-
1
-
-
84949746044
-
Low power design challenges for the decade
-
S. Borkar, "Low power design challenges for the decade," in Proc. ASPDAC, 2001, pp. 293-296.
-
(2001)
Proc. ASPDAC
, pp. 293-296
-
-
Borkar, S.1
-
2
-
-
34548151175
-
Towards a thermal Moore's law
-
DOI 10.1109/TADVP.2007.898517, Special Section on Wafer-Level Packaging
-
S. Krishnan, S. V. Garimella, G. M. Chrysler, and R. V. Mahajan, "Towards a thermal Moore's law," IEEE Trans. Adv. Packag., vol. 30, no. 3, pp. 462-474, Aug. 2007. (Pubitemid 47308004)
-
(2007)
IEEE Transactions on Advanced Packaging
, vol.30
, Issue.3
, pp. 462-474
-
-
Krishnan, S.1
Garimella, S.V.2
Chrysler, G.M.3
Mahajan, R.V.4
-
3
-
-
64449083272
-
Onchip cooling by superlattice-based thin-film thermoelectrics
-
Apr.
-
I. Chowdhury, R. Prasher, K. Lofgreen, G. Chrysler, S. Narasimhan, R. Mahajan, D. Koester, R. Alley, and R. Venkatasubramanian, "Onchip cooling by superlattice-based thin-film thermoelectrics," Nature Nanotechnol., Lett., vol. 4, pp. 235-238, Apr. 2009.
-
(2009)
Nature Nanotechnol., Lett.
, vol.4
, pp. 235-238
-
-
Chowdhury, I.1
Prasher, R.2
Lofgreen, K.3
Chrysler, G.4
Narasimhan, S.5
Mahajan, R.6
Koester, D.7
Alley, R.8
Venkatasubramanian, R.9
-
4
-
-
70449729945
-
Dynamic thermal management using thin-film thermoelectric cooling
-
Aug.
-
P. Chaparro, J. González, Q. Cai, and G. Chrysler, "Dynamic thermal management using thin-film thermoelectric cooling," in Proc. 14th ACM/IEEE Int. Symp. Low Power Electron. Design, Aug. 2009, pp. 111-116.
-
(2009)
Proc. 14th ACM/IEEE Int. Symp. Low Power Electron. Design
, pp. 111-116
-
-
Chaparro, P.1
González, J.2
Cai, Q.3
Chrysler, G.4
-
6
-
-
0001173915
-
Effect of quantum-well structures on the thermoelectric figure of merit
-
May
-
L. D. Hicks and M. S. Dresselhaus, "Effect of quantum-well structures on the thermoelectric figure of merit," Phys. Rev. B, vol. 47, no. 19, pp. 12727-12731, May 1993.
-
(1993)
Phys. Rev. B
, vol.47
, Issue.19
, pp. 12727-12731
-
-
Hicks, L.D.1
Dresselhaus, M.S.2
-
7
-
-
77957560335
-
Nanostructured thermoelectrics: Big efficiency gains from small features
-
C. J. Vineis, A. Shakouri, A. Majumdar, and M. G. Kanatzidis, "Nanostructured thermoelectrics: Big efficiency gains from small features," Adv. Mater., vol. 22, no. 36, pp. 3970-3980, 2010.
-
(2010)
Adv. Mater.
, vol.22
, Issue.36
, pp. 3970-3980
-
-
Vineis, C.J.1
Shakouri, A.2
Majumdar, A.3
Kanatzidis, M.G.4
-
8
-
-
0035846181
-
Thin-film thermoelectric devices with high room-temperature figures of merit
-
DOI 10.1038/35098012
-
R. Venkatasubramanian, E. Siivola, T. Colpitts, and B. O'Quinn, "Thin film thermoelectric devices with high room-temperature figures of merit," Nature, vol. 413, pp. 597-602, Oct. 2001. (Pubitemid 32964053)
-
(2001)
Nature
, vol.413
, Issue.6856
, pp. 597-602
-
-
Venkatasubramanian, R.1
Siivola, E.2
Colpitts, T.3
O'Quinn, B.4
-
9
-
-
33748964840
-
Large external-T and cooling power densities in thin-film Bi2Te3-superlattice thermoelectric cooling devices
-
G. E. Bulman, E. Siivola, B. Shen, and R. Venkatasubramanian, "Large external-T and cooling power densities in thin-film Bi2Te3-superlattice thermoelectric cooling devices," Appl. Phys. Lett., vol. 89, no. 12, pp. 122117-1-122117-2, 2006.
-
(2006)
Appl. Phys. Lett.
, vol.89
, Issue.12
, pp. 1221171-1221172
-
-
Bulman, G.E.1
Siivola, E.2
Shen, B.3
Venkatasubramanian, R.4
-
11
-
-
46449085036
-
High-thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys
-
DOI 10.1126/science.1156446
-
B. Poudel, Q. Hao, Y. Ma, Y. Lan, A. Minnich, B. Yu, X. Yan, D. Wang, A. Muto, D. Vashaee, X. Chen, J. Liu, M. S. Dresselhaus, G. Chen, and Z. Ren, "High thermoelectric performance of nanostructured Bi2Te3 alloys," Science, vol. 320, pp. 634-638, May 2008. (Pubitemid 351928340)
-
(2008)
Science
, vol.320
, Issue.5876
, pp. 634-638
-
-
Poudel, B.1
Hao, Q.2
Ma, Y.3
Lan, Y.4
Minnich, A.5
Yu, B.6
Yan, X.7
Wang, D.8
Muto, A.9
Vashaee, D.10
Chen, X.11
Liu, J.12
Dresselhaus, M.S.13
Chen, G.14
Ren, Z.15
-
12
-
-
56249139693
-
Enhanced thermoelectric figure-of-merit in nanostructured n-type silicon germanium bulk alloys
-
X. W. Wang, H. Lee, Y. C. Lan, G. H. Zhu, G. Joshi, D. Z. Wang, J. Yang, A. J. Muto, M. Y. Tang, J. Klatsky, S. Song, M. S. Dresselhaus, G. Chen, and Z. F. Ren, "Enhanced thermoelectric figure-of-merit in nanostructured n-type silicon germanium bulk alloys," Appl. Phys. Lett., vol. 93, no. 19, pp. 193121-1-193121-3, 2008.
-
(2008)
Appl. Phys. Lett.
, vol.93
, Issue.19
, pp. 1931211-1931213
-
-
Wang, X.W.1
Lee, H.2
Lan, Y.C.3
Zhu, G.H.4
Joshi, G.5
Wang, D.Z.6
Yang, J.7
Muto, A.J.8
Tang, M.Y.9
Klatsky, J.10
Song, S.11
Dresselhaus, M.S.12
Chen, G.13
Ren, Z.F.14
-
13
-
-
33644516940
-
Thermal conductance of metal-metal interfaces
-
B. Gundrum, D. G. Cahill, and R. S. Averback, "Thermal conductance of metal-metal interfaces," Phys. Rev. B, vol. 72, no. 24, pp. 245426-1-245426-5, 2005.
-
(2005)
Phys. Rev. B
, vol.72
, Issue.24
, pp. 2454261-2454265
-
-
Gundrum, B.1
Cahill, D.G.2
Averback, R.S.3
-
14
-
-
0000892959
-
Wiedemann-Franz law at boundaries
-
G. D. Mahan and M. Bartkowiak, "Wiedemann-Franz law at boundaries," Appl. Phys. Lett., vol. 74, no. 7, pp. 953-954, Feb. 1999. (Pubitemid 129615362)
-
(1999)
Applied Physics Letters
, vol.74
, Issue.7
, pp. 953-954
-
-
Mahan, G.D.1
Bartkowiak, M.2
-
15
-
-
0033100269
-
Batch transfer of microstructures using flip-chip solder bonding
-
Mar.
-
A. Singh, D. A. Horsley, M. B. Cohn, A. P. Pisano, and R. T. Howe, "Batch transfer of microstructures using flip-chip solder bonding," IEEE J. Mircomech. Sys., vol. 8, no. 1, pp. 27-33, Mar. 1999.
-
(1999)
IEEE J. Mircomech. Sys.
, vol.8
, Issue.1
, pp. 27-33
-
-
Singh, A.1
Horsley, D.A.2
Cohn, M.B.3
Pisano, A.P.4
Howe, R.T.5
-
16
-
-
35348885430
-
Novel low-temperature CoC interconnection technology for multichip LSI (MCL)
-
S. Wakiyama, H. Ozaki, Y. Nabe, T. Kume, T. Ezaki, and T. Ogawa, "Novel low-temperature CoC interconnection technology for multichip LSI (MCL)," in Proc. ECTC, 2007, pp. 1-6.
-
(2007)
Proc. ECTC
, pp. 1-6
-
-
Wakiyama, S.1
Ozaki, H.2
Nabe, Y.3
Kume, T.4
Ezaki, T.5
Ogawa, T.6
-
17
-
-
33746400169
-
HotSpot: A compact thermal modeling methodology for early-stage VLSI design
-
DOI 10.1109/TVLSI.2006.876103, 1650228
-
W. Huang, S. Ghosh, S. Velusamy, K. Sankaranarayanan, K. Skadron, and M. R. Stan, "hotspot: A compact thermal modeling methodology for early-stage VLSI design," IEEE Trans. Very Large Scale Integr. (VLSI), vol. 14, no. 5, pp. 501-513, May 2006. (Pubitemid 44121537)
-
(2006)
IEEE Transactions on Very Large Scale Integration (VLSI) Systems
, vol.14
, Issue.5
, pp. 501-513
-
-
Huang, W.1
Ghosh, S.2
Velusamy, S.3
Sankaranarayanan, K.4
Skadron, K.5
Stan, M.R.6
-
18
-
-
33947286619
-
Thermal interface materials: Historical perspective, status, and future directions
-
DOI 10.1109/JPROC.2006.879796
-
R. Prasher, "Thermal interface materials: Historical perspectives, status and future directions," Proc. IEEE, vol. 94, no. 8, pp. 1571-1586, Aug. 2006. (Pubitemid 46432336)
-
(2006)
Proceedings of the IEEE
, vol.94
, Issue.8
, pp. 1571-1586
-
-
Prasher, R.1
-
19
-
-
33746214872
-
Analytical modeling of silicon thermoelectric microcooler
-
P. Wang, A. B. Cohen, B. Yang, G. L. Solbrekken, and A. Shakouri, "Analytical modeling of silicon thermoelectric microcooler," J. Appl. Phys., vol. 100, no. 1, pp. 014501-1-014501-13, 2006.
-
(2006)
J. Appl. Phys.
, vol.100
, Issue.1
, pp. 0145011-01450113
-
-
Wang, P.1
Cohen, A.B.2
Yang, B.3
Solbrekken, G.L.4
Shakouri, A.5
-
20
-
-
34548025127
-
On-chip hot spot cooling using siliconbased thermoelectric microcooler
-
P. Wang and A. B. Cohen, "On-chip hot spot cooling using siliconbased thermoelectric microcooler," J. Appl. Phys., vol. 102, no. 3, pp. 034503-1-034503-11, 2007.
-
(2007)
J. Appl. Phys.
, vol.102
, Issue.3
, pp. 0345031-03450311
-
-
Wang, P.1
Cohen, A.B.2
-
21
-
-
4444337043
-
Use of superlattice thermionic emission for 'Hotspot' reduction in convectivelycooled chip
-
G. L. Solbrekken, Y. Zhang, A. Bar-Cohen, and A. Shakouri, "Use of superlattice thermionic emission for 'Hotspot' reduction in convectivelycooled chip," in Proc. 9th ITHERM, 2004, pp. 610-616.
-
(2004)
Proc. 9th ITHERM
, pp. 610-616
-
-
Solbrekken, G.L.1
Zhang, Y.2
Bar-Cohen, A.3
Shakouri, A.4
-
22
-
-
33750101293
-
Thermoelectric microcooler for hotspot thermal management
-
P. Wang, A. B. Cohen, B. Yang, G. L. Solbrekken, Y. Zhang, and A. Shakouri, "Thermoelectric microcooler for hotspot thermal management," in Proc. InterPACK, 2005, pp. 2161-2171.
-
(2005)
Proc. InterPACK
, pp. 2161-2171
-
-
Wang, P.1
Cohen, A.B.2
Yang, B.3
Solbrekken, G.L.4
Zhang, Y.5
Shakouri, A.6
-
23
-
-
77949570690
-
Superlattice ?TEC hot spot cooling
-
Mar.
-
V. Litvinovitch, P. Wang, and A. Bar-Cohen, "Superlattice ?TEC hot spot cooling," IEEE Trans. Compon. Packag. Technol., vol. 33, no. 1, pp. 229-239, Mar. 2010.
-
(2010)
IEEE Trans. Compon. Packag. Technol.
, vol.33
, Issue.1
, pp. 229-239
-
-
Litvinovitch, V.1
Wang, P.2
Bar-Cohen, A.3
-
24
-
-
51149122127
-
Mini-contact enhanced thermoelectric cooling of hot spot in high power devices
-
Sep.
-
B. Yang, P. Wang, and A. Bar-Cohen, "Mini-contact enhanced thermoelectric cooling of hot spot in high power devices," IEEE Trans. Compon. Packag. Technol., vol. 30, no. 3, pp. 432-438, Sep. 2007.
-
(2007)
IEEE Trans. Compon. Packag. Technol.
, vol.30
, Issue.3
, pp. 432-438
-
-
Yang, B.1
Wang, P.2
Bar-Cohen, A.3
-
25
-
-
33744795772
-
On-chip high speed localized cooling using superlattice microrefrigerators
-
DOI 10.1109/TCAPT.2006.875884
-
Y. Zhang, J. Christofferson, A. Shakouri, and G. Zeng, "On-chip high speed localized cooling using superlattice microrefrigerators," IEEE Trans. Compon. Packag. Technol., vol. 29, no. 2, pp. 395-401, Jun. 2006. (Pubitemid 43834576)
-
(2006)
IEEE Transactions on Components and Packaging Technologies
, vol.29
, Issue.2
, pp. 395-401
-
-
Zhang, Y.1
Christofferson, J.2
Shakouri, A.3
Zeng, G.4
Bowers, J.E.5
Croke, E.T.6
-
26
-
-
33947200692
-
Design of bulk thermoelectric modules for integrated circuit thermal management
-
Dec.
-
K. Fukutani and A. Shakouri, "Design of bulk thermoelectric modules for integrated circuit thermal management," IEEE Trans. Compon. Packag. Technol., vol. 29, no. 4, pp. 751-757, Dec. 2006.
-
(2006)
IEEE Trans. Compon. Packag. Technol.
, vol.29
, Issue.4
, pp. 751-757
-
-
Fukutani, K.1
Shakouri, A.2
-
27
-
-
84859806238
-
Ultrathin thermoelectric devices for on-chip peltier cooling
-
Sep.
-
M. Gupta, M.-H. Sayer, S. Mukhopadhyay, and S. Kumar, "Ultrathin thermoelectric devices for on-chip peltier cooling," IEEE Trans. Compon. Packag. Technol., vol. 21, no. 9, pp. 1395-1405, Sep. 2011.
-
(2011)
IEEE Trans. Compon. Packag. Technol.
, vol.21
, Issue.9
, pp. 1395-1405
-
-
Gupta, M.1
Sayer, M.-H.2
Mukhopadhyay, S.3
Kumar, S.4
-
28
-
-
67650479725
-
Optimization of microscale thermoelectric cooling (TEC) element dimensions for hotspot cooling applications
-
P. Y. Hou, R. Baskaran, and K. F. Böhringer, "Optimization of microscale thermoelectric cooling (TEC) element dimensions for hotspot cooling applications," J. Electron. Mater., vol. 38, no. 7, pp. 950-953, 2009.
-
(2009)
J. Electron. Mater.
, vol.38
, Issue.7
, pp. 950-953
-
-
Hou, P.Y.1
Baskaran, R.2
Böhringer, K.F.3
-
29
-
-
50249140143
-
Energy harvesting for electronics with thermoelectric devices using nanoscale materials
-
Dec.
-
R. Venkatasubramanian, C. Watkins, D. Stokes, and J. Posthill, "Energy harvesting for electronics with thermoelectric devices using nanoscale materials," in Proc. IEEE IEDM, Dec. 2007, pp. 367-370.
-
(2007)
Proc. IEEE IEDM
, pp. 367-370
-
-
Venkatasubramanian, R.1
Watkins, C.2
Stokes, D.3
Posthill, J.4
-
30
-
-
70349925554
-
Effects of high figure of merit Bi2Te3 based superlattices on thermoelectric power generation
-
Aug.
-
C. A. Howells, C. Watkins, and R. Venkatasubramanian, "Effects of high figure of merit Bi2Te3 based superlattices on thermoelectric power generation," in Proc. Energy Sustainability, Aug. 2008.
-
(2008)
Proc. Energy Sustainability
-
-
Howells, C.A.1
Watkins, C.2
Venkatasubramanian, R.3
-
31
-
-
77953795294
-
Thin-film superlattice thermoelectric materials and device technologies for energy harvesting applications
-
Apr. doi:10.1117/12.850686
-
C. D. Stokes, E. A. Duff, M. J. Mantini, B. A. Grant, P. P. Barletta, and R. Venkatasubramanian, "Thin-film superlattice thermoelectric materials and device technologies for energy harvesting applications," Proc. SPIE Energy Harvest. Storage: Mater., Devices, Appl., vol. 7683, p. 76830W, Apr. 2010, doi:10.1117/12.850686.
-
(2010)
Proc. SPIE Energy Harvest. Storage: Mater., Devices, Appl.
, vol.7683
-
-
Stokes, C.D.1
Duff, E.A.2
Mantini, M.J.3
Grant, B.A.4
Barletta, P.P.5
Venkatasubramanian, R.6
-
32
-
-
79955527731
-
Chip-level thermoelectric power generators based on high-density silicon nanowire array prepared with top-down CMOS technology
-
May
-
Y. Li, K. Buddharaju, N. Singh, and G. Q. Lo, "Chip-level thermoelectric power generators based on high-density silicon nanowire array prepared with top-down CMOS technology," IEEE Elect. Device Lett., vol. 32, no. 5, pp. 674-676, May 2011.
-
(2011)
IEEE Elect. Device Lett.
, vol.32
, Issue.5
, pp. 674-676
-
-
Li, Y.1
Buddharaju, K.2
Singh, N.3
Lo, G.Q.4
-
33
-
-
44449084415
-
Heat driven cooling of portable electronics using thermoelectric technology
-
DOI 10.1109/TADVP.2008.920356
-
G. L. Solbrekken, K. Yazawa, and A. Bar-Cohen, "Heat driven cooling of portable electronics using thermoelectric technology," IEEE Trans. Adv. Pack., vol. 31, no. 2, pp. 429-437, May 2008. (Pubitemid 351761596)
-
(2008)
IEEE Transactions on Advanced Packaging
, vol.31
, Issue.2
, pp. 429-437
-
-
Solbrekken, G.L.1
Yazawa, K.2
Bar-Cohen, A.3
|