메뉴 건너뛰기




Volumn 12, Issue , 2011, Pages

Unraveling gene regulatory networks from time-resolved gene expression data - a measures comparison study

Author keywords

[No Author keywords available]

Indexed keywords

COMPUTATIONALLY EFFICIENT; GENE EXPRESSION DATA; GENE REGULATORY NETWORKS; REGULATORY INTERACTIONS; REGULATORY NETWORK; RELEVANCE NETWORKS; SIMILARITY MEASURE; SYSTEMATIC ANALYSIS;

EID: 79960564239     PISSN: None     EISSN: 14712105     Source Type: Journal    
DOI: 10.1186/1471-2105-12-292     Document Type: Article
Times cited : (43)

References (68)
  • 1
    • 0037819447 scopus 로고    scopus 로고
    • Transcription regulation and animal diversity
    • 10.1038/nature01763, 12853946
    • Levine M, Tjian R. Transcription regulation and animal diversity. Nature 2003, 424(6945):147-151. 10.1038/nature01763, 12853946.
    • (2003) Nature , vol.424 , Issue.6945 , pp. 147-151
    • Levine, M.1    Tjian, R.2
  • 2
    • 36249019789 scopus 로고    scopus 로고
    • Dialogue on Reverse-Engineering Assessment and Methods: The DREAM of High-throughput pathway inference
    • 10.1196/annals.1407.021, 17925349
    • Stolovitzky G, Monroe D, Califano A. Dialogue on Reverse-Engineering Assessment and Methods: The DREAM of High-throughput pathway inference. Annals of the New York Academy of Sciences 2007, 1115:1-22. 10.1196/annals.1407.021, 17925349.
    • (2007) Annals of the New York Academy of Sciences , vol.1115 , pp. 1-22
    • Stolovitzky, G.1    Monroe, D.2    Califano, A.3
  • 3
    • 0037686112 scopus 로고    scopus 로고
    • The topology of the regulatory interactions predicts the expression pattern of the segment polarity genes in Drosophila melanogaster
    • 10.1016/S0022-5193(03)00035-3, 12782112
    • Albert R, Othmer HG. The topology of the regulatory interactions predicts the expression pattern of the segment polarity genes in Drosophila melanogaster. Journal of Theoretical Biology 2003, 223:1-18. 10.1016/S0022-5193(03)00035-3, 12782112.
    • (2003) Journal of Theoretical Biology , vol.223 , pp. 1-18
    • Albert, R.1    Othmer, H.G.2
  • 4
    • 0036678794 scopus 로고    scopus 로고
    • Assigning numbers to the arrows: parameterizing a gene regulation network by using accurate expression kinetics
    • 10.1073/pnas.152046799, 124972, 12145321
    • Ronen M, Rosenberg R, Shraiman BI, Alon U. Assigning numbers to the arrows: parameterizing a gene regulation network by using accurate expression kinetics. PNAS 2002, 99(16):10555-10560. 10.1073/pnas.152046799, 124972, 12145321.
    • (2002) PNAS , vol.99 , Issue.16 , pp. 10555-10560
    • Ronen, M.1    Rosenberg, R.2    Shraiman, B.I.3    Alon, U.4
  • 5
    • 4644326931 scopus 로고    scopus 로고
    • Genomic analysis of regulatory network dynamics reveals large topological changes
    • 10.1038/nature02782, 15372033
    • Luscombe NM, Babu MM, Yu H, Snyder M, Teichmann SA, Gerstein M. Genomic analysis of regulatory network dynamics reveals large topological changes. Nature 2004, 431(7006):308-312. 10.1038/nature02782, 15372033.
    • (2004) Nature , vol.431 , Issue.7006 , pp. 308-312
    • Luscombe, N.M.1    Babu, M.M.2    Yu, H.3    Snyder, M.4    Teichmann, S.A.5    Gerstein, M.6
  • 8
    • 0036578795 scopus 로고    scopus 로고
    • Network motifs in the transcriptional regulation network of Escherichia coli
    • 10.1038/ng881, 11967538
    • Shen-Orr SS, Milo R, Mangan S, Alon U. Network motifs in the transcriptional regulation network of Escherichia coli. Nature Genetics 2002, 31:64-68. 10.1038/ng881, 11967538.
    • (2002) Nature Genetics , vol.31 , pp. 64-68
    • Shen-Orr, S.S.1    Milo, R.2    Mangan, S.3    Alon, U.4
  • 10
    • 14844342814 scopus 로고    scopus 로고
    • Genome-wide analysis of context-dependence of regulatory networks
    • 10.1186/gb-2005-6-2-206, 551525, 15693953
    • Papp B, Oliver S. Genome-wide analysis of context-dependence of regulatory networks. Genome Biology 2005, 6(2):206. 10.1186/gb-2005-6-2-206, 551525, 15693953.
    • (2005) Genome Biology , vol.6 , Issue.2 , pp. 206
    • Papp, B.1    Oliver, S.2
  • 11
    • 8844277626 scopus 로고    scopus 로고
    • Analyzing time series gene expression data
    • 10.1093/bioinformatics/bth283, 15130923
    • Bar-Joseph Z. Analyzing time series gene expression data. Bioinformatics 2004, 20:2493-2503. 10.1093/bioinformatics/bth283, 15130923.
    • (2004) Bioinformatics , vol.20 , pp. 2493-2503
    • Bar-Joseph, Z.1
  • 12
    • 48249131626 scopus 로고    scopus 로고
    • Short time-series microarray analysis: Methods and challenges
    • Wang X, Wu M, Li Z, Chan C. Short time-series microarray analysis: Methods and challenges. BMC Systems Biology 2008, 2(58).
    • (2008) BMC Systems Biology , vol.2 , Issue.58
    • Wang, X.1    Wu, M.2    Li, Z.3    Chan, C.4
  • 13
    • 33745781710 scopus 로고    scopus 로고
    • A symbolic representation of time series, with implications for streaming algorithms
    • Lin J, Keogh E, Lonardi S, Chiu B. A symbolic representation of time series, with implications for streaming algorithms. Proceedings of the ACM DMKD 2003, 20:2-11.
    • (2003) Proceedings of the ACM DMKD , vol.20 , pp. 2-11
    • Lin, J.1    Keogh, E.2    Lonardi, S.3    Chiu, B.4
  • 15
    • 28644449917 scopus 로고    scopus 로고
    • How does gene expression clustering work?
    • D'haeseleer P. How does gene expression clustering work?. Nat Biotech 2005, 23(12):1499-1501.
    • (2005) Nat Biotech , vol.23 , Issue.12 , pp. 1499-1501
    • D'haeseleer, P.1
  • 16
    • 34547844096 scopus 로고    scopus 로고
    • Comparing association network algorithms for reverse engineering of large-scale gene regulatory networks: synthetic versus real data
    • 10.1093/bioinformatics/btm163, 17485431
    • Soranzo N, Bianconi G, Altafini C. Comparing association network algorithms for reverse engineering of large-scale gene regulatory networks: synthetic versus real data. Bioinformatics 2007, 23(13):1640-1647. 10.1093/bioinformatics/btm163, 17485431.
    • (2007) Bioinformatics , vol.23 , Issue.13 , pp. 1640-1647
    • Soranzo, N.1    Bianconi, G.2    Altafini, C.3
  • 17
    • 0036191190 scopus 로고    scopus 로고
    • Inference of a genetic network by a combined approach of cluster analysis and graphical Gaussian modeling
    • 10.1093/bioinformatics/18.2.287, 11847076
    • Toh H, Horimoto K. Inference of a genetic network by a combined approach of cluster analysis and graphical Gaussian modeling. Bioinformatics 2002, 18(2):287-297. 10.1093/bioinformatics/18.2.287, 11847076.
    • (2002) Bioinformatics , vol.18 , Issue.2 , pp. 287-297
    • Toh, H.1    Horimoto, K.2
  • 18
    • 54949156075 scopus 로고    scopus 로고
    • Combining partial correlation and an information theory approach to the reversed engineering of gene co-expression networks
    • 10.1093/bioinformatics/btn482, 18784117
    • Reverter A, Chan EKF. Combining partial correlation and an information theory approach to the reversed engineering of gene co-expression networks. Bioinformatics 2008, 24(21):2491-2497. 10.1093/bioinformatics/btn482, 18784117.
    • (2008) Bioinformatics , vol.24 , Issue.21 , pp. 2491-2497
    • Reverter, A.1    Chan, E.K.F.2
  • 19
    • 46249109755 scopus 로고    scopus 로고
    • Discerning static and causal interactions in genome-wide reverse engineering problems
    • 10.1093/bioinformatics/btn220, 18467346
    • Zampieri M, Soranzo N, Altafini C. Discerning static and causal interactions in genome-wide reverse engineering problems. Bioinformatics 2008, 24(13):1510-1515. 10.1093/bioinformatics/btn220, 18467346.
    • (2008) Bioinformatics , vol.24 , Issue.13 , pp. 1510-1515
    • Zampieri, M.1    Soranzo, N.2    Altafini, C.3
  • 20
    • 34848903220 scopus 로고    scopus 로고
    • From correlation to causation networks: a simple approximate learning algorithm and its application to high-dimensional plant gene expression data
    • 10.1186/1752-0509-1-37, 1995222, 17683609
    • Opgen-Rhein R, Strimmer K. From correlation to causation networks: a simple approximate learning algorithm and its application to high-dimensional plant gene expression data. BMC Systems Biology 2007, 1:37. 10.1186/1752-0509-1-37, 1995222, 17683609.
    • (2007) BMC Systems Biology , vol.1 , pp. 37
    • Opgen-Rhein, R.1    Strimmer, K.2
  • 21
    • 0000702165 scopus 로고
    • Mutual information functions versus correlation functions
    • Li W. Mutual information functions versus correlation functions. Journal of Statistical Physics 1990, 60(5):823-837.
    • (1990) Journal of Statistical Physics , vol.60 , Issue.5 , pp. 823-837
    • Li, W.1
  • 22
    • 11844293410 scopus 로고    scopus 로고
    • Partial correlation and conditional correlation as measures of conditional independence
    • 10.1111/j.1467-842X.2004.00360.x, 21775409
    • Baba K, Shibata R, Sibuya M. Partial correlation and conditional correlation as measures of conditional independence. Australian & New Zealand Journal of Statistics 2004, 46(4):657-664. 10.1111/j.1467-842X.2004.00360.x, 21775409.
    • (2004) Australian & New Zealand Journal of Statistics , vol.46 , Issue.4 , pp. 657-664
    • Baba, K.1    Shibata, R.2    Sibuya, M.3
  • 24
    • 0042526388 scopus 로고    scopus 로고
    • The mutual information: Detecting and evaluating dependencies between variables
    • 10.1093/bioinformatics/18.suppl_2.S231, 12386007
    • Steuer R, Kurths J, Daub CO, Weise J, Selbig J. The mutual information: Detecting and evaluating dependencies between variables. Bioinformatics 2002, 18(suppl 2):S231-240. 10.1093/bioinformatics/18.suppl_2.S231, 12386007.
    • (2002) Bioinformatics , vol.18 , Issue.SUPPL. 2
    • Steuer, R.1    Kurths, J.2    Daub, C.O.3    Weise, J.4    Selbig, J.5
  • 26
    • 0000552986 scopus 로고    scopus 로고
    • Mutual Information Relevance Networks: Functional Genomic Clustering Using Pairwise Entropy Measurements
    • Butte AJ, Kohane IS. Mutual Information Relevance Networks: Functional Genomic Clustering Using Pairwise Entropy Measurements. Pacific Symposium on Biocomputing 2000, 5:415-426.
    • (2000) Pacific Symposium on Biocomputing , vol.5 , pp. 415-426
    • Butte, A.J.1    Kohane, I.S.2
  • 28
    • 0000042837 scopus 로고    scopus 로고
    • Evaluating functional network inference using simulations of complex biological systems
    • 10.1093/bioinformatics/18.suppl_1.S216, 12169550
    • Smith VA, Jarvis ED, Hartemink AJ. Evaluating functional network inference using simulations of complex biological systems. Bioinformatics 2002, 18(suppl 1):S216-224. 10.1093/bioinformatics/18.suppl_1.S216, 12169550.
    • (2002) Bioinformatics , vol.18 , Issue.SUPPL. 1
    • Smith, V.A.1    Jarvis, E.D.2    Hartemink, A.J.3
  • 29
    • 34548538013 scopus 로고    scopus 로고
    • Reconstructing gene-regulatory networks from time series, knock-out data, and prior knowledge
    • 10.1186/1752-0509-1-11, 1839889, 17408501
    • Geier F, Timmer J, Fleck C. Reconstructing gene-regulatory networks from time series, knock-out data, and prior knowledge. BMC Systems Biology 2007, 1:11. 10.1186/1752-0509-1-11, 1839889, 17408501.
    • (2007) BMC Systems Biology , vol.1 , pp. 11
    • Geier, F.1    Timmer, J.2    Fleck, C.3
  • 30
    • 33749825955 scopus 로고    scopus 로고
    • Comparative evaluation of reverse engineering gene regulatory networks with relevance networks, graphical gaussian models and bayesian networks
    • 10.1093/bioinformatics/btl391, 16844710
    • Werhli AV, Grzegorczyk M, Husmeier D. Comparative evaluation of reverse engineering gene regulatory networks with relevance networks, graphical gaussian models and bayesian networks. Bioinformatics 2006, 22(20):2523-2531. 10.1093/bioinformatics/btl391, 16844710.
    • (2006) Bioinformatics , vol.22 , Issue.20 , pp. 2523-2531
    • Werhli, A.V.1    Grzegorczyk, M.2    Husmeier, D.3
  • 31
    • 38449088751 scopus 로고    scopus 로고
    • Inferring cellular networks - a review
    • 10.1186/1471-2105-8-S6-S5, 2230506, 18269699
    • Markowetz F, Spang R. Inferring cellular networks - a review. BMC Bioinformatics 2007, 8(Suppl 6):S5. 10.1186/1471-2105-8-S6-S5, 2230506, 18269699.
    • (2007) BMC Bioinformatics , vol.8 , Issue.SUPPL. 6
    • Markowetz, F.1    Spang, R.2
  • 32
    • 0842288337 scopus 로고    scopus 로고
    • Inferring Cellular Networks Using Probabilistic Graphical Models
    • 10.1126/science.1094068, 14764868
    • Friedman N. Inferring Cellular Networks Using Probabilistic Graphical Models. Science 2004, 303(5659):799-805. 10.1126/science.1094068, 14764868.
    • (2004) Science , vol.303 , Issue.5659 , pp. 799-805
    • Friedman, N.1
  • 34
    • 44449088854 scopus 로고    scopus 로고
    • Partial Granger causality - Eliminating exogenous inputs and latent variables
    • 10.1016/j.jneumeth.2008.04.011, 18508128
    • Guo S, Seth AK, Kendrick KM, Zhou C, Feng J. Partial Granger causality - Eliminating exogenous inputs and latent variables. Journal of Neuroscience Methods 2008, 172:79-93. 10.1016/j.jneumeth.2008.04.011, 18508128.
    • (2008) Journal of Neuroscience Methods , vol.172 , pp. 79-93
    • Guo, S.1    Seth, A.K.2    Kendrick, K.M.3    Zhou, C.4    Feng, J.5
  • 35
    • 67650896226 scopus 로고    scopus 로고
    • Granger Causality: Basic Theory and Application to Neuroscience
    • Ding M, Chen Y, Bressler SL. Granger Causality: Basic Theory and Application to Neuroscience. 2006, http://arxiv.org/abs/q-bio/0608035v1
    • (2006)
    • Ding, M.1    Chen, Y.2    Bressler, S.L.3
  • 36
    • 84889407828 scopus 로고    scopus 로고
    • Granger Causality: Basic Theory and Application to Neuroscience
    • Wiley InterScience, Björn Schelter JT Matthias Winterhalder
    • Ding M, Chen Y, Bressler SL. Granger Causality: Basic Theory and Application to Neuroscience. Handbook of Time Series Analysis 2007, 437-460. Wiley InterScience, Björn Schelter JT Matthias Winterhalder.
    • (2007) Handbook of Time Series Analysis , pp. 437-460
    • Ding, M.1    Chen, Y.2    Bressler, S.L.3
  • 37
    • 66349115724 scopus 로고    scopus 로고
    • Grouped graphical Granger modeling for gene expression regulatory networks discovery
    • 10.1093/bioinformatics/btp199, 2687953, 19477976
    • Lozano AC, Abe N, Liu Y, Rosset S. Grouped graphical Granger modeling for gene expression regulatory networks discovery. Bioinformatics 2009, 25(12):i110-118. 10.1093/bioinformatics/btp199, 2687953, 19477976.
    • (2009) Bioinformatics , vol.25 , Issue.12
    • Lozano, A.C.1    Abe, N.2    Liu, Y.3    Rosset, S.4
  • 38
    • 33846338227 scopus 로고    scopus 로고
    • Recurrence plots for the analysis of complex systems
    • Marwan N, Romano MC, Thiel M, Kurths J. Recurrence plots for the analysis of complex systems. Physics Reports 2007, 438(5-6):237-329.
    • (2007) Physics Reports , vol.438 , Issue.5-6 , pp. 237-329
    • Marwan, N.1    Romano, M.C.2    Thiel, M.3    Kurths, J.4
  • 39
    • 27944493925 scopus 로고    scopus 로고
    • Scale-free networks in cell biology
    • 10.1242/jcs.02714, 16254242
    • Albert R. Scale-free networks in cell biology. J Cell Sci 2005, 118(21):4947-4957. 10.1242/jcs.02714, 16254242.
    • (2005) J Cell Sci , vol.118 , Issue.21 , pp. 4947-4957
    • Albert, R.1
  • 41
    • 33144486498 scopus 로고    scopus 로고
    • SynTReN: a generator of synthetic gene expression data for design and analysis of structure learning algorithms
    • 10.1186/1471-2105-7-43, 1373604, 16438721
    • Van den Bulcke T, Van Leemput K, Naudts B, van Remortel P, Ma H, Verschoren A, De Moor B, Marchal K. SynTReN: a generator of synthetic gene expression data for design and analysis of structure learning algorithms. BMC Bioinformatics 2006, 7:43. 10.1186/1471-2105-7-43, 1373604, 16438721.
    • (2006) BMC Bioinformatics , vol.7 , pp. 43
    • Van den Bulcke, T.1    Van Leemput, K.2    Naudts, B.3    van Remortel, P.4    Ma, H.5    Verschoren, A.6    De Moor, B.7    Marchal, K.8
  • 43
    • 0034954376 scopus 로고    scopus 로고
    • Aligning gene expression time series with time warping algorithms
    • 10.1093/bioinformatics/17.6.495, 11395426
    • Aach J, Church GM. Aligning gene expression time series with time warping algorithms. Bioinformatics 2001, 17(6):495-508. 10.1093/bioinformatics/17.6.495, 11395426.
    • (2001) Bioinformatics , vol.17 , Issue.6 , pp. 495-508
    • Aach, J.1    Church, G.M.2
  • 44
    • 33747857386 scopus 로고    scopus 로고
    • BTW: a web server for Boltzmann time warping of gene expression time series
    • Web Server
    • Ferre F, Clote P. BTW: a web server for Boltzmann time warping of gene expression time series. Nucleic Acids Res 2006, (34 Web Server):W482-W485.
    • (2006) Nucleic Acids Res , Issue.34
    • Ferre, F.1    Clote, P.2
  • 48
    • 70349448250 scopus 로고    scopus 로고
    • Computing and Visualizing Dynamic Time Warping Alignments in R: The dtw Package
    • Giorgino T. Computing and Visualizing Dynamic Time Warping Alignments in R: The dtw Package. Journal of Statistical Software 2009, 31(7):1-24.
    • (2009) Journal of Statistical Software , vol.31 , Issue.7 , pp. 1-24
    • Giorgino, T.1
  • 50
    • 60449118655 scopus 로고    scopus 로고
    • Matching Incomplete Time Series with Dynamic Time Warping: An Algorithm and an Application to Post-Stroke Rehabilitation
    • 10.1016/j.artmed.2008.11.007, 19111449
    • Tormene P, Giorgino T, Quaglini S, Stefanelli M. Matching Incomplete Time Series with Dynamic Time Warping: An Algorithm and an Application to Post-Stroke Rehabilitation. Artificial Intelligence in Medicine 2009, 45:11-34. 10.1016/j.artmed.2008.11.007, 19111449.
    • (2009) Artificial Intelligence in Medicine , vol.45 , pp. 11-34
    • Tormene, P.1    Giorgino, T.2    Quaglini, S.3    Stefanelli, M.4
  • 51
    • 36148985016 scopus 로고    scopus 로고
    • Partial Mutual Information for Coupling Analysis of Multivariate Time Series
    • Frenzel S, Pompe B. Partial Mutual Information for Coupling Analysis of Multivariate Time Series. Phys Rev Lett 2007, 99(20):204101.
    • (2007) Phys Rev Lett , vol.99 , Issue.20 , pp. 204101
    • Frenzel, S.1    Pompe, B.2
  • 52
    • 17344381221 scopus 로고    scopus 로고
    • Synchronization as adjustment of information rates: Detection from bivariate time series
    • Palus M, Komarek V, Hrncir Z, Sterbova K. Synchronization as adjustment of information rates: Detection from bivariate time series. Phys Rev E 2001, 63(4):046211.
    • (2001) Phys Rev E , vol.63 , Issue.4 , pp. 046211
    • Palus, M.1    Komarek, V.2    Hrncir, Z.3    Sterbova, K.4
  • 53
    • 48749115886 scopus 로고    scopus 로고
    • VAR, SVAR and SVEC Models: Implementation Within R Package vars
    • Pfaff B. VAR, SVAR and SVEC Models: Implementation Within R Package vars. Journal of Statistical Software 2008, 27(4):1-32.
    • (2008) Journal of Statistical Software , vol.27 , Issue.4 , pp. 1-32
    • Pfaff, B.1
  • 55
    • 0016355478 scopus 로고    scopus 로고
    • A new look at the statistical model identification
    • Akaike H. A new look at the statistical model identification. Automatic Control, IEEE Transactions on 2003, 19(6):716-723.
    • (2003) Automatic Control, IEEE Transactions on , vol.19 , Issue.6 , pp. 716-723
    • Akaike, H.1
  • 60
    • 33646023117 scopus 로고    scopus 로고
    • An intoduction to ROC analysis
    • Fawcett T. An intoduction to ROC analysis. Pattern Recogn Lett 2006, 27(8):861-874.
    • (2006) Pattern Recogn Lett , vol.27 , Issue.8 , pp. 861-874
    • Fawcett, T.1
  • 61
    • 24144470799 scopus 로고    scopus 로고
    • Estimation of the Youden Index and its Associated Cutoff Point
    • 10.1002/bimj.200410135, 16161804
    • Fluss R, Faraggi D, Reiser B. Estimation of the Youden Index and its Associated Cutoff Point. Biometrical Journal 2005, 47(4):458-472. 10.1002/bimj.200410135, 16161804.
    • (2005) Biometrical Journal , vol.47 , Issue.4 , pp. 458-472
    • Fluss, R.1    Faraggi, D.2    Reiser, B.3
  • 62
    • 27544491192 scopus 로고    scopus 로고
    • ROCR: visualizing classifier performance in R
    • 10.1093/bioinformatics/bti623, 16096348
    • Sing T, Sander O, Beerenwinkel N, Lengauer T. ROCR: visualizing classifier performance in R. Bioinformatics 2005, 21(20):3940-3941. 10.1093/bioinformatics/bti623, 16096348.
    • (2005) Bioinformatics , vol.21 , Issue.20 , pp. 3940-3941
    • Sing, T.1    Sander, O.2    Beerenwinkel, N.3    Lengauer, T.4
  • 64
    • 0036798238 scopus 로고    scopus 로고
    • Judging the Quality of Gene Expression-Based Clustering Methods Using Gene Annotation
    • 10.1101/gr.397002, 187526, 12368250
    • Gibbons FD, Roth FP. Judging the Quality of Gene Expression-Based Clustering Methods Using Gene Annotation. Genome Research 2002, 12(10):1574-1581. 10.1101/gr.397002, 187526, 12368250.
    • (2002) Genome Research , vol.12 , Issue.10 , pp. 1574-1581
    • Gibbons, F.D.1    Roth, F.P.2
  • 67
    • 46949104276 scopus 로고    scopus 로고
    • Predicting transcriptional regulatory interactions with artificial neural networks applied to E. coli multidrug resistance efflux pumps
    • 10.1186/1471-2180-8-101, 2453137, 18565227
    • Veiga D, Vicente F, Nicolas M, Vasconcelos AT. Predicting transcriptional regulatory interactions with artificial neural networks applied to E. coli multidrug resistance efflux pumps. BMC Microbiology 2008, 8:101. 10.1186/1471-2180-8-101, 2453137, 18565227.
    • (2008) BMC Microbiology , vol.8 , pp. 101
    • Veiga, D.1    Vicente, F.2    Nicolas, M.3    Vasconcelos, A.T.4
  • 68
    • 33847348163 scopus 로고    scopus 로고
    • Causality and pathway search in microarray time series experiment
    • 10.1093/bioinformatics/btl598, 17158516
    • Mukhopadhyay ND, Chatterjee S. Causality and pathway search in microarray time series experiment. Bioinformatics 2007, 23(4):442-449. 10.1093/bioinformatics/btl598, 17158516.
    • (2007) Bioinformatics , vol.23 , Issue.4 , pp. 442-449
    • Mukhopadhyay, N.D.1    Chatterjee, S.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.