메뉴 건너뛰기




Volumn 32, Issue 1, 2014, Pages 11-20

Biotechnological approaches toward nanoparticle biofunctionalization

Author keywords

Ligand orientation; Nanoparticles; Tailoring; Targeting; Tumor

Indexed keywords

BIOFUNCTIONALIZATION; BIOTECHNOLOGICAL APPROACHES; DESIGN AND DEVELOPMENT; DIAGNOSTIC APPLICATIONS; NON-SPECIFIC PROTEIN ADSORPTION; TAILORING; TARGETING; TARGETING MOLECULES;

EID: 84890788346     PISSN: 01677799     EISSN: 18793096     Source Type: Journal    
DOI: 10.1016/j.tibtech.2013.09.006     Document Type: Review
Times cited : (106)

References (85)
  • 1
    • 84555178913 scopus 로고    scopus 로고
    • Treating metastatic cancer with nanotechnology
    • Schroeder A., et al. Treating metastatic cancer with nanotechnology. Nat. Rev. Cancer 2012, 12:39-50.
    • (2012) Nat. Rev. Cancer , vol.12 , pp. 39-50
    • Schroeder, A.1
  • 2
    • 0038469746 scopus 로고    scopus 로고
    • Noninvasive detection of clinically occult lymph node metastases in prostate cancer
    • Harisinghani M.G., et al. Noninvasive detection of clinically occult lymph node metastases in prostate cancer. N. Engl. J. Med. 2003, 348:2491-2499.
    • (2003) N. Engl. J. Med. , vol.348 , pp. 2491-2499
    • Harisinghani, M.G.1
  • 3
    • 3543022686 scopus 로고    scopus 로고
    • Reduced cardiotoxicity and preserved antitumor efficacy of liposome-encapsulated doxorubicin and cyclophosphamide compared with conventional doxorubicin and cyclophosphamide in a randomized, multicenter trial of metastatic breast cancer
    • Gao X., et al. Reduced cardiotoxicity and preserved antitumor efficacy of liposome-encapsulated doxorubicin and cyclophosphamide compared with conventional doxorubicin and cyclophosphamide in a randomized, multicenter trial of metastatic breast cancer. Nat. Biotechnol. 2004, 22:969-976.
    • (2004) Nat. Biotechnol. , vol.22 , pp. 969-976
    • Gao, X.1
  • 4
    • 84855961163 scopus 로고    scopus 로고
    • Nanoparticle delivery of cancer drugs
    • Wang A.Z., et al. Nanoparticle delivery of cancer drugs. Annu. Rev. Med. 2012, 63:185-198.
    • (2012) Annu. Rev. Med. , vol.63 , pp. 185-198
    • Wang, A.Z.1
  • 5
    • 84863666971 scopus 로고    scopus 로고
    • Targeting strategies for multifunctional nanoparticles in cancer imaging and therapy
    • Yu M.K., et al. Targeting strategies for multifunctional nanoparticles in cancer imaging and therapy. Theranostics 2012, 2:3-44.
    • (2012) Theranostics , vol.2 , pp. 3-44
    • Yu, M.K.1
  • 6
    • 78049351925 scopus 로고    scopus 로고
    • A reexamination of active and passive tumor targeting by using rod-shaped gold nanocrystals and covalently conjugated peptide ligands
    • Huang X., et al. A reexamination of active and passive tumor targeting by using rod-shaped gold nanocrystals and covalently conjugated peptide ligands. ACS Nano 2010, 4:5887-5896.
    • (2010) ACS Nano , vol.4 , pp. 5887-5896
    • Huang, X.1
  • 7
    • 77953687871 scopus 로고    scopus 로고
    • HER2 targeting as a two-sided strategy for breast cancer diagnosis and treatment: outlook and recent implications in nanomedical approaches
    • Colombo M., et al. HER2 targeting as a two-sided strategy for breast cancer diagnosis and treatment: outlook and recent implications in nanomedical approaches. Pharmacol. Res. 2010, 62:150-165.
    • (2010) Pharmacol. Res. , vol.62 , pp. 150-165
    • Colombo, M.1
  • 8
    • 79961039002 scopus 로고    scopus 로고
    • The controlled display of biomolecules on nanoparticles: a challenge suited to bioorthogonal chemistry
    • Russ Algar W., et al. The controlled display of biomolecules on nanoparticles: a challenge suited to bioorthogonal chemistry. Bioconjug. Chem. 2011, 22:825-858.
    • (2011) Bioconjug. Chem. , vol.22 , pp. 825-858
    • Russ Algar, W.1
  • 9
    • 34547562693 scopus 로고    scopus 로고
    • Unfolding of ribonuclease A on silica nanoparticle surfaces
    • Shang W., et al. Unfolding of ribonuclease A on silica nanoparticle surfaces. Nano Lett. 2007, 7:1991-1995.
    • (2007) Nano Lett. , vol.7 , pp. 1991-1995
    • Shang, W.1
  • 10
    • 52649165549 scopus 로고    scopus 로고
    • Structure and function of nanoparticle-protein conjugates
    • Aubin-Tam M.E., et al. Structure and function of nanoparticle-protein conjugates. Biomed. Mater. 2008, 3:34001-34017.
    • (2008) Biomed. Mater. , vol.3 , pp. 34001-34017
    • Aubin-Tam, M.E.1
  • 11
    • 84862867927 scopus 로고    scopus 로고
    • Molecular interaction of proteins and peptides with nanoparticles
    • Shemetov A.A., et al. Molecular interaction of proteins and peptides with nanoparticles. ACS Nano 2012, 6:4585-4602.
    • (2012) ACS Nano , vol.6 , pp. 4585-4602
    • Shemetov, A.A.1
  • 12
    • 84866154779 scopus 로고    scopus 로고
    • Effect of gold nanoparticle structure on the conformation and function of adsorbed proteins
    • Gagner J.E., et al. Effect of gold nanoparticle structure on the conformation and function of adsorbed proteins. Biomaterials 2012, 33:8503-8516.
    • (2012) Biomaterials , vol.33 , pp. 8503-8516
    • Gagner, J.E.1
  • 13
    • 80052534622 scopus 로고    scopus 로고
    • Adsorption of antibody onto Pluronic F68-covered nanoparticles: link with surface properties
    • Torcello-Gomez A., et al. Adsorption of antibody onto Pluronic F68-covered nanoparticles: link with surface properties. Soft Matter 2011, 7:8450-8461.
    • (2011) Soft Matter , vol.7 , pp. 8450-8461
    • Torcello-Gomez, A.1
  • 14
    • 77954293169 scopus 로고    scopus 로고
    • Conformational transitions of adsorbed proteins on surfaces of varying polarity
    • Anand G., et al. Conformational transitions of adsorbed proteins on surfaces of varying polarity. Langmuir 2010, 26:10803-10811.
    • (2010) Langmuir , vol.26 , pp. 10803-10811
    • Anand, G.1
  • 15
    • 84875107285 scopus 로고    scopus 로고
    • A hydrophobic gold surface triggers misfolding and aggregation of the amyloidogenic Josephin domain in monomeric form, while leaving the oligomers unaffected
    • 1-8
    • Apicella A., et al. A hydrophobic gold surface triggers misfolding and aggregation of the amyloidogenic Josephin domain in monomeric form, while leaving the oligomers unaffected. PLoS ONE 2013, 8:e58794. 1-8.
    • (2013) PLoS ONE , vol.8
    • Apicella, A.1
  • 16
    • 4043075579 scopus 로고    scopus 로고
    • Silica nanoparticle size influences the structure and enzymatic activity of adsorbed lysozyme
    • Vertegel A.A., et al. Silica nanoparticle size influences the structure and enzymatic activity of adsorbed lysozyme. Langmuir 2004, 20:6800-6807.
    • (2004) Langmuir , vol.20 , pp. 6800-6807
    • Vertegel, A.A.1
  • 17
    • 62749100589 scopus 로고    scopus 로고
    • Cytochrome c on silica nanoparticles: influence of nanoparticle size on protein structure, stability, and activity
    • Shang W., et al. Cytochrome c on silica nanoparticles: influence of nanoparticle size on protein structure, stability, and activity. Small 2009, 5:470-476.
    • (2009) Small , vol.5 , pp. 470-476
    • Shang, W.1
  • 18
    • 79960846411 scopus 로고    scopus 로고
    • Effect of gold nanoparticle morphology on adsorbed protein structure and function
    • Gagner J.E., et al. Effect of gold nanoparticle morphology on adsorbed protein structure and function. Biomaterials 2011, 32:7241-7252.
    • (2011) Biomaterials , vol.32 , pp. 7241-7252
    • Gagner, J.E.1
  • 19
    • 84862646346 scopus 로고    scopus 로고
    • Designing the nanoparticle-biomolecule interface for targeting and therapeutic delivery
    • Mahon E., et al. Designing the nanoparticle-biomolecule interface for targeting and therapeutic delivery. J. Control. Release 2012, 161:164-174.
    • (2012) J. Control. Release , vol.161 , pp. 164-174
    • Mahon, E.1
  • 20
    • 34547302844 scopus 로고    scopus 로고
    • Elucidating the mechanism of cellular uptake and removal of protein-coated gold nanoparticles of different sizes and shapes
    • Chithrani B.D., et al. Elucidating the mechanism of cellular uptake and removal of protein-coated gold nanoparticles of different sizes and shapes. Nano Lett. 2007, 7:1542-1550.
    • (2007) Nano Lett. , vol.7 , pp. 1542-1550
    • Chithrani, B.D.1
  • 21
    • 79951604844 scopus 로고    scopus 로고
    • Investigating the structural biofunctionality of antibodies conjugated to magnetic nanoparticles
    • Occhipinti E., et al. Investigating the structural biofunctionality of antibodies conjugated to magnetic nanoparticles. Nanoscale 2011, 3:387-390.
    • (2011) Nanoscale , vol.3 , pp. 387-390
    • Occhipinti, E.1
  • 22
    • 33750463714 scopus 로고    scopus 로고
    • Universal tools for biomolecular attachment to surfaces
    • Medintz I. Universal tools for biomolecular attachment to surfaces. Nat. Mater. 2006, 5:842.
    • (2006) Nat. Mater. , vol.5 , pp. 842
    • Medintz, I.1
  • 23
    • 84875206491 scopus 로고    scopus 로고
    • Functionalizing nanoparticles with biological molecules: developing chemistries that facilitate nanotechnology
    • Sapsford K.E., et al. Functionalizing nanoparticles with biological molecules: developing chemistries that facilitate nanotechnology. Chem. Rev. 2012, 113:1904-2074.
    • (2012) Chem. Rev. , vol.113 , pp. 1904-2074
    • Sapsford, K.E.1
  • 24
    • 70350575309 scopus 로고    scopus 로고
    • Plasmonic nanorod metamaterials for biosensing
    • Kabashin A.V., et al. Plasmonic nanorod metamaterials for biosensing. Nat. Mater. 2006, 8:867-871.
    • (2006) Nat. Mater. , vol.8 , pp. 867-871
    • Kabashin, A.V.1
  • 25
    • 33646046844 scopus 로고    scopus 로고
    • Metabolic biotinylation of cell surface receptors for in vivo imaging
    • Tannous B.A., et al. Metabolic biotinylation of cell surface receptors for in vivo imaging. Nat. Methods 2004, 3:391-396.
    • (2004) Nat. Methods , vol.3 , pp. 391-396
    • Tannous, B.A.1
  • 26
    • 59449093769 scopus 로고    scopus 로고
    • Single chain epidermal growth factor receptor antibody conjugated nanoparticles for in vivo tumor targeting and imaging
    • Yang L., et al. Single chain epidermal growth factor receptor antibody conjugated nanoparticles for in vivo tumor targeting and imaging. Small 2009, 5:235-243.
    • (2009) Small , vol.5 , pp. 235-243
    • Yang, L.1
  • 27
    • 84880844671 scopus 로고    scopus 로고
    • Assessing the in vivo targeting efficiency of multifunctional nanoconstructs bearing antibody-derived ligands
    • Fiandra L., et al. Assessing the in vivo targeting efficiency of multifunctional nanoconstructs bearing antibody-derived ligands. ACS Nano 2013, 7:6092-6102.
    • (2013) ACS Nano , vol.7 , pp. 6092-6102
    • Fiandra, L.1
  • 28
    • 84872870445 scopus 로고    scopus 로고
    • NaGdF4 Nanoparticle-based molecular probes for magnetic resonance imaging of intraperitoneal tumor xenografts in vivo
    • Hou Y., et al. NaGdF4 Nanoparticle-based molecular probes for magnetic resonance imaging of intraperitoneal tumor xenografts in vivo. ACS Nano 2013, 7:330-338.
    • (2013) ACS Nano , vol.7 , pp. 330-338
    • Hou, Y.1
  • 29
    • 84872406581 scopus 로고    scopus 로고
    • Magnetic gold nanoparticles in SERS-based sandwich immunoassay for antigen detection by well oriented antibodies
    • Baniukevic J., et al. Magnetic gold nanoparticles in SERS-based sandwich immunoassay for antigen detection by well oriented antibodies. Biosens. Bioelectron. 2013, 43:281-288.
    • (2013) Biosens. Bioelectron. , vol.43 , pp. 281-288
    • Baniukevic, J.1
  • 30
    • 0027944205 scopus 로고
    • Synthesis of proteins by native chemical ligation
    • Dawson P.E., et al. Synthesis of proteins by native chemical ligation. Science 1994, 266:776-779.
    • (1994) Science , vol.266 , pp. 776-779
    • Dawson, P.E.1
  • 31
    • 35348985488 scopus 로고    scopus 로고
    • Site-specific protein and peptide immobilization on a biosensor surface by pulsed native chemical ligation
    • Helmes B., et al. Site-specific protein and peptide immobilization on a biosensor surface by pulsed native chemical ligation. Chembiochem 2007, 8:1790-1794.
    • (2007) Chembiochem , vol.8 , pp. 1790-1794
    • Helmes, B.1
  • 32
    • 0000096835 scopus 로고    scopus 로고
    • Click chemistry: diverse chemical function from a few good reactions
    • Kolb H.C., et al. Click chemistry: diverse chemical function from a few good reactions. Angew. Chem. Int. Ed. Engl. 2001, 40:2004-2021.
    • (2001) Angew. Chem. Int. Ed. Engl. , vol.40 , pp. 2004-2021
    • Kolb, H.C.1
  • 33
    • 38349163224 scopus 로고    scopus 로고
    • One-step bioengineering of magnetic nanoparticles via a surface diazo transfer/azide-alkyne click reaction sequence
    • Polito L., et al. One-step bioengineering of magnetic nanoparticles via a surface diazo transfer/azide-alkyne click reaction sequence. Chem. Commun. (Camb.) 2008, 621-623.
    • (2008) Chem. Commun. (Camb.) , pp. 621-623
    • Polito, L.1
  • 34
    • 80052942899 scopus 로고    scopus 로고
    • Unclicking the click: mechanically facilitated 1,3-dipolar cycloreversions
    • Brantley J.N., et al. Unclicking the click: mechanically facilitated 1,3-dipolar cycloreversions. Science 2011, 333:1606-1609.
    • (2011) Science , vol.333 , pp. 1606-1609
    • Brantley, J.N.1
  • 35
    • 67649625295 scopus 로고    scopus 로고
    • CUA pair and click chemistry
    • CUA pair and click chemistry. J. Am. Chem. Soc. 2009, 131:8720-8721.
    • (2009) J. Am. Chem. Soc. , vol.131 , pp. 8720-8721
    • Nguyen, D.P.1
  • 36
    • 34347218266 scopus 로고    scopus 로고
    • Labeling, detection and identification of newly synthesized proteomes with bioorthogonal non-canonical amino-acid tagging
    • Dieterich D.C., et al. Labeling, detection and identification of newly synthesized proteomes with bioorthogonal non-canonical amino-acid tagging. Nat. Protoc. 2007, 2:532-540.
    • (2007) Nat. Protoc. , vol.2 , pp. 532-540
    • Dieterich, D.C.1
  • 37
    • 77949863611 scopus 로고    scopus 로고
    • Cu-free click cycloaddition reactions in chemical biology
    • Jewett J.C., et al. Cu-free click cycloaddition reactions in chemical biology. Chem. Soc. Rev. 2010, 39:1272-1279.
    • (2010) Chem. Soc. Rev. , vol.39 , pp. 1272-1279
    • Jewett, J.C.1
  • 38
    • 76649119485 scopus 로고    scopus 로고
    • Copper-free click chemistry in living animals
    • Changa P.V., et al. Copper-free click chemistry in living animals. Proc. Natl. Acad. Sci. U.S.A. 2010, 107:1821-1826.
    • (2010) Proc. Natl. Acad. Sci. U.S.A. , vol.107 , pp. 1821-1826
    • Changa, P.V.1
  • 39
    • 84855426017 scopus 로고    scopus 로고
    • Site-specific conjugation of scfvs to nanoparticles by bioorthogonal strain-promoted alkyne-nitrone cycloaddition
    • Colombo M., et al. Site-specific conjugation of scfvs to nanoparticles by bioorthogonal strain-promoted alkyne-nitrone cycloaddition. Angew. Chem. Int. Ed. Engl. 2012, 51:496-499.
    • (2012) Angew. Chem. Int. Ed. Engl. , vol.51 , pp. 496-499
    • Colombo, M.1
  • 40
    • 75749122278 scopus 로고    scopus 로고
    • Combining chemoselective ligation with polyhistidine-driven self-assembly for the modular display of biomolecules on quantum dots
    • Prasuhn D.J., et al. Combining chemoselective ligation with polyhistidine-driven self-assembly for the modular display of biomolecules on quantum dots. ACS Nano 2010, 4:267-278.
    • (2010) ACS Nano , vol.4 , pp. 267-278
    • Prasuhn, D.J.1
  • 41
    • 77956449353 scopus 로고    scopus 로고
    • Bioorthogonal chemistry amplifies nanoparticle binding and enhances the sensitivity of cell detection
    • Haun J.B., et al. Bioorthogonal chemistry amplifies nanoparticle binding and enhances the sensitivity of cell detection. Nat. Nanotechnol. 2010, 5:660-665.
    • (2010) Nat. Nanotechnol. , vol.5 , pp. 660-665
    • Haun, J.B.1
  • 42
    • 0034677879 scopus 로고    scopus 로고
    • Cell surface engineering by a modified staudinger reaction
    • Saxon E., et al. Cell surface engineering by a modified staudinger reaction. Science 2000, 287:2007-2010.
    • (2000) Science , vol.287 , pp. 2007-2010
    • Saxon, E.1
  • 43
    • 44849103433 scopus 로고    scopus 로고
    • Targeting of polyamidoamine-DNA nanoparticles using the Staudinger ligation: attachment of an RGD motif either before or after complexation
    • Parkhouse S.M. Targeting of polyamidoamine-DNA nanoparticles using the Staudinger ligation: attachment of an RGD motif either before or after complexation. Bioorg. Med. Chem. 2008, 16:6641-6650.
    • (2008) Bioorg. Med. Chem. , vol.16 , pp. 6641-6650
    • Parkhouse, S.M.1
  • 44
    • 84866928403 scopus 로고    scopus 로고
    • Enzymatic antibody tagging: toward a universal biocompatible targeting tool
    • Ta H.T., et al. Enzymatic antibody tagging: toward a universal biocompatible targeting tool. Trends Cardiovasc. Med. 2012, 22:105-111.
    • (2012) Trends Cardiovasc. Med. , vol.22 , pp. 105-111
    • Ta, H.T.1
  • 45
    • 80051787417 scopus 로고    scopus 로고
    • Enzymatic single-chain antibody tagging: a universal approach to targeted molecular imaging and cell homing in cardiovascular disease
    • Ta H.T., et al. Enzymatic single-chain antibody tagging: a universal approach to targeted molecular imaging and cell homing in cardiovascular disease. Circ. Res. 2011, 109:365-373.
    • (2011) Circ. Res. , vol.109 , pp. 365-373
    • Ta, H.T.1
  • 46
    • 33947664974 scopus 로고    scopus 로고
    • Sortase A as a novel molecular stapler for sequence-specific protein conjugation
    • Parthasarathy R., et al. Sortase A as a novel molecular stapler for sequence-specific protein conjugation. Bioconjug. Chem. 2007, 18:469-476.
    • (2007) Bioconjug. Chem. , vol.18 , pp. 469-476
    • Parthasarathy, R.1
  • 47
    • 84880767814 scopus 로고    scopus 로고
    • Dependence of nanoparticle-cell recognition efficiency from surface orientation of scFv targeting ligands
    • Mazzucchelli S., et al. Dependence of nanoparticle-cell recognition efficiency from surface orientation of scFv targeting ligands. Biomater. Sci. 2013, 1:728-735.
    • (2013) Biomater. Sci. , vol.1 , pp. 728-735
    • Mazzucchelli, S.1
  • 48
    • 84863837219 scopus 로고    scopus 로고
    • Bio-click chemistry: enzymatic functionalization of PEGylated capsules for targeting applications
    • Leung M.K.M., et al. Bio-click chemistry: enzymatic functionalization of PEGylated capsules for targeting applications. Angew. Chem. Int. Ed. Engl. 2012, 51:7132-7136.
    • (2012) Angew. Chem. Int. Ed. Engl. , vol.51 , pp. 7132-7136
    • Leung, M.K.M.1
  • 49
    • 84861167694 scopus 로고    scopus 로고
    • 6-alkylguanine-DNA transferase (SNAP) genetically encoded fusion
    • 6-alkylguanine-DNA transferase (SNAP) genetically encoded fusion. Small 2012, 8:1492-1497.
    • (2012) Small , vol.8 , pp. 1492-1497
    • Colombo, M.1
  • 50
    • 84874917557 scopus 로고    scopus 로고
    • Orientation-controlled conjugation of HALO-fused homing peptides to multifunctional nanoparticles for specific recognition of cancer cells
    • Colombo M., et al. Orientation-controlled conjugation of HALO-fused homing peptides to multifunctional nanoparticles for specific recognition of cancer cells. Angew. Chem. Int. Ed. Engl. 2013, 52:3121-3125.
    • (2013) Angew. Chem. Int. Ed. Engl. , vol.52 , pp. 3121-3125
    • Colombo, M.1
  • 51
    • 0037117516 scopus 로고    scopus 로고
    • Selective immobilization of proteins to self-assembled monolayers presenting active site-directed capture ligands
    • Hodneland C.D., et al. Selective immobilization of proteins to self-assembled monolayers presenting active site-directed capture ligands. Proc. Natl. Acad. Sci. U.S.A. 2002, 99:5048-5052.
    • (2002) Proc. Natl. Acad. Sci. U.S.A. , vol.99 , pp. 5048-5052
    • Hodneland, C.D.1
  • 52
    • 57749186224 scopus 로고    scopus 로고
    • Simultaneous intracellular delivery of targeting antibodies and functional nanoparticles with engineered protein G system
    • Lim Y.T., et al. Simultaneous intracellular delivery of targeting antibodies and functional nanoparticles with engineered protein G system. Biomaterials 2009, 30:1197-1204.
    • (2009) Biomaterials , vol.30 , pp. 1197-1204
    • Lim, Y.T.1
  • 53
    • 78049332038 scopus 로고    scopus 로고
    • Single-domain protein A-engineered magnetic nanoparticles: toward a universal strategy to site-specific labeling of antibodies for targeted detection of tumor cells
    • Mazzucchelli S., et al. Single-domain protein A-engineered magnetic nanoparticles: toward a universal strategy to site-specific labeling of antibodies for targeted detection of tumor cells. ACS Nano 2010, 4:5693-5702.
    • (2010) ACS Nano , vol.4 , pp. 5693-5702
    • Mazzucchelli, S.1
  • 54
    • 80052069976 scopus 로고    scopus 로고
    • HER2 expression in breast cancer cells is downregulated upon active targeting by antibody-engineered multifunctional nanoparticles in mice
    • Corsi F., et al. HER2 expression in breast cancer cells is downregulated upon active targeting by antibody-engineered multifunctional nanoparticles in mice. ACS Nano 2011, 5:6383-6393.
    • (2011) ACS Nano , vol.5 , pp. 6383-6393
    • Corsi, F.1
  • 55
    • 84865840742 scopus 로고    scopus 로고
    • Protein-assisted one-pot synthesis and biofunctionalization of spherical gold nanoparticles for selective targeting of cancer cells
    • Colombo M., et al. Protein-assisted one-pot synthesis and biofunctionalization of spherical gold nanoparticles for selective targeting of cancer cells. Angew. Chem. Int. Ed. Engl. 2012, 51:9272-9275.
    • (2012) Angew. Chem. Int. Ed. Engl. , vol.51 , pp. 9272-9275
    • Colombo, M.1
  • 56
    • 0030969778 scopus 로고    scopus 로고
    • Metal-recognition by repeating polypeptides
    • Brown S., et al. Metal-recognition by repeating polypeptides. Nat. Biotechnol. 1997, 15:269-272.
    • (1997) Nat. Biotechnol. , vol.15 , pp. 269-272
    • Brown, S.1
  • 57
    • 77955768288 scopus 로고    scopus 로고
    • Immobilization of genetically engineered fusion proteins on gold-decorated carbon nanotube hybrid films for the fabrication of biosensor platforms
    • Park H., et al. Immobilization of genetically engineered fusion proteins on gold-decorated carbon nanotube hybrid films for the fabrication of biosensor platforms. J. Colloid Interface Sci. 2010, 350:453-458.
    • (2010) J. Colloid Interface Sci. , vol.350 , pp. 453-458
    • Park, H.1
  • 58
    • 84871851252 scopus 로고    scopus 로고
    • Specific enzyme immobilization approaches and their application with nanomaterials
    • Liu W., et al. Specific enzyme immobilization approaches and their application with nanomaterials. Top. Catal. 2012, 55:1146-1156.
    • (2012) Top. Catal. , vol.55 , pp. 1146-1156
    • Liu, W.1
  • 59
    • 84878408367 scopus 로고    scopus 로고
    • Controlled antibody/(bio-)conjugation of inorganic nanoparticles for targeted delivery
    • Montenegro J-M., et al. Controlled antibody/(bio-)conjugation of inorganic nanoparticles for targeted delivery. Adv. Drug Deliv. Rev. 2013, 65:677-688.
    • (2013) Adv. Drug Deliv. Rev. , vol.65 , pp. 677-688
    • Montenegro, J.-M.1
  • 60
    • 82555204257 scopus 로고    scopus 로고
    • Development of melanoma-targeted polymer micelles by conjugation of a melanocortin 1 receptor (MC1R) specifi{ligature}c ligand
    • Barkey N.M., et al. Development of melanoma-targeted polymer micelles by conjugation of a melanocortin 1 receptor (MC1R) specifi{ligature}c ligand. J. Med. Chem. 2011, 54:8078-8084.
    • (2011) J. Med. Chem. , vol.54 , pp. 8078-8084
    • Barkey, N.M.1
  • 61
    • 51049090204 scopus 로고    scopus 로고
    • Nanoparticle therapeutics: an emerging treatment modality for cancer
    • Davis M.E., et al. Nanoparticle therapeutics: an emerging treatment modality for cancer. Nat. Rev. Drug Discov. 2008, 7:771-782.
    • (2008) Nat. Rev. Drug Discov. , vol.7 , pp. 771-782
    • Davis, M.E.1
  • 62
    • 84872592017 scopus 로고    scopus 로고
    • From phage display to nanoparticle delivery: functionalizing liposomes with multivalent peptides improves targeting to a cancer biomarker
    • Powell Gray B., et al. From phage display to nanoparticle delivery: functionalizing liposomes with multivalent peptides improves targeting to a cancer biomarker. Bioconjug. Chem. 2013, 24:85-96.
    • (2013) Bioconjug. Chem. , vol.24 , pp. 85-96
    • Powell Gray, B.1
  • 63
    • 33846312153 scopus 로고    scopus 로고
    • The binding avidity of a nanoparticle-based multivalent targeted drug delivery platform
    • Hong S., et al. The binding avidity of a nanoparticle-based multivalent targeted drug delivery platform. Chem. Biol. 2007, 14:107-115.
    • (2007) Chem. Biol. , vol.14 , pp. 107-115
    • Hong, S.1
  • 64
    • 40449122796 scopus 로고    scopus 로고
    • Nanoparticle-mediated cellular response is size-dependent
    • Jiang W., et al. Nanoparticle-mediated cellular response is size-dependent. Nat. Nanotechnol. 2008, 3:145-150.
    • (2008) Nat. Nanotechnol. , vol.3 , pp. 145-150
    • Jiang, W.1
  • 65
    • 67650338048 scopus 로고    scopus 로고
    • Size effect on cell uptake in well- suspended, uniform mesoporous silica nanoparticles
    • Lu F., et al. Size effect on cell uptake in well- suspended, uniform mesoporous silica nanoparticles. Small 2009, 5:1408-1413.
    • (2009) Small , vol.5 , pp. 1408-1413
    • Lu, F.1
  • 66
    • 54949137268 scopus 로고    scopus 로고
    • Magnetic iron oxide nanoworms for tumor targeting and imaging
    • Park J.H., et al. Magnetic iron oxide nanoworms for tumor targeting and imaging. Adv. Mater. 2008, 20:1630-1635.
    • (2008) Adv. Mater. , vol.20 , pp. 1630-1635
    • Park, J.H.1
  • 67
    • 84874460666 scopus 로고    scopus 로고
    • Particle shape enhances specificity of antibody-displaying nanoparticles
    • Barua S., et al. Particle shape enhances specificity of antibody-displaying nanoparticles. Proc. Natl. Acad. Sci. U.S.A. 2013, 110:3270-3275.
    • (2013) Proc. Natl. Acad. Sci. U.S.A. , vol.110 , pp. 3270-3275
    • Barua, S.1
  • 68
    • 79960608117 scopus 로고    scopus 로고
    • Cell-specifi{ligature}c targeting by heterobivalent ligands
    • Josan J.S., et al. Cell-specifi{ligature}c targeting by heterobivalent ligands. Bioconjug. Chem. 2011, 22:1270-1278.
    • (2011) Bioconjug. Chem. , vol.22 , pp. 1270-1278
    • Josan, J.S.1
  • 69
    • 78649442434 scopus 로고    scopus 로고
    • 3 and tenascin-C proteins
    • 3 and tenascin-C proteins. Biomaterials 2011, 32:1130-1138.
    • (2011) Biomaterials , vol.32 , pp. 1130-1138
    • Ko, H.Y.1
  • 70
    • 84873853768 scopus 로고    scopus 로고
    • Biomolecular coronas provide the biological identity of nanosized materials
    • Monopoli M.P., et al. Biomolecular coronas provide the biological identity of nanosized materials. Nat. Nanotechnol. 2012, 7:779-786.
    • (2012) Nat. Nanotechnol. , vol.7 , pp. 779-786
    • Monopoli, M.P.1
  • 71
    • 84873564939 scopus 로고    scopus 로고
    • Transferrin-functionalized nanoparticles lose their targeting capabilities when a biomolecule corona adsorbs on the surface
    • Salvati A., et al. Transferrin-functionalized nanoparticles lose their targeting capabilities when a biomolecule corona adsorbs on the surface. Nat. Nanotechnol. 2013, 8:137-143.
    • (2013) Nat. Nanotechnol. , vol.8 , pp. 137-143
    • Salvati, A.1
  • 72
    • 80755159104 scopus 로고    scopus 로고
    • Soft interactions at nanoparticles alter protein function and conformation in a size dependent manner
    • Wang J., et al. Soft interactions at nanoparticles alter protein function and conformation in a size dependent manner. Nano Lett. 2011, 11:4985-4991.
    • (2011) Nano Lett. , vol.11 , pp. 4985-4991
    • Wang, J.1
  • 73
    • 65649151375 scopus 로고    scopus 로고
    • Effects of nanomaterial physicochemical properties on in vivo toxicity
    • Aillon K.L., et al. Effects of nanomaterial physicochemical properties on in vivo toxicity. Adv. Drug Deliv. Rev. 2009, 61:457-466.
    • (2009) Adv. Drug Deliv. Rev. , vol.61 , pp. 457-466
    • Aillon, K.L.1
  • 74
    • 84869166858 scopus 로고    scopus 로고
    • Magnetic nanoparticles: design and characterization, toxicity and biocompatibility, pharmaceutical and biomedical applications
    • Harivardhan Reddy L., et al. Magnetic nanoparticles: design and characterization, toxicity and biocompatibility, pharmaceutical and biomedical applications. Chem. Rev. 2012, 112:5818-5878.
    • (2012) Chem. Rev. , vol.112 , pp. 5818-5878
    • Harivardhan Reddy, L.1
  • 75
    • 77950350157 scopus 로고    scopus 로고
    • Polysaccharide-modified synthetic polymeric biomaterials
    • Baldwin A.D., et al. Polysaccharide-modified synthetic polymeric biomaterials. Pept. Sci. 2012, 94:128-140.
    • (2012) Pept. Sci. , vol.94 , pp. 128-140
    • Baldwin, A.D.1
  • 76
    • 79951861958 scopus 로고    scopus 로고
    • Pegylated inorganic nanoparticles
    • Karakoti A.S., et al. Pegylated inorganic nanoparticles. Angew. Chem. Int. Ed. Engl. 2011, 50:1980-1994.
    • (2011) Angew. Chem. Int. Ed. Engl. , vol.50 , pp. 1980-1994
    • Karakoti, A.S.1
  • 77
    • 65249114149 scopus 로고    scopus 로고
    • Pegylated viral nanoparticles (VNPs) for biomedicine: the impact of PEG chain length on VNP cell interactions in vitro and ex vivo
    • Steinmetz N.F., et al. Pegylated viral nanoparticles (VNPs) for biomedicine: the impact of PEG chain length on VNP cell interactions in vitro and ex vivo. Biomacromolecules 2009, 10:784-792.
    • (2009) Biomacromolecules , vol.10 , pp. 784-792
    • Steinmetz, N.F.1
  • 78
    • 77954313055 scopus 로고    scopus 로고
    • Stealth nanoparticles: high density but sheddable PEG is a key for tumor targeting
    • Li S-D., et al. Stealth nanoparticles: high density but sheddable PEG is a key for tumor targeting. J. Control. Release 2010, 145:178-181.
    • (2010) J. Control. Release , vol.145 , pp. 178-181
    • Li, S.-D.1
  • 79
    • 77950917045 scopus 로고    scopus 로고
    • Prediction of protein interaction behaviour with PEG-grafted matrices using X-ray photoelectron spectroscopy
    • Damodaran V.B., et al. Prediction of protein interaction behaviour with PEG-grafted matrices using X-ray photoelectron spectroscopy. Appl. Surf. Sci. 2010, 256:4894-4901.
    • (2010) Appl. Surf. Sci. , vol.256 , pp. 4894-4901
    • Damodaran, V.B.1
  • 80
    • 84856436072 scopus 로고    scopus 로고
    • Nanoparticle size and surface chemistry determine serum protein adsorption and macrophage uptake
    • Walkey C.D., et al. Nanoparticle size and surface chemistry determine serum protein adsorption and macrophage uptake. J. Am. Chem. Soc. 2012, 134:2139-2147.
    • (2012) J. Am. Chem. Soc. , vol.134 , pp. 2139-2147
    • Walkey, C.D.1
  • 81
    • 79960530841 scopus 로고    scopus 로고
    • In vivo delivery of RNAi with lipid-based nanoparticles
    • Huang L., et al. In vivo delivery of RNAi with lipid-based nanoparticles. Annu. Rev. Biomed. Eng. 2011, 13:507-530.
    • (2011) Annu. Rev. Biomed. Eng. , vol.13 , pp. 507-530
    • Huang, L.1
  • 82
    • 84876557641 scopus 로고    scopus 로고
    • A systematic analysis of peptide linker length and liposomal polyethylene glycol coating on cellular uptake of peptide-targeted liposomes
    • Stefanick J.F., et al. A systematic analysis of peptide linker length and liposomal polyethylene glycol coating on cellular uptake of peptide-targeted liposomes. ACS Nano 2013, 7:2935-2947.
    • (2013) ACS Nano , vol.7 , pp. 2935-2947
    • Stefanick, J.F.1
  • 83
    • 66149116833 scopus 로고    scopus 로고
    • Synthesis and characterization of glycerol dendrons, self-assembled monolayers on gold: a detailed study of their protein resistance
    • Wyszogrodzka M., et al. Synthesis and characterization of glycerol dendrons, self-assembled monolayers on gold: a detailed study of their protein resistance. Biomacromolecules 2009, 10:1043-1054.
    • (2009) Biomacromolecules , vol.10 , pp. 1043-1054
    • Wyszogrodzka, M.1
  • 84
    • 79959259512 scopus 로고    scopus 로고
    • Analyzing nanomaterial bioconjugates: a review of current and emerging techniques for purification and characterization
    • Sapsford K.E., et al. Analyzing nanomaterial bioconjugates: a review of current and emerging techniques for purification and characterization. Anal. Chem. 2011, 83:4453-4488.
    • (2011) Anal. Chem. , vol.83 , pp. 4453-4488
    • Sapsford, K.E.1
  • 85
    • 77953686608 scopus 로고    scopus 로고
    • Magnetic nanoparticles and targeted drug delivering
    • Chomoucka J., et al. Magnetic nanoparticles and targeted drug delivering. Pharmacol. Res. 2010, 62:144-149.
    • (2010) Pharmacol. Res. , vol.62 , pp. 144-149
    • Chomoucka, J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.