메뉴 건너뛰기




Volumn , Issue , 2009, Pages 1732-1740

Time-varying dynamic Bayesian networks

Author keywords

[No Author keywords available]

Indexed keywords

BAYESIAN NETWORKS; COMPUTATIONAL EFFICIENCY; LEARNING SYSTEMS; TIME VARYING NETWORKS;

EID: 84858737854     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (161)

References (26)
  • 1
    • 0742305866 scopus 로고    scopus 로고
    • Network biology: Understanding the cell's functional organization
    • A. L. Barabasi and Z. N. Oltvai. Network biology: Understanding the cell's functional organization. Nature Reviews Genetics, 5(2):101-113, 2004.
    • (2004) Nature Reviews Genetics , vol.5 , Issue.2 , pp. 101-113
    • Barabasi, A.L.1    Oltvai, Z.N.2
  • 3
    • 4644326931 scopus 로고    scopus 로고
    • Genomic analysis of regulatory network dynamics reveals large topological changes
    • N. Luscombe, M. Babu, H. Yu, M. Snyder, S. Teichmann, and M. Gerstein. Genomic analysis of regulatory network dynamics reveals large topological changes. Nature, 431:308-312, 2004.
    • (2004) Nature , vol.431 , pp. 308-312
    • Luscombe, N.1    Babu, M.2    Yu, H.3    Snyder, M.4    Teichmann, S.5    Gerstein, M.6
  • 4
    • 0033521914 scopus 로고    scopus 로고
    • Perception's shadow: Long-distance synchronization of human brain activity
    • Eugenio Rodriguez, Nathalie George, Jean-Philippe Lachaux, Jacques Martinerie, Bernard Renault, and Francisco J. Varela1. Perception's shadow: long-distance synchronization of human brain activity. Nature, 397(6718):430-433, 1999.
    • (1999) Nature , vol.397 , Issue.6718 , pp. 430-433
    • Rodriguez, E.1    George, N.2    Lachaux, J.-P.3    Martinerie, J.4    Renault, B.5    Varela, F.J.6
  • 5
    • 20744459144 scopus 로고    scopus 로고
    • Structural learning with time-varying components: Tracking the cross-section of financial time series
    • M. Talih and N. Hengartner. Structural learning with time-varying components: Tracking the cross-section of financial time series. J. Royal Stat. Soc. B, 67(3):321C341, 2005.
    • (2005) J. Royal Stat. Soc. B , vol.67 , Issue.3 , pp. 321-341
    • Talih, M.1    Hengartner, N.2
  • 10
    • 67849135609 scopus 로고    scopus 로고
    • Tesla: Recovering time-varying networks of dependencies in social and biological studies
    • in press
    • Amr Ahmed and Eric P. Xing. Tesla: Recovering time-varying networks of dependencies in social and biological studies. Proceeding of the National Academy of Sciences, in press, 2009.
    • (2009) Proceeding of the National Academy of Sciences
    • Ahmed, A.1    Xing, E.P.2
  • 12
    • 66349133213 scopus 로고    scopus 로고
    • Keller: Estimating time-evolving interactions between genes
    • L. Song, M. Kolar, and E. Xing. Keller: Estimating time-evolving interactions between genes. In Bioinformatics (ISMB), 2009.
    • (2009) Bioinformatics (ISMB)
    • Song, L.1    Kolar, M.2    Xing, E.3
  • 14
    • 34147145294 scopus 로고    scopus 로고
    • Joint segmentation of piecewise constant autoregressive processes by using a hierarchical model and a Bayesian sampling approach
    • N. Dobingeon, J. Tourneret, and M. Davy. Joint segmentation of piecewise constant autoregressive processes by using a hierarchical model and a bayesian sampling approach. IEEE Transactions on Signal Processing, 55(4):1251-1263, 2007.
    • (2007) IEEE Transactions on Signal Processing , vol.55 , Issue.4 , pp. 1251-1263
    • Dobingeon, N.1    Tourneret, J.2    Davy, M.3
  • 15
    • 0003072903 scopus 로고
    • Stochastic simulation algorithms for dynamic probabilistic networks
    • K. Kanazawa, D. Koller, and S. Russell. Stochastic simulation algorithms for dynamic probabilistic networks. Uncertainty in AI, 1995.
    • (1995) Uncertainty in AI
    • Kanazawa, K.1    Koller, D.2    Russell, S.3
  • 17
    • 0031518090 scopus 로고    scopus 로고
    • Fitting time series models to nonstationary processes
    • R. Dahlhaus. Fitting time series models to nonstationary processes. Ann. Statist, (25):1-37, 1997.
    • (1997) Ann. Statist , Issue.25 , pp. 1-37
    • Dahlhaus, R.1
  • 18
    • 0038538420 scopus 로고    scopus 로고
    • Efficient particle filtering for jump Markov systems: Application to time-varying autoregressions
    • C. Andrieu, M. Davy, and A. Doucet. Efficient particle filtering for jump markov systems: Application to time-varying autoregressions. IEEE Transactions on Signal Processing, 51(7):1762-1770, 2003.
    • (2003) IEEE Transactions on Signal Processing , vol.51 , Issue.7 , pp. 1762-1770
    • Andrieu, C.1    Davy, M.2    Doucet, A.3
  • 21
    • 0032361278 scopus 로고    scopus 로고
    • Penalized regressions: The bridge versus the lasso
    • W. Fu. Penalized regressions: the bridge versus the lasso. Journal of Computational and Graphical Statistics, 7(3):397-416, 1998.
    • (1998) Journal of Computational and Graphical Statistics , vol.7 , Issue.3 , pp. 397-416
    • Fu, W.1
  • 22
    • 77953765790 scopus 로고    scopus 로고
    • Learning graphical model structure using l1-regularization paths
    • M. Schmidt, A. Niculescu-Mizil, and K Murphy. Learning graphical model structure using l1-regularization paths. In AAAI, 2007.
    • (2007) AAAI
    • Schmidt, M.1    Niculescu-Mizil, A.2    Murphy, K.3
  • 23
    • 33747379083 scopus 로고    scopus 로고
    • The forkhead transcription factor hcm1 regulates chromosome segregation genes and fills the s-phase gap in the transcriptional circuitry of the cell cycle
    • Tata Pramila, Wei Wu, Shawna Miles, William Noble, and Linda Breeden. The forkhead transcription factor hcm1 regulates chromosome segregation genes and fills the s-phase gap in the transcriptional circuitry of the cell cycle. Gene and Development, 20:2266-2278, 2006.
    • (2006) Gene and Development , vol.20 , pp. 2266-2278
    • Pramila, T.1    Wu, W.2    Miles, S.3    Noble, W.4    Breeden, L.5
  • 24
    • 45149106353 scopus 로고    scopus 로고
    • Integrating large-scale functional genomic data to dissect the complexity of yeast regulatory networks
    • Jun Zhu, Bin Zhang, Erin Smith, Becky Drees, Rachel Brem, Leonid Kruglyak, Roger Bumgarner, and Eric E Schadt. Integrating large-scale functional genomic data to dissect the complexity of yeast regulatory networks. Nature Genetics, 40:854-861, 2008.
    • (2008) Nature Genetics , vol.40 , pp. 854-861
    • Zhu, J.1    Zhang, B.2    Smith, E.3    Drees, B.4    Brem, R.5    Kruglyak, L.6    Bumgarner, R.7    Schadt, E.E.8
  • 25
    • 0036136472 scopus 로고    scopus 로고
    • Nonparametric permutation tests for functional neuroimaging: A primer with examples
    • T. Nichols and A. Holmes. Nonparametric permutation tests for functional neuroimaging: a primer with examples. Human Brain Mapping, 15:1-25, 2001.
    • (2001) Human Brain Mapping , vol.15 , pp. 1-25
    • Nichols, T.1    Holmes, A.2
  • 26
    • 2442671691 scopus 로고    scopus 로고
    • Boosting bit rates in non-invasive eeg single-trial classifications by feature combination and multi-class paradigms
    • G. Dornhege, B. Blankertz, G. Curio, and K.R. Müller. Boosting bit rates in non-invasive eeg single-trial classifications by feature combination and multi-class paradigms. IEEE Trans. Biomed. Eng., 51:993-1002, 2004.
    • (2004) IEEE Trans. Biomed. Eng. , vol.51 , pp. 993-1002
    • Dornhege, G.1    Blankertz, B.2    Curio, G.3    Müller, K.R.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.