메뉴 건너뛰기




Volumn 4, Issue DEC, 2013, Pages

On protocols and measures for the validation of supervised methods for the inference of biological networks

Author keywords

Biological network inference; Cross validation; Evaluation protocols; Precision recall curves; ROC curves; Supervised learning

Indexed keywords


EID: 84892380473     PISSN: None     EISSN: 16648021     Source Type: Journal    
DOI: 10.3389/fgene.2013.00262     Document Type: Review
Times cited : (65)

References (62)
  • 1
    • 79961191133 scopus 로고    scopus 로고
    • Rip: the regulatory interaction predictor-a machine learning-based approach for predicting target genes of transcription factors
    • doi: 10.1093/bioinformatics/btr366
    • Bauer, T., Eils, R., and Konig, R. (2011). Rip: the regulatory interaction predictor-a machine learning-based approach for predicting target genes of transcription factors. Bioinformatics 27, 2239-2247. doi: 10.1093/bioinformatics/btr366.
    • (2011) Bioinformatics , vol.27 , pp. 2239-2247
    • Bauer, T.1    Eils, R.2    Konig, R.3
  • 2
    • 33947328242 scopus 로고    scopus 로고
    • Choosing negative examples for the prediction of protein-protein interactions
    • doi: 10.1186/1471-2105-7-S1-S2
    • Ben-Hur, A., and Noble, W. (2006). Choosing negative examples for the prediction of protein-protein interactions. BMC Bioinformatics 7(Suppl. 1):S2. doi: 10.1186/1471-2105-7-S1-S2.
    • (2006) BMC Bioinformatics , vol.7 , Issue.SUPPL. 1
    • Ben-Hur, A.1    Noble, W.2
  • 3
    • 34547844158 scopus 로고    scopus 로고
    • Supervised reconstruction of biological networks with local models
    • doi: 10.1093/bioinformatics/btm204
    • Bleakley, K., Biau, G., and Vert, J.-P. (2007). Supervised reconstruction of biological networks with local models. Bioninformatics 23, i57-i65. doi: 10.1093/bioinformatics/btm204.
    • (2007) Bioninformatics , vol.23
    • Bleakley, K.1    Biau, G.2    Vert, J.-P.3
  • 4
    • 69849094133 scopus 로고    scopus 로고
    • Supervised prediction of drug-target interactions using bipartite local models
    • doi: 10.1093/bioinformatics/btp433
    • Bleakley, K., and Yamanishi, Y. (2009). Supervised prediction of drug-target interactions using bipartite local models. Bioinformatics 25, 2397-2403. doi: 10.1093/bioinformatics/btp433.
    • (2009) Bioinformatics , vol.25 , pp. 2397-2403
    • Bleakley, K.1    Yamanishi, Y.2
  • 5
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • doi: 10.1023/A:1017934522171
    • Breiman, L. (2001). Random forests. Mach. Learn. 45, 5-32. doi: 10.1023/A:1017934522171.
    • (2001) Mach. Learn. , vol.45 , pp. 5-32
    • Breiman, L.1
  • 7
    • 80053456365 scopus 로고    scopus 로고
    • Semi-supervised penalized output kernel regression for link prediction
    • (Bellevue, Washington)
    • Brouard, C., d'Alché-Buc, F., and Szafranski, M. (2011). "Semi-supervised penalized output kernel regression for link prediction," in Proceedings of ICML (Bellevue, Washington), 593-600.
    • (2011) Proceedings of ICML , pp. 593-600
    • Brouard, C.1    d'Alché-Buc, F.2    Szafranski, M.3
  • 8
    • 84869189040 scopus 로고    scopus 로고
    • Pairwise support vector machines and their application to large scale problems
    • Brunner, C., Fischer, A., Luig, K., and Thies, T. (2012). Pairwise support vector machines and their application to large scale problems. J. Mach. Learn. Res. 13, 2279-2292.
    • (2012) J. Mach. Learn. Res. , vol.13 , pp. 2279-2292
    • Brunner, C.1    Fischer, A.2    Luig, K.3    Thies, T.4
  • 9
    • 72949116439 scopus 로고    scopus 로고
    • Selection of negative examples in learning gene regulatory networks
    • BIBMW 2009 (Washington, DC), doi: 10.1109/BIBMW.2009.5332137.
    • Ceccarelli, M., and Cerulo, L. (2009). "Selection of negative examples in learning gene regulatory networks," in IEEE International Conference on Bioinformatics and Biomedicine Workshop, BIBMW 2009 (Washington, DC), 56-61. doi: 10.1109/BIBMW.2009.5332137.
    • (2009) IEEE International Conference on Bioinformatics and Biomedicine Workshop , pp. 56-61
    • Ceccarelli, M.1    Cerulo, L.2
  • 10
    • 77951774810 scopus 로고    scopus 로고
    • Learning gene regulatory networks from only positive and unlabeled data
    • doi: 10.1186/1471-2105-11-228
    • Cerulo, L., Elkan, C., and Ceccarelli, M. (2010). Learning gene regulatory networks from only positive and unlabeled data. BMC Bioinformatics 11:228. doi: 10.1186/1471-2105-11-228.
    • (2010) BMC Bioinformatics , vol.11 , pp. 228
    • Cerulo, L.1    Elkan, C.2    Ceccarelli, M.3
  • 11
    • 75149172414 scopus 로고    scopus 로고
    • Predicting the protein-protein interactions using primary structures with predicted protein surface
    • doi: 10.1186/1471-2105-11-S1-S3
    • Chang, D. T.-H., Syu, Y.-T., and Lin, P.-C. (2010). Predicting the protein-protein interactions using primary structures with predicted protein surface. BMC Bioinformatics 11(Suppl. 1):S3. doi: 10.1186/1471-2105-11-S1-S3.
    • (2010) BMC Bioinformatics , vol.11 , Issue.SUPPL. 1
    • Chang, D.T.-H.1    Syu, Y.-T.2    Lin, P.-C.3
  • 12
    • 28944450149 scopus 로고    scopus 로고
    • Prediction of protein-protein interactions using random decision forest framework
    • doi: 10.1093/bioinformatics/bti721
    • Chen, X.-W., and Liu, M. (2005). Prediction of protein-protein interactions using random decision forest framework. Bioinformatics 21, 4394-4400. doi: 10.1093/bioinformatics/bti721.
    • (2005) Bioinformatics , vol.21 , pp. 4394-4400
    • Chen, X.-W.1    Liu, M.2
  • 13
    • 84863695210 scopus 로고    scopus 로고
    • Prediction of drug-target interactions and drug repositioning via network-based inference
    • doi: 10.1371/journal.pcbi.1002503
    • Cheng, F., Chuang, L., Jiang, J., Lu, W., Li, W., Liu, G., et al. (2012). Prediction of drug-target interactions and drug repositioning via network-based inference. PLos Compuat. Biol. 8:e1002503. doi: 10.1371/journal.pcbi.1002503.
    • (2012) PLos Compuat. Biol. , vol.8
    • Cheng, F.1    Chuang, L.2    Jiang, J.3    Lu, W.4    Li, W.5    Liu, G.6
  • 14
    • 33749249600 scopus 로고    scopus 로고
    • The relationship between precision-recall and ROC curves
    • (Pittsburgh, PA), doi: 10.1145/1143844.1143874.
    • Davis, J., and Goadrich, M. (2006). "The relationship between precision-recall and ROC curves," in Proceedings of the 23rd International Conference on Machine Learning (Pittsburgh, PA), 233-240. doi: 10.1145/1143844.1143874.
    • (2006) Proceedings of the 23rd International Conference on Machine Learning , pp. 233-240
    • Davis, J.1    Goadrich, M.2
  • 15
    • 27744465529 scopus 로고    scopus 로고
    • Learning from positive and unlabeled examples
    • doi: 10.1016/j.tcs.2005.09.007
    • Denis, F., Gilleron, R., and Letouzey, F. (2005). Learning from positive and unlabeled examples. Theor. Comput. Sci. 348, 70-83. doi: 10.1016/j.tcs.2005.09.007.
    • (2005) Theor. Comput. Sci. , vol.348 , pp. 70-83
    • Denis, F.1    Gilleron, R.2    Letouzey, F.3
  • 17
    • 84859112389 scopus 로고    scopus 로고
    • Statistical inference and reverse engineering of gene regulatory networks from observational expression data
    • doi: 10.3389/fgene.2012.00008
    • Emmert-Streib, F., Glazko, G. V., Altay, G., and de Matos Simoes, R. (2012). Statistical inference and reverse engineering of gene regulatory networks from observational expression data. Front. Genet. 3, 1-15. doi: 10.3389/fgene.2012.00008.
    • (2012) Front. Genet. , vol.3 , pp. 1-15
    • Emmert-Streib, F.1    Glazko, G.V.2    Altay, G.3    de Matos Simoes, R.4
  • 18
    • 33646023117 scopus 로고    scopus 로고
    • An introduction to {ROC} analysis
    • doi: 10.1016/j.patrec.2005.10.010
    • Fawcett, T. (2006). An introduction to {ROC} analysis. Pattern Recogn. Lett. 27, 861-874. doi: 10.1016/j.patrec.2005.10.010.
    • (2006) Pattern Recogn. Lett. , vol.27 , pp. 861-874
    • Fawcett, T.1
  • 19
    • 24144470799 scopus 로고    scopus 로고
    • Estimation of the Youden Index and its associated cutoff point
    • doi: 10.1002/bimj.200410135
    • Fluss, R., Faraggi, D., and Reiser, B. (2005). Estimation of the Youden Index and its associated cutoff point. Biom. J. (Biometrische Zeitschrift) 47, 458-472. doi: 10.1002/bimj.200410135.
    • (2005) Biom. J. (Biometrische Zeitschrift) , vol.47 , pp. 458-472
    • Fluss, R.1    Faraggi, D.2    Reiser, B.3
  • 20
    • 84862274510 scopus 로고    scopus 로고
    • Learning from positive and unlabeled examples by enforcing statistical significance
    • (Lauderdale, FL)
    • Geurts, P. (2011). "Learning from positive and unlabeled examples by enforcing statistical significance," in JMLR: Workshop and Conference Proceedings. Vol. 15 (Lauderdale, FL), 305-314.
    • (2011) JMLR: Workshop and Conference Proceedings , vol.15 , pp. 305-314
    • Geurts, P.1
  • 21
    • 34249855548 scopus 로고    scopus 로고
    • Inferring biological networks with output kernel trees
    • doi: 10.1186/1471-2105-8-S2-S4
    • Geurts, P., Touleimat, N., Dutreix, M., and d'Alché Buc, F. (2007). Inferring biological networks with output kernel trees. BMC Bioinformatics 8(Suppl. 2):S4. doi: 10.1186/1471-2105-8-S2-S4.
    • (2007) BMC Bioinformatics , vol.8 , Issue.SUPPL. 2
    • Geurts, P.1    Touleimat, N.2    Dutreix, M.3    d'Alché Buc, F.4
  • 22
    • 77950448057 scopus 로고    scopus 로고
    • Predicting drug-target interaction networks based on functional groups and biological features
    • doi: 10.1371/journal.pone.0009603
    • He, Z., Zhang, J., Shi, X.-H., Hu, L.-L., Kong, X., Cai, Y.-D., et al. (2010). Predicting drug-target interaction networks based on functional groups and biological features. PLoS ONE 5:e9603. doi: 10.1371/journal.pone.0009603.
    • (2010) PLoS ONE , vol.5
    • He, Z.1    Zhang, J.2    Shi, X.-H.3    Hu, L.-L.4    Kong, X.5    Cai, Y.-D.6
  • 23
    • 79960564239 scopus 로고    scopus 로고
    • Unraveling gene regulatory networks from time-resolved gene expression data-a measures comparison study
    • doi: 10.1186/1471-2105-12-292
    • Hempel, S., Koseska, A., Nikoloski, Z., and Kurths, J. (2011). Unraveling gene regulatory networks from time-resolved gene expression data-a measures comparison study. BMC Bioinformatics 12:292. doi: 10.1186/1471-2105-12-292.
    • (2011) BMC Bioinformatics , vol.12 , pp. 292
    • Hempel, S.1    Koseska, A.2    Nikoloski, Z.3    Kurths, J.4
  • 24
    • 77952305592 scopus 로고    scopus 로고
    • Large-scale prediction of protein-protein interactions from structures
    • doi: 10.1186/1471-2105-11-144
    • Hue, M., Riffle, M., Vert, J.-P., and Noble, W. S. (2010). Large-scale prediction of protein-protein interactions from structures. BMC Bioinformatics 11:144. doi: 10.1186/1471-2105-11-144.
    • (2010) BMC Bioinformatics , vol.11 , pp. 144
    • Hue, M.1    Riffle, M.2    Vert, J.-P.3    Noble, W.S.4
  • 26
    • 78650736464 scopus 로고    scopus 로고
    • Proteochemometric modeling of the susceptibility of mutated variants of the HIV-1 virus to reverse transcriptase inhibitors
    • doi: 10.1371/journal.pone.0014353
    • Junaid, M., Lapins, M., Eklund, M., Spjuth, O., and Wikberg, J. E. S. (2010). Proteochemometric modeling of the susceptibility of mutated variants of the HIV-1 virus to reverse transcriptase inhibitors. PLoS ONE 5:e14353. doi: 10.1371/journal.pone.0014353.
    • (2010) PLoS ONE , vol.5
    • Junaid, M.1    Lapins, M.2    Eklund, M.3    Spjuth, O.4    Wikberg, J.E.S.5
  • 27
    • 59649125020 scopus 로고    scopus 로고
    • A network-based method for predicting disease-causing genes
    • doi: 10.1089/cmb.2008.05TT
    • Karni, S., Soreq, H., and Sharan, R. (2009). A network-based method for predicting disease-causing genes. J. Comput. Biol. 16, 181-189. doi: 10.1089/cmb.2008.05TT.
    • (2009) J. Comput. Biol. , vol.16 , pp. 181-189
    • Karni, S.1    Soreq, H.2    Sharan, R.3
  • 28
    • 19544364324 scopus 로고    scopus 로고
    • Selective integration of multiple biological data for supervised network inference
    • doi: 10.1093/bioinformatics/bti339
    • Kato, T., Tsuda, K., and Kiyoshi, A. (2005). Selective integration of multiple biological data for supervised network inference. Bioinformatics 21, 2488-2495. doi: 10.1093/bioinformatics/bti339.
    • (2005) Bioinformatics , vol.21 , pp. 2488-2495
    • Kato, T.1    Tsuda, K.2    Kiyoshi, A.3
  • 29
    • 77953665615 scopus 로고    scopus 로고
    • Kinome-wide interaction modelling using alignment-based and alignment-independent approaches for kinase description and linear and non-linear data analysis techniques research article
    • doi: 10.1186/1471-2105-11-339
    • Lapins, M., and Wikberg, J. E. (2010). Kinome-wide interaction modelling using alignment-based and alignment-independent approaches for kinase description and linear and non-linear data analysis techniques research article. BMC Bioinformatics 11:339. doi: 10.1186/1471-2105-11-339.
    • (2010) BMC Bioinformatics , vol.11 , pp. 339
    • Lapins, M.1    Wikberg, J.E.2
  • 30
    • 1942516926 scopus 로고    scopus 로고
    • Learning with positive and unlabeled examples using weighted logistic regression
    • Lee, W., and Liu, B. (2003). Learning with positive and unlabeled examples using weighted logistic regression. Proc. Int. Conf. Mach. Learn. 20, 448.
    • (2003) Proc. Int. Conf. Mach. Learn. , vol.20 , pp. 448
    • Lee, W.1    Liu, B.2
  • 31
    • 65449147106 scopus 로고    scopus 로고
    • A novel method for protein-ligand binding affinity prediction and the related descriptors exploration
    • doi: 10.1002/jcc.21078
    • Li, S., Xi, L., Wang, C., Li, J., Lei, B., Liu, H., et al. (2009). A novel method for protein-ligand binding affinity prediction and the related descriptors exploration. J. Comput. Chem. 30, 900-909. doi: 10.1002/jcc.21078.
    • (2009) J. Comput. Chem. , vol.30 , pp. 900-909
    • Li, S.1    Xi, L.2    Wang, C.3    Li, J.4    Lei, B.5    Liu, H.6
  • 32
    • 84892376552 scopus 로고    scopus 로고
    • Supervised, semi-supervised and unsupervised inference of gene regulatory networks
    • doi: 10.1093/bib/bbt034. [Epub ahead of print].
    • Maetschke, S. R., Madhamshettiwar, P. B., Davis, M. J., and Ragan, M. A. (2013). Supervised, semi-supervised and unsupervised inference of gene regulatory networks. Brief. Bioinformatics doi: 10.1093/bib/bbt034. [Epub ahead of print].
    • (2013) Brief. Bioinformatics
    • Maetschke, S.R.1    Madhamshettiwar, P.B.2    Davis, M.J.3    Ragan, M.A.4
  • 34
    • 84870305264 scopus 로고    scopus 로고
    • wisdom of crowds for robust network inference
    • doi: 10.1038/nmeth.2016
    • Marbach, D., Costello, J., Küffner, R., Vega, N., Prill, R., Camacho, D., et al. (2012). wisdom of crowds for robust network inference. Nat. Meth. 9, 794-804. doi: 10.1038/nmeth.2016.
    • (2012) Nat. Meth. , vol.9 , pp. 794-804
    • Marbach, D.1    Costello, J.2    Küffner, R.3    Vega, N.4    Prill, R.5    Camacho, D.6
  • 36
    • 84872509876 scopus 로고    scopus 로고
    • Drug-target interaction prediction by learning from local information and neighbors
    • doi: 10.1093/bioinformatics/bts670
    • Mei, J.-P., Kwoh, C.-K., Yang, P., Li, X.-L., and Zheng, J. (2013). Drug-target interaction prediction by learning from local information and neighbors. Bioinformatics 29, 238-245. doi: 10.1093/bioinformatics/bts670.
    • (2013) Bioinformatics , vol.29 , pp. 238-245
    • Mei, J.-P.1    Kwoh, C.-K.2    Yang, P.3    Li, X.-L.4    Zheng, J.5
  • 37
    • 49549104230 scopus 로고    scopus 로고
    • Sirene: supervised inference of regulatory networks
    • doi: 10.1093/bioinformatics/btn273
    • Mordelet, F., and Vert, J.-P. (2008). Sirene: supervised inference of regulatory networks. Bioninformatics 24, i76-i82. doi: 10.1093/bioinformatics/btn273.
    • (2008) Bioninformatics , vol.24
    • Mordelet, F.1    Vert, J.-P.2
  • 38
    • 84891632855 scopus 로고    scopus 로고
    • A bagging SVM to learn from positive and unlabeled examples
    • doi: 10.1016/j.patrec.2013.06.010. (in press).
    • Mordelet, F., and Vert, J.-P. (2013). A bagging SVM to learn from positive and unlabeled examples. Pattern Recog. Lett. doi: 10.1016/j.patrec.2013.06.010. (in press).
    • (2013) Pattern Recog. Lett
    • Mordelet, F.1    Vert, J.-P.2
  • 39
    • 79952595140 scopus 로고    scopus 로고
    • Cross-target view to feature selection: identification of molecular interaction features in ligand-target space
    • doi: 10.1021/ci1001394
    • Niijima, S., Yabuuchi, H., and Okuno, Y. (2011). Cross-target view to feature selection: identification of molecular interaction features in ligand-target space. J. Chem. Inf. Model. 51, 15-24. doi: 10.1021/ci1001394.
    • (2011) J. Chem. Inf. Model. , vol.51 , pp. 15-24
    • Niijima, S.1    Yabuuchi, H.2    Okuno, Y.3
  • 40
    • 55349094009 scopus 로고    scopus 로고
    • Mining protein networks for synthetic genetic interactions
    • doi: 10.1186/1471-2105-9-426
    • Paladugu, S. R., Zhao, S., Ray, A., and Raval, A. (2008). Mining protein networks for synthetic genetic interactions. BMC Bioinformatics 9:426. doi: 10.1186/1471-2105-9-426.
    • (2008) BMC Bioinformatics , vol.9 , pp. 426
    • Paladugu, S.R.1    Zhao, S.2    Ray, A.3    Raval, A.4
  • 41
    • 78049415626 scopus 로고    scopus 로고
    • An integrative multi-network and multi-classifier approach to predict genetic interactions
    • doi: 10.1371/journal.pcbi.1000928
    • Pandey, G., Zhang, B., Chang, A. N., Myers, C. L., Zhu, J., Kumar, V., et al. (2010). An integrative multi-network and multi-classifier approach to predict genetic interactions. PLoS Comput. Biol. 6:e1000928. doi: 10.1371/journal.pcbi.1000928.
    • (2010) PLoS Comput. Biol. , vol.6
    • Pandey, G.1    Zhang, B.2    Chang, A.N.3    Myers, C.L.4    Zhu, J.5    Kumar, V.6
  • 42
    • 80054923089 scopus 로고    scopus 로고
    • Revisiting the negative example sampling problem for predicting protein-protein interactions
    • doi: 10.1093/bioinformatics/btr514
    • Park, Y., and Marcotte, E. M. (2011). Revisiting the negative example sampling problem for predicting protein-protein interactions. Bioinformatics 27, 3024-3028. doi: 10.1093/bioinformatics/btr514.
    • (2011) Bioinformatics , vol.27 , pp. 3024-3028
    • Park, Y.1    Marcotte, E.M.2
  • 43
    • 33646018046 scopus 로고    scopus 로고
    • Evaluation of different biological data and computational classification methods for use in protein interaction prediction
    • doi: 10.1002/prot.20865
    • Qi, Y., Bar-Joseph, Z., and Klein-Seetharaman, J. (2006). Evaluation of different biological data and computational classification methods for use in protein interaction prediction. Proteins 63, 490-500. doi: 10.1002/prot.20865.
    • (2006) Proteins , vol.63 , pp. 490-500
    • Qi, Y.1    Bar-Joseph, Z.2    Klein-Seetharaman, J.3
  • 44
    • 77950925125 scopus 로고    scopus 로고
    • Missing value imputation for epistatic maps
    • doi: 10.1186/1471-2105-11-197
    • Ryan, C., Greene, D., Cagney, G., and Cunningham, P. (2010). Missing value imputation for epistatic maps. BMC Bioinformatics 11:197. doi: 10.1186/1471-2105-11-197.
    • (2010) BMC Bioinformatics , vol.11 , pp. 197
    • Ryan, C.1    Greene, D.2    Cagney, G.3    Cunningham, P.4
  • 45
    • 0000487102 scopus 로고    scopus 로고
    • Estimating the support of a high-dimensional distribution
    • doi: 10.1162/089976601750264965
    • Schölkopf, B., Platt, J., Shawe-Taylor, J., Smola, A., and Williamson, R. (2001). Estimating the support of a high-dimensional distribution. Neural Comput. 13, 1443-1471. doi: 10.1162/089976601750264965.
    • (2001) Neural Comput. , vol.13 , pp. 1443-1471
    • Schölkopf, B.1    Platt, J.2    Shawe-Taylor, J.3    Smola, A.4    Williamson, R.5
  • 46
    • 84856991721 scopus 로고    scopus 로고
    • Critical truths about power laws
    • doi: 10.1126/science.1216142
    • Stumpf, M. P. H., and Porter, M. A. (2012). Critical truths about power laws. Science 335, 665-666. doi: 10.1126/science.1216142.
    • (2012) Science , vol.335 , pp. 665-666
    • Stumpf, M.P.H.1    Porter, M.A.2
  • 47
    • 84866446560 scopus 로고    scopus 로고
    • Drug target prediction using adverse event report systems: a pharmacogenomic approach
    • doi: 10.1093/bioinformatics/bts413
    • Takarabe, M., Kotera, M., Nishimura, Y., Goto, S., and Yamanishi, Y. (2012). Drug target prediction using adverse event report systems: a pharmacogenomic approach. Bioinformatics 28, i611-i618. doi: 10.1093/bioinformatics/bts413.
    • (2012) Bioinformatics , vol.28
    • Takarabe, M.1    Kotera, M.2    Nishimura, Y.3    Goto, S.4    Yamanishi, Y.5
  • 48
    • 61949241412 scopus 로고    scopus 로고
    • Prediction of interactions between hiv-1 and human proteins by information integration
    • Tastan, O., Qi, Y., Carbonell, J. G., and Klein-Seetharaman, J. (2009). Prediction of interactions between hiv-1 and human proteins by information integration. Pac. Symp. Biocomput. 14, 516-527.
    • (2009) Pac. Symp. Biocomput. , vol.14 , pp. 516-527
    • Tastan, O.1    Qi, Y.2    Carbonell, J.G.3    Klein-Seetharaman, J.4
  • 49
    • 76249084790 scopus 로고    scopus 로고
    • Towards accurate imputation of quantitative genetic interactions
    • doi: 10.1186/gb-2009-10-12-r140
    • Ulitsky, I., Krogan, N., and Shamir, R. (2009). Towards accurate imputation of quantitative genetic interactions. Genome Biol. 10, R140. doi: 10.1186/gb-2009-10-12-r140.
    • (2009) Genome Biol. , vol.10
    • Ulitsky, I.1    Krogan, N.2    Shamir, R.3
  • 50
    • 80054881553 scopus 로고    scopus 로고
    • Gaussian interaction profile kernels for predicting drug-target interaction
    • doi: 10.1093/bioinformatics/btr500
    • van Laarhoven, T., Nabuurs, S. B., and Marchiori, E. (2011). Gaussian interaction profile kernels for predicting drug-target interaction. Bioinformatics 27, 3036-3043. doi: 10.1093/bioinformatics/btr500.
    • (2011) Bioinformatics , vol.27 , pp. 3036-3043
    • van Laarhoven, T.1    Nabuurs, S.B.2    Marchiori, E.3
  • 51
    • 84884008259 scopus 로고    scopus 로고
    • Reconstruction of biological networks by supervised machine learning approaches
    • eds H. Lodhi and S. Muggleton (Oxford: John Wiley & Sons, Inc.), (Chapter 7). doi: 10.1002/9780470556757.ch7.
    • Vert, J.-P. (2010). "Reconstruction of biological networks by supervised machine learning approaches," in Elements of Computational Systems Biology, eds H. Lodhi and S. Muggleton (Oxford: John Wiley & Sons, Inc.), 165-188 (Chapter 7). doi: 10.1002/9780470556757.ch7.
    • (2010) Elements of Computational Systems Biology , pp. 165-188
    • Vert, J.-P.1
  • 52
    • 42149134851 scopus 로고    scopus 로고
    • A new pairwise kernel for biological network inference with support vector machines
    • doi: 10.1186/1471-2105-8-S10-S8
    • Vert, J.-P., Qiu, J., and Noble, W. S. (2007). A new pairwise kernel for biological network inference with support vector machines. BMC Bioninformatics 8(Suppl. 10):S8. doi: 10.1186/1471-2105-8-S10-S8.
    • (2007) BMC Bioninformatics , vol.8 , Issue.SUPPL. 10
    • Vert, J.-P.1    Qiu, J.2    Noble, W.S.3
  • 55
    • 8144227773 scopus 로고    scopus 로고
    • Combining biological networks to predict genetic interactions
    • doi: 10.1073/pnas.0406614101
    • Wong, S. L., Zhang, L. V., Tong, A. H. Y., Li, Z., Goldberg, D. S., King, O. D., et al. (2004). Combining biological networks to predict genetic interactions. PNAS 101, 15682-15687. doi: 10.1073/pnas.0406614101.
    • (2004) PNAS , vol.101 , pp. 15682-15687
    • Wong, S.L.1    Zhang, L.V.2    Tong, A.H.Y.3    Li, Z.4    Goldberg, D.S.5    King, O.D.6
  • 56
    • 79952345084 scopus 로고    scopus 로고
    • Analysis of multiple compound-protein interactions reveals novel bioactive molecules
    • doi: 10.1038/msb.2011.5
    • Yabuuchi, H., Niijima, S., Takematsu, H., Ida, T., Hirokawa, T., Hara, T., et al. (2011). Analysis of multiple compound-protein interactions reveals novel bioactive molecules. Mol. Syst. Biol. 7, 472. doi: 10.1038/msb.2011.5.
    • (2011) Mol. Syst. Biol. , vol.7 , pp. 472
    • Yabuuchi, H.1    Niijima, S.2    Takematsu, H.3    Ida, T.4    Hirokawa, T.5    Hara, T.6
  • 57
    • 84858775082 scopus 로고    scopus 로고
    • Supervised bipartite graph inference
    • Yamanishi, Y. (2009). Supervised bipartite graph inference. Adv. Neural Inform. Process. Syst 21, 1841-1848.
    • (2009) Adv. Neural Inform. Process. Syst , vol.21 , pp. 1841-1848
    • Yamanishi, Y.1
  • 58
    • 46249090791 scopus 로고    scopus 로고
    • Prediction of drug-target interaction networks from the integration of chemical and genomic spaces
    • doi: 10.1093/bioinformatics/btn162
    • Yamanishi, Y., Araki, M., Gutteridge, A., Honda, W., and Kanehisa, M. (2008). Prediction of drug-target interaction networks from the integration of chemical and genomic spaces. Bioinformatics 24, i232-i240. doi: 10.1093/bioinformatics/btn162.
    • (2008) Bioinformatics , vol.24
    • Yamanishi, Y.1    Araki, M.2    Gutteridge, A.3    Honda, W.4    Kanehisa, M.5
  • 59
    • 29144446142 scopus 로고    scopus 로고
    • Supervised enzyme network inference from the integration of genomic data and chemical information
    • doi: 10.1093/bioinformatics/bti1012
    • Yamanishi, Y., and Vert, J.-P. (2005). Supervised enzyme network inference from the integration of genomic data and chemical information. Bioinformatics 21, i468-i477. doi: 10.1093/bioinformatics/bti1012.
    • (2005) Bioinformatics , vol.21
    • Yamanishi, Y.1    Vert, J.-P.2
  • 60
    • 58349093930 scopus 로고    scopus 로고
    • Training set expansion: an approach to improving the reconstruction of biological networks from limited and uneven reliable interactions
    • doi: 10.1093/bioinformatics/btn602
    • Yip, K. Y., and Gerstein, M. (2008). Training set expansion: an approach to improving the reconstruction of biological networks from limited and uneven reliable interactions. Bioinformatics 25, 243-250. doi: 10.1093/bioinformatics/btn602.
    • (2008) Bioinformatics , vol.25 , pp. 243-250
    • Yip, K.Y.1    Gerstein, M.2
  • 61
    • 43949125230 scopus 로고    scopus 로고
    • Learning from positive examples when the negative class is undetermined-microRNA gene identification
    • doi: 10.1186/1748-7188-3-2
    • Yousef, M., Jung, S., Showe, L. C., and Showe, M. K. (2008). Learning from positive examples when the negative class is undetermined-microRNA gene identification. Algorithms Mol. Biol. 3, 2. doi: 10.1186/1748-7188-3-2.
    • (2008) Algorithms Mol. Biol. , vol.3 , pp. 2
    • Yousef, M.1    Jung, S.2    Showe, L.C.3    Showe, M.K.4
  • 62
    • 84861610134 scopus 로고    scopus 로고
    • A systematic prediction of multiple drug-target interactions from chemical, genomic, and pharmacological data
    • doi: 10.1371/journal.pone.0037608
    • Yu, H., Chen, J., Xu, X., Li, Y., Zhao, H., Fang, Y., et al. (2012). A systematic prediction of multiple drug-target interactions from chemical, genomic, and pharmacological data. PLoS ONE 7:e37608. doi: 10.1371/journal.pone.0037608.
    • (2012) PLoS ONE , vol.7
    • Yu, H.1    Chen, J.2    Xu, X.3    Li, Y.4    Zhao, H.5    Fang, Y.6


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.