메뉴 건너뛰기




Volumn , Issue , 2009, Pages 56-61

Selection of negative examples in learning gene regulatory networks

Author keywords

Gene regulatory networks; Machine learning

Indexed keywords

BINARY CLASSIFIERS; EXPRESSION LEVELS; FEATURE VECTORS; GENE EXPRESSION DATA; GENE NETWORKS; GENE REGULATIONS; GENE REGULATORY NETWORKS; MACHINE-LEARNING; NEGATIVE EXAMPLES; POSITIVE EXAMPLES; PUBLIC DATABASE; SUPERVISED CLASSIFIERS; SUPERVISED LEARNING METHODS; TRANSFAC; UNLABELED DATA;

EID: 72949116439     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/BIBMW.2009.5332137     Document Type: Conference Paper
Times cited : (9)

References (16)
  • 1
    • 24744435534 scopus 로고    scopus 로고
    • Kernel methods for predicting protein-protein interactions
    • I38-46
    • A. Ben-Hur and W. S. Noble. Kernel methods for predicting protein-protein interactions. Bioinformatics, 21(suppl1):i38-46, 2005.
    • (2005) Bioinformatics , vol.21 , Issue.SUPPL.1
    • Ben-Hur, A.1    Noble, W.S.2
  • 2
    • 0035023445 scopus 로고    scopus 로고
    • Predicting proteinprotein interactions from primary structure
    • J. R. Bock and D. A. Gough. Predicting proteinprotein interactions from primary structure. Bioinformatics, 17(5):455-460, 2001.
    • (2001) Bioinformatics , vol.17 , Issue.5 , pp. 455-460
    • Bock, J.R.1    Gough, D.A.2
  • 4
    • 33846400424 scopus 로고    scopus 로고
    • J. J. Faith, B. Hayete, J. T. Thaden, I. Mogno, J. Wierzbowski, G. Cottarel, S. Kasif, J. J. Collins, and T. S. Gardner. Large-scale mapping and validation of escherichia coli transcriptional regulation from a compendium of expression profiles. PLoS Biol, 5(1):e8, 01 2007.
    • J. J. Faith, B. Hayete, J. T. Thaden, I. Mogno, J. Wierzbowski, G. Cottarel, S. Kasif, J. J. Collins, and T. S. Gardner. Large-scale mapping and validation of escherichia coli transcriptional regulation from a compendium of expression profiles. PLoS Biol, 5(1):e8, 01 2007.
  • 5
    • 72949083416 scopus 로고    scopus 로고
    • Reverse engineering gene regulatory networks with various machine learning methods
    • M. Grzegorczyk, D. Husmeier, and A. V. Werhli. Reverse engineering gene regulatory networks with various machine learning methods. Analysis of Microarray Data, 2008.
    • (2008) Analysis of Microarray Data
    • Grzegorczyk, M.1    Husmeier, D.2    Werhli, A.V.3
  • 6
    • 70450130889 scopus 로고    scopus 로고
    • Gene regulatory network inference: Data integration in dynamic models-a review
    • December
    • M. Hecker, S. Lambeck, S. Toepfer, E. van Someren, and R. Guthke. Gene regulatory network inference: Data integration in dynamic models-a review. Bio Systems, December 2008.
    • (2008) Bio Systems
    • Hecker, M.1    Lambeck, S.2    Toepfer, S.3    van Someren, E.4    Guthke, R.5
  • 7
    • 0031616241 scopus 로고    scopus 로고
    • Reveal, a general reverse engineering algorithm for inference of genetic network architectures
    • S. Liang, S. Fuhrman, and R. Somogyi. Reveal, a general reverse engineering algorithm for inference of genetic network architectures. Pac Symp Biocomput, pages 18-29, 1998.
    • (1998) Pac Symp Biocomput , pp. 18-29
    • Liang, S.1    Fuhrman, S.2    Somogyi, R.3
  • 8
    • 34548160247 scopus 로고    scopus 로고
    • A note on platt's probabilistic outputs for support vector machines
    • H.-T. Lin, C.-J. Lin, and R. C.Weng. A note on platt's probabilistic outputs for support vector machines. Mach. Learn., 68(3):267-276, 2007.
    • (2007) Mach. Learn , vol.68 , Issue.3 , pp. 267-276
    • Lin, H.-T.1    Lin, C.-J.2    Weng, R.C.3
  • 9
    • 59649110273 scopus 로고    scopus 로고
    • Generating Realistic In Silico Gene Networks for Performance Assessment of Reverse Engineering Methods
    • D. Marbach, T. Schaffter, C. Mattiussi, and D. Floreano. Generating Realistic In Silico Gene Networks for Performance Assessment of Reverse Engineering Methods. Journal of Computational Biology, 16(2):229-239, 2009.
    • (2009) Journal of Computational Biology , vol.16 , Issue.2 , pp. 229-239
    • Marbach, D.1    Schaffter, T.2    Mattiussi, C.3    Floreano, D.4
  • 11
    • 49549104230 scopus 로고    scopus 로고
    • SIRENE: Supervised inference of regulatory networks
    • F. Mordelet and J.-P. Vert. SIRENE: supervised inference of regulatory networks. Bioinformatics, 24(16):i76-82, 2008.
    • (2008) Bioinformatics , vol.24 , Issue.16 I76-82
    • Mordelet, F.1    Vert, J.-P.2
  • 13
    • 36249019789 scopus 로고    scopus 로고
    • Dialogue on reverse-engineering assessment and methods : The dream of high-throughput pathway inference
    • G. Stolovitzky, D. Monroe, and A. Califano. Dialogue on reverse-engineering assessment and methods : The dream of high-throughput pathway inference. Annals of the New York Academy of Sciences, 1115:1-22, 2007.
    • (2007) Annals of the New York Academy of Sciences , vol.1115 , pp. 1-22
    • Stolovitzky, G.1    Monroe, D.2    Califano, A.3
  • 14
    • 34249774309 scopus 로고    scopus 로고
    • Reconstructing gene regulatory networks with bayesian networks by combining expression data with multiple sources of prior knowledge
    • 6:Article15
    • A. V. Werhli and D. Husmeier. Reconstructing gene regulatory networks with bayesian networks by combining expression data with multiple sources of prior knowledge. Stat Appl Genet Mol Biol, 6:Article15, 2007.
    • (2007) Stat Appl Genet Mol Biol
    • Werhli, A.V.1    Husmeier, D.2
  • 16
    • 34447328438 scopus 로고    scopus 로고
    • Glycan classification with tree kernels
    • Y. Yamanishi, F. Bach, and J.-P. Vert. Glycan classification with tree kernels. Bioinformatics, 23(10):1211-1216, 2007.
    • (2007) Bioinformatics , vol.23 , Issue.10 , pp. 1211-1216
    • Yamanishi, Y.1    Bach, F.2    Vert, J.-P.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.