/btp192, 2687946, 19477978
    • Song L, Kolar M, Xing E. KELLER: estimating time-varying interactions between genes. Bioinformatics 2009, 25:i128-i136. 10.1093/bioinformatics/btp192, 2687946, 19477978.
    • (2009) Bioinformatics , vol.25
    • Song, L.1    Kolar, M.2    Xing, E.3
  • 33
    • 4644326931 scopus 로고    scopus 로고
    • Genomic analysis of regulatory network dynamics reveals large topological changes
    • 10.1038/nature02782, 15372033
    • Luscombe N, Babu M, Yu H, Snyder M, Teichmann S, Gerstein M. Genomic analysis of regulatory network dynamics reveals large topological changes. Nature 2004, 431:308-312. 10.1038/nature02782, 15372033.
    • (2004) Nature , vol.431 , pp. 308-312
    • Luscombe, N.1    Babu, M.2    Yu, H.3    Snyder, M.4    Teichmann, S.5    Gerstein, M.6
  • 34
    • 17444430052 scopus 로고    scopus 로고
    • Dynamic Network Reconstruction from Gene Expression Data Applied to Immune Response during Bacterial Infection
    • 10.1093/bioinformatics/bti226, 15613398
    • Guthke R, Möller U, Hoffmann M, Thies F, Töpfer S. Dynamic Network Reconstruction from Gene Expression Data Applied to Immune Response during Bacterial Infection. Bioinformatics 2005, 21:1626-1634. 10.1093/bioinformatics/bti226, 15613398.
    • (2005) Bioinformatics , vol.21 , pp. 1626-1634
    • Guthke, R.1    Möller, U.2    Hoffmann, M.3    Thies, F.4    Töpfer, S.5
  • 35
    • 34648840585 scopus 로고    scopus 로고
    • Cluster-based network model for time-course gene expression data
    • Inoue LY, Neira M, Nelson C, Gleave M, Etzioni R. Cluster-based network model for time-course gene expression data. Biostatistics 2007, 8:507-525.
    • (2007) Biostatistics , vol.8 , pp. 507-525
    • Inoue, L.Y.1    Neira, M.2    Nelson, C.3    Gleave, M.4    Etzioni, R.5
  • 36
    • 77951942705 scopus 로고    scopus 로고
    • Inferring cluster-based networks from differently stimulated multiple time-course gene expression data
    • 10.1093/bioinformatics/btq094, 2853688, 20223837
    • Shiraishi Y, Kimura S, Okada M. Inferring cluster-based networks from differently stimulated multiple time-course gene expression data. Bioinformatics 2010, 26:1073-1081. 10.1093/bioinformatics/btq094, 2853688, 20223837.
    • (2010) Bioinformatics , vol.26 , pp. 1073-1081
    • Shiraishi, Y.1    Kimura, S.2    Okada, M.3
  • 37
    • 0742305866 scopus 로고    scopus 로고
    • Network biology: understanding the cell's functional organization
    • 10.1038/nrg1272, 14735121
    • Barabasi AL, Oltvai ZN. Network biology: understanding the cell's functional organization. Nature Reviews Genetics 2004, 5:101-113. 10.1038/nrg1272, 14735121.
    • (2004) Nature Reviews Genetics , vol.5 , pp. 101-113
    • Barabasi, A.L.1    Oltvai, Z.N.2
  • 38
    • 24344498648 scopus 로고    scopus 로고
    • A network of transcriptionally coordinated functional modules in Saccharomyces cerevisiae
    • 10.1101/gr.3847105, 1199545, 16109970
    • Petti AA, Church GM. A network of transcriptionally coordinated functional modules in Saccharomyces cerevisiae. Genome Research 2005, 15:1298-1306. 10.1101/gr.3847105, 1199545, 16109970.
    • (2005) Genome Research , vol.15 , pp. 1298-1306
    • Petti, A.A.1    Church, G.M.2
  • 39
    • 35748949257 scopus 로고    scopus 로고
    • A comparison of background correction methods for two-colour microarrays
    • 10.1093/bioinformatics/btm412, 17720982
    • Ritchie ME, Silver J, Oshlack A, Holmes M, Diyagama D, Holloway A, Smyth GK. A comparison of background correction methods for two-colour microarrays. Bioinformatics 2007, 23:2700-2707. 10.1093/bioinformatics/btm412, 17720982.
    • (2007) Bioinformatics , vol.23 , pp. 2700-2707
    • Ritchie, M.E.1    Silver, J.2    Oshlack, A.3    Holmes, M.4    Diyagama, D.5    Holloway, A.6    Smyth, G.K.7
  • 41
    • 38049107814 scopus 로고    scopus 로고
    • GEDI: a user-friendly toolbox for analysis of large-scale gene expression data
    • 10.1186/1471-2105-8-457, 2194737, 18021455
    • Fujita A, Sato JR, Ferreira CE, Sogayar MC. GEDI: a user-friendly toolbox for analysis of large-scale gene expression data. BMC Bioinformatics 2007, 8:457. 10.1186/1471-2105-8-457, 2194737, 18021455.
    • (2007) BMC Bioinformatics , vol.8 , pp. 457
    • Fujita, A.1    Sato, J.R.2    Ferreira, C.E.3    Sogayar, M.C.4
  • 42
    • 61449172037 scopus 로고    scopus 로고
    • Systematic and integrative analysis of large gene lists using DAVID Bioinformatics Resources
    • Huang DW, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID Bioinformatics Resources. Nature Protoc 2009, 4:44-57.
    • (2009) Nature Protoc , vol.4 , pp. 44-57
    • Huang, D.W.1    Sherman, B.T.2    Lempicki, R.A.3
  • 43
    • 85145635829 scopus 로고    scopus 로고
    • Identifying gene regulatory networks from gene expression data
    • 27.1-27.29. CRC Press, Chapman & Hall, Aluru
    • Filkov V. Identifying gene regulatory networks from gene expression data. Handbook of Computational Molecular Biology 2005, 27.1-27.29. CRC Press, Chapman & Hall, Aluru.
    • (2005) Handbook of Computational Molecular Biology
    • Filkov, V.1
  • 44
  • 45
    • 84941155240 scopus 로고
    • Well separated clusters and optimal fuzzy partitions
    • Dunn J. Well separated clusters and optimal fuzzy partitions. J Cybernetics 1974, 4:95-104.
    • (1974) J Cybernetics , vol.4 , pp. 95-104
    • Dunn, J.1
  • 47
    • 48449102450 scopus 로고    scopus 로고
    • Hubba: hub objects analyzer--a framework of interactome hubs identification for network biology
    • 10.1093/nar/gkn257, 2447731, 18503085
    • Lin CY, Chin CH, Wu HH, Chen SH, Ho CW, Ko MT. Hubba: hub objects analyzer--a framework of interactome hubs identification for network biology. Nucleic Acids Res 2008, 36:W438-W443. 10.1093/nar/gkn257, 2447731, 18503085.
    • (2008) Nucleic Acids Res , vol.36
    • Lin, C.Y.1    Chin, C.H.2    Wu, H.H.3    Chen, S.H.4    Ho, C.W.5    Ko, M.T.6
  • 48
    • 0242490780 scopus 로고    scopus 로고
    • Cytoscape: a software environment for integrated models of biomolecular interaction networks
    • 10.1101/gr.1239303, 403769, 14597658
    • Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 2003, 13:2498-504. 10.1101/gr.1239303, 403769, 14597658.
    • (2003) Genome Res , vol.13 , pp. 2498-2504
    • Shannon, P.1    Markiel, A.2    Ozier, O.3    Baliga, N.S.4    Wang, J.T.5    Ramage, D.6    Amin, N.7    Schwikowski, B.8    Ideker, T.9
  • 49
    • 34247622363 scopus 로고    scopus 로고
    • The importance of bottlenecks in protein networks: correlation with gene essentiality and expression dynamics
    • 10.1371/journal.pcbi.0030059, 1853125, 17447836
    • Yu H, Kim PM, Sprecher E, Trifonov V, Gerstein M. The importance of bottlenecks in protein networks: correlation with gene essentiality and expression dynamics. PloS Computational Biology 2007, 3:e59. 10.1371/journal.pcbi.0030059, 1853125, 17447836.
    • (2007) PloS Computational Biology , vol.3
    • Yu, H.1    Kim, P.M.2    Sprecher, E.3    Trifonov, V.4    Gerstein, M.5
  • 50
    • 54249155522 scopus 로고    scopus 로고
    • Network pharmacology: the next paradigm in drug discovery
    • 10.1038/nchembio.118, 18936753
    • Hopkins AL. Network pharmacology: the next paradigm in drug discovery. Nat Chem Biol 2008, 4:682-690. 10.1038/nchembio.118, 18936753.
    • (2008) Nat Chem Biol , vol.4 , pp. 682-690
    • Hopkins, A.L.1
  • 51
    • 0033982936 scopus 로고    scopus 로고
    • KEGG: Kyoto Encyclopedia of Genes and Genomes
    • 10.1093/nar/28.1.27, 102409, 10592173
    • Kanehisa M, Goto S. KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res 2000, 28:27-30. 10.1093/nar/28.1.27, 102409, 10592173.
    • (2000) Nucleic Acids Res , vol.28 , pp. 27-30
    • Kanehisa, M.1    Goto, S.2
  • 52
    • 0032482432 scopus 로고    scopus 로고
    • Collective dynamics of 'small-world' networks
    • 10.1038/30918, 9623998
    • Watts DJ, Strogatz SH. Collective dynamics of 'small-world' networks. Nature 1998, 393:440-442. 10.1038/30918, 9623998.
    • (1998) Nature , vol.393 , pp. 440-442
    • Watts, D.J.1    Strogatz, S.H.2
  • 57
    • 58049217490 scopus 로고    scopus 로고
    • RNA recognition and signal transduction by RIG-I-like receptors
    • 10.1111/j.1600-065X.2008.00727.x, 19120475
    • Yoneyama M, Fujita T. RNA recognition and signal transduction by RIG-I-like receptors. Immunol Rev 2009, 227:54-65. 10.1111/j.1600-065X.2008.00727.x, 19120475.
    • (2009) Immunol Rev , vol.227 , pp. 54-65
    • Yoneyama, M.1    Fujita, T.2
  • 58
    • 0037070113 scopus 로고    scopus 로고
    • Toll-like receptors as adjuvant receptors
    • 10.1016/S0167-4889(01)00182-3, 11909637
    • Kaisho T, Akira S. Toll-like receptors as adjuvant receptors. Biochim Biophys Acta 2002, 1589:1-13. 10.1016/S0167-4889(01)00182-3, 11909637.
    • (2002) Biochim Biophys Acta , vol.1589 , pp. 1-13
    • Kaisho, T.1    Akira, S.2
  • 59
    • 48549102504 scopus 로고    scopus 로고
    • NOD-like receptors (NLRs): bona fide intracellular microbial sensors
    • 10.1016/j.coi.2008.06.001, 2572576, 18585455
    • Shaw MH, Reimer T, Kim YG, Nuñez G. NOD-like receptors (NLRs): bona fide intracellular microbial sensors. Curr Opin Immunol 2008, 20:377-82. 10.1016/j.coi.2008.06.001, 2572576, 18585455.
    • (2008) Curr Opin Immunol , vol.20 , pp. 377-382
    • Shaw, M.H.1    Reimer, T.2    Kim, Y.G.3    Nuñez, G.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.