-
1
-
-
79961191133
-
Rip: the regulatory interaction predictor-a machine learning-based approach for predicting target genes of transcription factors
-
doi: 10.1093/bioinformatics/btr366
-
Bauer, T., Eils, R., and Konig, R. (2011). Rip: the regulatory interaction predictor-a machine learning-based approach for predicting target genes of transcription factors. Bioinformatics 27, 2239-2247. doi: 10.1093/bioinformatics/btr366.
-
(2011)
Bioinformatics
, vol.27
, pp. 2239-2247
-
-
Bauer, T.1
Eils, R.2
Konig, R.3
-
2
-
-
33947328242
-
Choosing negative examples for the prediction of protein-protein interactions
-
doi: 10.1186/1471-2105-7-S1-S2
-
Ben-Hur, A., and Noble, W. (2006). Choosing negative examples for the prediction of protein-protein interactions. BMC Bioinformatics 7(Suppl. 1):S2. doi: 10.1186/1471-2105-7-S1-S2.
-
(2006)
BMC Bioinformatics
, vol.7
, Issue.SUPPL. 1
-
-
Ben-Hur, A.1
Noble, W.2
-
3
-
-
34547844158
-
Supervised reconstruction of biological networks with local models
-
doi: 10.1093/bioinformatics/btm204
-
Bleakley, K., Biau, G., and Vert, J.-P. (2007). Supervised reconstruction of biological networks with local models. Bioninformatics 23, i57-i65. doi: 10.1093/bioinformatics/btm204.
-
(2007)
Bioninformatics
, vol.23
-
-
Bleakley, K.1
Biau, G.2
Vert, J.-P.3
-
4
-
-
69849094133
-
Supervised prediction of drug-target interactions using bipartite local models
-
doi: 10.1093/bioinformatics/btp433
-
Bleakley, K., and Yamanishi, Y. (2009). Supervised prediction of drug-target interactions using bipartite local models. Bioinformatics 25, 2397-2403. doi: 10.1093/bioinformatics/btp433.
-
(2009)
Bioinformatics
, vol.25
, pp. 2397-2403
-
-
Bleakley, K.1
Yamanishi, Y.2
-
5
-
-
0035478854
-
Random forests
-
doi: 10.1023/A:1017934522171
-
Breiman, L. (2001). Random forests. Mach. Learn. 45, 5-32. doi: 10.1023/A:1017934522171.
-
(2001)
Mach. Learn.
, vol.45
, pp. 5-32
-
-
Breiman, L.1
-
6
-
-
78149479802
-
The binormal assumption on precision-recall curves
-
doi: 10.1109/ICPR.2010.1036.
-
Brodersen, K. H., Ong, C. S., Stephan, K. E., and Buhmann, J. M. (2010). "The binormal assumption on precision-recall curves," in International Conference on Pattern Recognition (Istanbul), 4263-4266. doi: 10.1109/ICPR.2010.1036.
-
(2010)
International Conference on Pattern Recognition (Istanbul)
, pp. 4263-4266
-
-
Brodersen, K.H.1
Ong, C.S.2
Stephan, K.E.3
Buhmann, J.M.4
-
7
-
-
80053456365
-
Semi-supervised penalized output kernel regression for link prediction
-
(Bellevue, Washington)
-
Brouard, C., d'Alché-Buc, F., and Szafranski, M. (2011). "Semi-supervised penalized output kernel regression for link prediction," in Proceedings of ICML (Bellevue, Washington), 593-600.
-
(2011)
Proceedings of ICML
, pp. 593-600
-
-
Brouard, C.1
d'Alché-Buc, F.2
Szafranski, M.3
-
8
-
-
84869189040
-
Pairwise support vector machines and their application to large scale problems
-
Brunner, C., Fischer, A., Luig, K., and Thies, T. (2012). Pairwise support vector machines and their application to large scale problems. J. Mach. Learn. Res. 13, 2279-2292.
-
(2012)
J. Mach. Learn. Res.
, vol.13
, pp. 2279-2292
-
-
Brunner, C.1
Fischer, A.2
Luig, K.3
Thies, T.4
-
9
-
-
72949116439
-
Selection of negative examples in learning gene regulatory networks
-
BIBMW 2009 (Washington, DC), doi: 10.1109/BIBMW.2009.5332137.
-
Ceccarelli, M., and Cerulo, L. (2009). "Selection of negative examples in learning gene regulatory networks," in IEEE International Conference on Bioinformatics and Biomedicine Workshop, BIBMW 2009 (Washington, DC), 56-61. doi: 10.1109/BIBMW.2009.5332137.
-
(2009)
IEEE International Conference on Bioinformatics and Biomedicine Workshop
, pp. 56-61
-
-
Ceccarelli, M.1
Cerulo, L.2
-
10
-
-
77951774810
-
Learning gene regulatory networks from only positive and unlabeled data
-
doi: 10.1186/1471-2105-11-228
-
Cerulo, L., Elkan, C., and Ceccarelli, M. (2010). Learning gene regulatory networks from only positive and unlabeled data. BMC Bioinformatics 11:228. doi: 10.1186/1471-2105-11-228.
-
(2010)
BMC Bioinformatics
, vol.11
, pp. 228
-
-
Cerulo, L.1
Elkan, C.2
Ceccarelli, M.3
-
11
-
-
75149172414
-
Predicting the protein-protein interactions using primary structures with predicted protein surface
-
doi: 10.1186/1471-2105-11-S1-S3
-
Chang, D. T.-H., Syu, Y.-T., and Lin, P.-C. (2010). Predicting the protein-protein interactions using primary structures with predicted protein surface. BMC Bioinformatics 11(Suppl. 1):S3. doi: 10.1186/1471-2105-11-S1-S3.
-
(2010)
BMC Bioinformatics
, vol.11
, Issue.SUPPL. 1
-
-
Chang, D.T.-H.1
Syu, Y.-T.2
Lin, P.-C.3
-
12
-
-
28944450149
-
Prediction of protein-protein interactions using random decision forest framework
-
doi: 10.1093/bioinformatics/bti721
-
Chen, X.-W., and Liu, M. (2005). Prediction of protein-protein interactions using random decision forest framework. Bioinformatics 21, 4394-4400. doi: 10.1093/bioinformatics/bti721.
-
(2005)
Bioinformatics
, vol.21
, pp. 4394-4400
-
-
Chen, X.-W.1
Liu, M.2
-
13
-
-
84863695210
-
Prediction of drug-target interactions and drug repositioning via network-based inference
-
doi: 10.1371/journal.pcbi.1002503
-
Cheng, F., Chuang, L., Jiang, J., Lu, W., Li, W., Liu, G., et al. (2012). Prediction of drug-target interactions and drug repositioning via network-based inference. PLos Compuat. Biol. 8:e1002503. doi: 10.1371/journal.pcbi.1002503.
-
(2012)
PLos Compuat. Biol.
, vol.8
-
-
Cheng, F.1
Chuang, L.2
Jiang, J.3
Lu, W.4
Li, W.5
Liu, G.6
-
14
-
-
33749249600
-
The relationship between precision-recall and ROC curves
-
(Pittsburgh, PA), doi: 10.1145/1143844.1143874.
-
Davis, J., and Goadrich, M. (2006). "The relationship between precision-recall and ROC curves," in Proceedings of the 23rd International Conference on Machine Learning (Pittsburgh, PA), 233-240. doi: 10.1145/1143844.1143874.
-
(2006)
Proceedings of the 23rd International Conference on Machine Learning
, pp. 233-240
-
-
Davis, J.1
Goadrich, M.2
-
15
-
-
27744465529
-
Learning from positive and unlabeled examples
-
doi: 10.1016/j.tcs.2005.09.007
-
Denis, F., Gilleron, R., and Letouzey, F. (2005). Learning from positive and unlabeled examples. Theor. Comput. Sci. 348, 70-83. doi: 10.1016/j.tcs.2005.09.007.
-
(2005)
Theor. Comput. Sci.
, vol.348
, pp. 70-83
-
-
Denis, F.1
Gilleron, R.2
Letouzey, F.3
-
16
-
-
58149180961
-
Learning classifiers from only positive and unlabeled data
-
(New Yor, NY), doi: 10.1145/1401890.1401920.
-
Elkan, C., and Noto, K. (2008). "Learning classifiers from only positive and unlabeled data," in KDD '08: Proceeding of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (New Yor, NY), 213-220. doi: 10.1145/1401890.1401920.
-
(2008)
KDD '08: Proceeding of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
, pp. 213-220
-
-
Elkan, C.1
Noto, K.2
-
17
-
-
84859112389
-
Statistical inference and reverse engineering of gene regulatory networks from observational expression data
-
doi: 10.3389/fgene.2012.00008
-
Emmert-Streib, F., Glazko, G. V., Altay, G., and de Matos Simoes, R. (2012). Statistical inference and reverse engineering of gene regulatory networks from observational expression data. Front. Genet. 3, 1-15. doi: 10.3389/fgene.2012.00008.
-
(2012)
Front. Genet.
, vol.3
, pp. 1-15
-
-
Emmert-Streib, F.1
Glazko, G.V.2
Altay, G.3
de Matos Simoes, R.4
-
18
-
-
33646023117
-
An introduction to {ROC} analysis
-
doi: 10.1016/j.patrec.2005.10.010
-
Fawcett, T. (2006). An introduction to {ROC} analysis. Pattern Recogn. Lett. 27, 861-874. doi: 10.1016/j.patrec.2005.10.010.
-
(2006)
Pattern Recogn. Lett.
, vol.27
, pp. 861-874
-
-
Fawcett, T.1
-
19
-
-
24144470799
-
Estimation of the Youden Index and its associated cutoff point
-
doi: 10.1002/bimj.200410135
-
Fluss, R., Faraggi, D., and Reiser, B. (2005). Estimation of the Youden Index and its associated cutoff point. Biom. J. (Biometrische Zeitschrift) 47, 458-472. doi: 10.1002/bimj.200410135.
-
(2005)
Biom. J. (Biometrische Zeitschrift)
, vol.47
, pp. 458-472
-
-
Fluss, R.1
Faraggi, D.2
Reiser, B.3
-
20
-
-
84862274510
-
Learning from positive and unlabeled examples by enforcing statistical significance
-
(Lauderdale, FL)
-
Geurts, P. (2011). "Learning from positive and unlabeled examples by enforcing statistical significance," in JMLR: Workshop and Conference Proceedings. Vol. 15 (Lauderdale, FL), 305-314.
-
(2011)
JMLR: Workshop and Conference Proceedings
, vol.15
, pp. 305-314
-
-
Geurts, P.1
-
21
-
-
34249855548
-
Inferring biological networks with output kernel trees
-
doi: 10.1186/1471-2105-8-S2-S4
-
Geurts, P., Touleimat, N., Dutreix, M., and d'Alché Buc, F. (2007). Inferring biological networks with output kernel trees. BMC Bioinformatics 8(Suppl. 2):S4. doi: 10.1186/1471-2105-8-S2-S4.
-
(2007)
BMC Bioinformatics
, vol.8
, Issue.SUPPL. 2
-
-
Geurts, P.1
Touleimat, N.2
Dutreix, M.3
d'Alché Buc, F.4
-
22
-
-
77950448057
-
Predicting drug-target interaction networks based on functional groups and biological features
-
doi: 10.1371/journal.pone.0009603
-
He, Z., Zhang, J., Shi, X.-H., Hu, L.-L., Kong, X., Cai, Y.-D., et al. (2010). Predicting drug-target interaction networks based on functional groups and biological features. PLoS ONE 5:e9603. doi: 10.1371/journal.pone.0009603.
-
(2010)
PLoS ONE
, vol.5
-
-
He, Z.1
Zhang, J.2
Shi, X.-H.3
Hu, L.-L.4
Kong, X.5
Cai, Y.-D.6
-
23
-
-
79960564239
-
Unraveling gene regulatory networks from time-resolved gene expression data-a measures comparison study
-
doi: 10.1186/1471-2105-12-292
-
Hempel, S., Koseska, A., Nikoloski, Z., and Kurths, J. (2011). Unraveling gene regulatory networks from time-resolved gene expression data-a measures comparison study. BMC Bioinformatics 12:292. doi: 10.1186/1471-2105-12-292.
-
(2011)
BMC Bioinformatics
, vol.12
, pp. 292
-
-
Hempel, S.1
Koseska, A.2
Nikoloski, Z.3
Kurths, J.4
-
24
-
-
77952305592
-
Large-scale prediction of protein-protein interactions from structures
-
doi: 10.1186/1471-2105-11-144
-
Hue, M., Riffle, M., Vert, J.-P., and Noble, W. S. (2010). Large-scale prediction of protein-protein interactions from structures. BMC Bioinformatics 11:144. doi: 10.1186/1471-2105-11-144.
-
(2010)
BMC Bioinformatics
, vol.11
, pp. 144
-
-
Hue, M.1
Riffle, M.2
Vert, J.-P.3
Noble, W.S.4
-
26
-
-
78650736464
-
Proteochemometric modeling of the susceptibility of mutated variants of the HIV-1 virus to reverse transcriptase inhibitors
-
doi: 10.1371/journal.pone.0014353
-
Junaid, M., Lapins, M., Eklund, M., Spjuth, O., and Wikberg, J. E. S. (2010). Proteochemometric modeling of the susceptibility of mutated variants of the HIV-1 virus to reverse transcriptase inhibitors. PLoS ONE 5:e14353. doi: 10.1371/journal.pone.0014353.
-
(2010)
PLoS ONE
, vol.5
-
-
Junaid, M.1
Lapins, M.2
Eklund, M.3
Spjuth, O.4
Wikberg, J.E.S.5
-
27
-
-
59649125020
-
A network-based method for predicting disease-causing genes
-
doi: 10.1089/cmb.2008.05TT
-
Karni, S., Soreq, H., and Sharan, R. (2009). A network-based method for predicting disease-causing genes. J. Comput. Biol. 16, 181-189. doi: 10.1089/cmb.2008.05TT.
-
(2009)
J. Comput. Biol.
, vol.16
, pp. 181-189
-
-
Karni, S.1
Soreq, H.2
Sharan, R.3
-
28
-
-
19544364324
-
Selective integration of multiple biological data for supervised network inference
-
doi: 10.1093/bioinformatics/bti339
-
Kato, T., Tsuda, K., and Kiyoshi, A. (2005). Selective integration of multiple biological data for supervised network inference. Bioinformatics 21, 2488-2495. doi: 10.1093/bioinformatics/bti339.
-
(2005)
Bioinformatics
, vol.21
, pp. 2488-2495
-
-
Kato, T.1
Tsuda, K.2
Kiyoshi, A.3
-
29
-
-
77953665615
-
Kinome-wide interaction modelling using alignment-based and alignment-independent approaches for kinase description and linear and non-linear data analysis techniques research article
-
doi: 10.1186/1471-2105-11-339
-
Lapins, M., and Wikberg, J. E. (2010). Kinome-wide interaction modelling using alignment-based and alignment-independent approaches for kinase description and linear and non-linear data analysis techniques research article. BMC Bioinformatics 11:339. doi: 10.1186/1471-2105-11-339.
-
(2010)
BMC Bioinformatics
, vol.11
, pp. 339
-
-
Lapins, M.1
Wikberg, J.E.2
-
30
-
-
1942516926
-
Learning with positive and unlabeled examples using weighted logistic regression
-
Lee, W., and Liu, B. (2003). Learning with positive and unlabeled examples using weighted logistic regression. Proc. Int. Conf. Mach. Learn. 20, 448.
-
(2003)
Proc. Int. Conf. Mach. Learn.
, vol.20
, pp. 448
-
-
Lee, W.1
Liu, B.2
-
31
-
-
65449147106
-
A novel method for protein-ligand binding affinity prediction and the related descriptors exploration
-
doi: 10.1002/jcc.21078
-
Li, S., Xi, L., Wang, C., Li, J., Lei, B., Liu, H., et al. (2009). A novel method for protein-ligand binding affinity prediction and the related descriptors exploration. J. Comput. Chem. 30, 900-909. doi: 10.1002/jcc.21078.
-
(2009)
J. Comput. Chem.
, vol.30
, pp. 900-909
-
-
Li, S.1
Xi, L.2
Wang, C.3
Li, J.4
Lei, B.5
Liu, H.6
-
32
-
-
84892376552
-
Supervised, semi-supervised and unsupervised inference of gene regulatory networks
-
doi: 10.1093/bib/bbt034. [Epub ahead of print].
-
Maetschke, S. R., Madhamshettiwar, P. B., Davis, M. J., and Ragan, M. A. (2013). Supervised, semi-supervised and unsupervised inference of gene regulatory networks. Brief. Bioinformatics doi: 10.1093/bib/bbt034. [Epub ahead of print].
-
(2013)
Brief. Bioinformatics
-
-
Maetschke, S.R.1
Madhamshettiwar, P.B.2
Davis, M.J.3
Ragan, M.A.4
-
33
-
-
34548080780
-
-
New York, NY: Cambridge University Press.
-
Manning, C., Raghavan, P., and Schütze, H. (2009). An Introduction to Information Retrieval. New York, NY: Cambridge University Press.
-
(2009)
An Introduction to Information Retrieval
-
-
Manning, C.1
Raghavan, P.2
Schütze, H.3
-
34
-
-
84870305264
-
wisdom of crowds for robust network inference
-
doi: 10.1038/nmeth.2016
-
Marbach, D., Costello, J., Küffner, R., Vega, N., Prill, R., Camacho, D., et al. (2012). wisdom of crowds for robust network inference. Nat. Meth. 9, 794-804. doi: 10.1038/nmeth.2016.
-
(2012)
Nat. Meth.
, vol.9
, pp. 794-804
-
-
Marbach, D.1
Costello, J.2
Küffner, R.3
Vega, N.4
Prill, R.5
Camacho, D.6
-
35
-
-
85046873967
-
The DET curve in assessment of detection task performance
-
EUROSPEECH 1997 (Rhodes, Greece)
-
Martin, A., Doddington, G., Kamm, T., Ordowski, M., and Przybocki, M. (1997). "The DET curve in assessment of detection task performance," in Fifth European Conference on Speech Communication and Technology, EUROSPEECH 1997 (Rhodes, Greece), 1899-1903.
-
(1997)
Fifth European Conference on Speech Communication and Technology
, pp. 1899-1903
-
-
Martin, A.1
Doddington, G.2
Kamm, T.3
Ordowski, M.4
Przybocki, M.5
-
36
-
-
84872509876
-
Drug-target interaction prediction by learning from local information and neighbors
-
doi: 10.1093/bioinformatics/bts670
-
Mei, J.-P., Kwoh, C.-K., Yang, P., Li, X.-L., and Zheng, J. (2013). Drug-target interaction prediction by learning from local information and neighbors. Bioinformatics 29, 238-245. doi: 10.1093/bioinformatics/bts670.
-
(2013)
Bioinformatics
, vol.29
, pp. 238-245
-
-
Mei, J.-P.1
Kwoh, C.-K.2
Yang, P.3
Li, X.-L.4
Zheng, J.5
-
37
-
-
49549104230
-
Sirene: supervised inference of regulatory networks
-
doi: 10.1093/bioinformatics/btn273
-
Mordelet, F., and Vert, J.-P. (2008). Sirene: supervised inference of regulatory networks. Bioninformatics 24, i76-i82. doi: 10.1093/bioinformatics/btn273.
-
(2008)
Bioninformatics
, vol.24
-
-
Mordelet, F.1
Vert, J.-P.2
-
38
-
-
84891632855
-
A bagging SVM to learn from positive and unlabeled examples
-
doi: 10.1016/j.patrec.2013.06.010. (in press).
-
Mordelet, F., and Vert, J.-P. (2013). A bagging SVM to learn from positive and unlabeled examples. Pattern Recog. Lett. doi: 10.1016/j.patrec.2013.06.010. (in press).
-
(2013)
Pattern Recog. Lett
-
-
Mordelet, F.1
Vert, J.-P.2
-
39
-
-
79952595140
-
Cross-target view to feature selection: identification of molecular interaction features in ligand-target space
-
doi: 10.1021/ci1001394
-
Niijima, S., Yabuuchi, H., and Okuno, Y. (2011). Cross-target view to feature selection: identification of molecular interaction features in ligand-target space. J. Chem. Inf. Model. 51, 15-24. doi: 10.1021/ci1001394.
-
(2011)
J. Chem. Inf. Model.
, vol.51
, pp. 15-24
-
-
Niijima, S.1
Yabuuchi, H.2
Okuno, Y.3
-
40
-
-
55349094009
-
Mining protein networks for synthetic genetic interactions
-
doi: 10.1186/1471-2105-9-426
-
Paladugu, S. R., Zhao, S., Ray, A., and Raval, A. (2008). Mining protein networks for synthetic genetic interactions. BMC Bioinformatics 9:426. doi: 10.1186/1471-2105-9-426.
-
(2008)
BMC Bioinformatics
, vol.9
, pp. 426
-
-
Paladugu, S.R.1
Zhao, S.2
Ray, A.3
Raval, A.4
-
41
-
-
78049415626
-
An integrative multi-network and multi-classifier approach to predict genetic interactions
-
doi: 10.1371/journal.pcbi.1000928
-
Pandey, G., Zhang, B., Chang, A. N., Myers, C. L., Zhu, J., Kumar, V., et al. (2010). An integrative multi-network and multi-classifier approach to predict genetic interactions. PLoS Comput. Biol. 6:e1000928. doi: 10.1371/journal.pcbi.1000928.
-
(2010)
PLoS Comput. Biol.
, vol.6
-
-
Pandey, G.1
Zhang, B.2
Chang, A.N.3
Myers, C.L.4
Zhu, J.5
Kumar, V.6
-
42
-
-
80054923089
-
Revisiting the negative example sampling problem for predicting protein-protein interactions
-
doi: 10.1093/bioinformatics/btr514
-
Park, Y., and Marcotte, E. M. (2011). Revisiting the negative example sampling problem for predicting protein-protein interactions. Bioinformatics 27, 3024-3028. doi: 10.1093/bioinformatics/btr514.
-
(2011)
Bioinformatics
, vol.27
, pp. 3024-3028
-
-
Park, Y.1
Marcotte, E.M.2
-
43
-
-
33646018046
-
Evaluation of different biological data and computational classification methods for use in protein interaction prediction
-
doi: 10.1002/prot.20865
-
Qi, Y., Bar-Joseph, Z., and Klein-Seetharaman, J. (2006). Evaluation of different biological data and computational classification methods for use in protein interaction prediction. Proteins 63, 490-500. doi: 10.1002/prot.20865.
-
(2006)
Proteins
, vol.63
, pp. 490-500
-
-
Qi, Y.1
Bar-Joseph, Z.2
Klein-Seetharaman, J.3
-
44
-
-
77950925125
-
Missing value imputation for epistatic maps
-
doi: 10.1186/1471-2105-11-197
-
Ryan, C., Greene, D., Cagney, G., and Cunningham, P. (2010). Missing value imputation for epistatic maps. BMC Bioinformatics 11:197. doi: 10.1186/1471-2105-11-197.
-
(2010)
BMC Bioinformatics
, vol.11
, pp. 197
-
-
Ryan, C.1
Greene, D.2
Cagney, G.3
Cunningham, P.4
-
45
-
-
0000487102
-
Estimating the support of a high-dimensional distribution
-
doi: 10.1162/089976601750264965
-
Schölkopf, B., Platt, J., Shawe-Taylor, J., Smola, A., and Williamson, R. (2001). Estimating the support of a high-dimensional distribution. Neural Comput. 13, 1443-1471. doi: 10.1162/089976601750264965.
-
(2001)
Neural Comput.
, vol.13
, pp. 1443-1471
-
-
Schölkopf, B.1
Platt, J.2
Shawe-Taylor, J.3
Smola, A.4
Williamson, R.5
-
46
-
-
84856991721
-
Critical truths about power laws
-
doi: 10.1126/science.1216142
-
Stumpf, M. P. H., and Porter, M. A. (2012). Critical truths about power laws. Science 335, 665-666. doi: 10.1126/science.1216142.
-
(2012)
Science
, vol.335
, pp. 665-666
-
-
Stumpf, M.P.H.1
Porter, M.A.2
-
47
-
-
84866446560
-
Drug target prediction using adverse event report systems: a pharmacogenomic approach
-
doi: 10.1093/bioinformatics/bts413
-
Takarabe, M., Kotera, M., Nishimura, Y., Goto, S., and Yamanishi, Y. (2012). Drug target prediction using adverse event report systems: a pharmacogenomic approach. Bioinformatics 28, i611-i618. doi: 10.1093/bioinformatics/bts413.
-
(2012)
Bioinformatics
, vol.28
-
-
Takarabe, M.1
Kotera, M.2
Nishimura, Y.3
Goto, S.4
Yamanishi, Y.5
-
48
-
-
61949241412
-
Prediction of interactions between hiv-1 and human proteins by information integration
-
Tastan, O., Qi, Y., Carbonell, J. G., and Klein-Seetharaman, J. (2009). Prediction of interactions between hiv-1 and human proteins by information integration. Pac. Symp. Biocomput. 14, 516-527.
-
(2009)
Pac. Symp. Biocomput.
, vol.14
, pp. 516-527
-
-
Tastan, O.1
Qi, Y.2
Carbonell, J.G.3
Klein-Seetharaman, J.4
-
49
-
-
76249084790
-
Towards accurate imputation of quantitative genetic interactions
-
doi: 10.1186/gb-2009-10-12-r140
-
Ulitsky, I., Krogan, N., and Shamir, R. (2009). Towards accurate imputation of quantitative genetic interactions. Genome Biol. 10, R140. doi: 10.1186/gb-2009-10-12-r140.
-
(2009)
Genome Biol.
, vol.10
-
-
Ulitsky, I.1
Krogan, N.2
Shamir, R.3
-
50
-
-
80054881553
-
Gaussian interaction profile kernels for predicting drug-target interaction
-
doi: 10.1093/bioinformatics/btr500
-
van Laarhoven, T., Nabuurs, S. B., and Marchiori, E. (2011). Gaussian interaction profile kernels for predicting drug-target interaction. Bioinformatics 27, 3036-3043. doi: 10.1093/bioinformatics/btr500.
-
(2011)
Bioinformatics
, vol.27
, pp. 3036-3043
-
-
van Laarhoven, T.1
Nabuurs, S.B.2
Marchiori, E.3
-
51
-
-
84884008259
-
Reconstruction of biological networks by supervised machine learning approaches
-
eds H. Lodhi and S. Muggleton (Oxford: John Wiley & Sons, Inc.), (Chapter 7). doi: 10.1002/9780470556757.ch7.
-
Vert, J.-P. (2010). "Reconstruction of biological networks by supervised machine learning approaches," in Elements of Computational Systems Biology, eds H. Lodhi and S. Muggleton (Oxford: John Wiley & Sons, Inc.), 165-188 (Chapter 7). doi: 10.1002/9780470556757.ch7.
-
(2010)
Elements of Computational Systems Biology
, pp. 165-188
-
-
Vert, J.-P.1
-
52
-
-
42149134851
-
A new pairwise kernel for biological network inference with support vector machines
-
doi: 10.1186/1471-2105-8-S10-S8
-
Vert, J.-P., Qiu, J., and Noble, W. S. (2007). A new pairwise kernel for biological network inference with support vector machines. BMC Bioninformatics 8(Suppl. 10):S8. doi: 10.1186/1471-2105-8-S10-S8.
-
(2007)
BMC Bioninformatics
, vol.8
, Issue.SUPPL. 10
-
-
Vert, J.-P.1
Qiu, J.2
Noble, W.S.3
-
53
-
-
84898969241
-
Supervised graph inference
-
(Vancouver, BC)
-
Vert, J.-P., and Yamanishi, Y. (2005). "Supervised graph inference," in Advances in Neural Information and Processing System, (Vancouver, BC), 1433-1440.
-
(2005)
Advances in Neural Information and Processing System
, pp. 1433-1440
-
-
Vert, J.-P.1
Yamanishi, Y.2
-
55
-
-
8144227773
-
Combining biological networks to predict genetic interactions
-
doi: 10.1073/pnas.0406614101
-
Wong, S. L., Zhang, L. V., Tong, A. H. Y., Li, Z., Goldberg, D. S., King, O. D., et al. (2004). Combining biological networks to predict genetic interactions. PNAS 101, 15682-15687. doi: 10.1073/pnas.0406614101.
-
(2004)
PNAS
, vol.101
, pp. 15682-15687
-
-
Wong, S.L.1
Zhang, L.V.2
Tong, A.H.Y.3
Li, Z.4
Goldberg, D.S.5
King, O.D.6
-
56
-
-
79952345084
-
Analysis of multiple compound-protein interactions reveals novel bioactive molecules
-
doi: 10.1038/msb.2011.5
-
Yabuuchi, H., Niijima, S., Takematsu, H., Ida, T., Hirokawa, T., Hara, T., et al. (2011). Analysis of multiple compound-protein interactions reveals novel bioactive molecules. Mol. Syst. Biol. 7, 472. doi: 10.1038/msb.2011.5.
-
(2011)
Mol. Syst. Biol.
, vol.7
, pp. 472
-
-
Yabuuchi, H.1
Niijima, S.2
Takematsu, H.3
Ida, T.4
Hirokawa, T.5
Hara, T.6
-
57
-
-
84858775082
-
Supervised bipartite graph inference
-
Yamanishi, Y. (2009). Supervised bipartite graph inference. Adv. Neural Inform. Process. Syst 21, 1841-1848.
-
(2009)
Adv. Neural Inform. Process. Syst
, vol.21
, pp. 1841-1848
-
-
Yamanishi, Y.1
-
58
-
-
46249090791
-
Prediction of drug-target interaction networks from the integration of chemical and genomic spaces
-
doi: 10.1093/bioinformatics/btn162
-
Yamanishi, Y., Araki, M., Gutteridge, A., Honda, W., and Kanehisa, M. (2008). Prediction of drug-target interaction networks from the integration of chemical and genomic spaces. Bioinformatics 24, i232-i240. doi: 10.1093/bioinformatics/btn162.
-
(2008)
Bioinformatics
, vol.24
-
-
Yamanishi, Y.1
Araki, M.2
Gutteridge, A.3
Honda, W.4
Kanehisa, M.5
-
59
-
-
29144446142
-
Supervised enzyme network inference from the integration of genomic data and chemical information
-
doi: 10.1093/bioinformatics/bti1012
-
Yamanishi, Y., and Vert, J.-P. (2005). Supervised enzyme network inference from the integration of genomic data and chemical information. Bioinformatics 21, i468-i477. doi: 10.1093/bioinformatics/bti1012.
-
(2005)
Bioinformatics
, vol.21
-
-
Yamanishi, Y.1
Vert, J.-P.2
-
60
-
-
58349093930
-
Training set expansion: an approach to improving the reconstruction of biological networks from limited and uneven reliable interactions
-
doi: 10.1093/bioinformatics/btn602
-
Yip, K. Y., and Gerstein, M. (2008). Training set expansion: an approach to improving the reconstruction of biological networks from limited and uneven reliable interactions. Bioinformatics 25, 243-250. doi: 10.1093/bioinformatics/btn602.
-
(2008)
Bioinformatics
, vol.25
, pp. 243-250
-
-
Yip, K.Y.1
Gerstein, M.2
-
61
-
-
43949125230
-
Learning from positive examples when the negative class is undetermined-microRNA gene identification
-
doi: 10.1186/1748-7188-3-2
-
Yousef, M., Jung, S., Showe, L. C., and Showe, M. K. (2008). Learning from positive examples when the negative class is undetermined-microRNA gene identification. Algorithms Mol. Biol. 3, 2. doi: 10.1186/1748-7188-3-2.
-
(2008)
Algorithms Mol. Biol.
, vol.3
, pp. 2
-
-
Yousef, M.1
Jung, S.2
Showe, L.C.3
Showe, M.K.4
-
62
-
-
84861610134
-
A systematic prediction of multiple drug-target interactions from chemical, genomic, and pharmacological data
-
doi: 10.1371/journal.pone.0037608
-
Yu, H., Chen, J., Xu, X., Li, Y., Zhao, H., Fang, Y., et al. (2012). A systematic prediction of multiple drug-target interactions from chemical, genomic, and pharmacological data. PLoS ONE 7:e37608. doi: 10.1371/journal.pone.0037608.
-
(2012)
PLoS ONE
, vol.7
-
-
Yu, H.1
Chen, J.2
Xu, X.3
Li, Y.4
Zhao, H.5
Fang, Y.6
|