메뉴 건너뛰기




Volumn 17, Issue 12, 2013, Pages 683-696

Network hubs in the human brain

Author keywords

[No Author keywords available]

Indexed keywords

BRAIN DISORDERS; COGNITIVE FUNCTIONS; COMPUTATIONAL STUDIES; DYNAMIC COUPLINGS; FUNCTIONAL NETWORK; INFORMATION INTEGRATION; NEURAL ACTIVITY; NEURONAL SIGNALING;

EID: 84888858320     PISSN: 13646613     EISSN: 1879307X     Source Type: Journal    
DOI: 10.1016/j.tics.2013.09.012     Document Type: Review
Times cited : (1579)

References (169)
  • 2
    • 84876822198 scopus 로고    scopus 로고
    • Distributed circuits, not circumscribed centers, mediate visual recognition
    • Behrmann M., Plaut D.C. Distributed circuits, not circumscribed centers, mediate visual recognition. Trends Cogn. Sci. 2013, 17:210-219.
    • (2013) Trends Cogn. Sci. , vol.17 , pp. 210-219
    • Behrmann, M.1    Plaut, D.C.2
  • 4
    • 84875848115 scopus 로고    scopus 로고
    • Control-related systems in the human brain
    • Power J.D., Petersen S.E. Control-related systems in the human brain. Curr. Opin. Neurobiol. 2013, 23:223-228.
    • (2013) Curr. Opin. Neurobiol. , vol.23 , pp. 223-228
    • Power, J.D.1    Petersen, S.E.2
  • 5
    • 84861518308 scopus 로고    scopus 로고
    • Beyond brain regions: network perspective of cognition-emotion interactions
    • Pessoa L. Beyond brain regions: network perspective of cognition-emotion interactions. Behav. Brain Sci. 2012, 35:158-159.
    • (2012) Behav. Brain Sci. , vol.35 , pp. 158-159
    • Pessoa, L.1
  • 6
    • 84878348773 scopus 로고    scopus 로고
    • Large-scale brain networks in affective and social neuroscience: towards an integrative functional architecture of the brain
    • Barrett L.F., Satpute A.B. Large-scale brain networks in affective and social neuroscience: towards an integrative functional architecture of the brain. Curr. Opin. Neurobiol. 2013, 23:361-372.
    • (2013) Curr. Opin. Neurobiol. , vol.23 , pp. 361-372
    • Barrett, L.F.1    Satpute, A.B.2
  • 7
    • 0002581822 scopus 로고
    • Group selection and phasic re-entrant signalling: a theory of higher brain function
    • MIT Press, G.M. Edelman, V.B. Mountcastle (Eds.)
    • Edelman G.M. Group selection and phasic re-entrant signalling: a theory of higher brain function. The Mindful Brain 1978, 51-100. MIT Press. G.M. Edelman, V.B. Mountcastle (Eds.).
    • (1978) The Mindful Brain , pp. 51-100
    • Edelman, G.M.1
  • 8
    • 0023766090 scopus 로고
    • The functional logic of cortical connections
    • Zeki S., Shipp S. The functional logic of cortical connections. Nature 1988, 335:311-317.
    • (1988) Nature , vol.335 , pp. 311-317
    • Zeki, S.1    Shipp, S.2
  • 9
    • 0030756297 scopus 로고    scopus 로고
    • Network memory
    • Fuster J.M. Network memory. Trends Neurosci. 1997, 20:451-459.
    • (1997) Trends Neurosci. , vol.20 , pp. 451-459
    • Fuster, J.M.1
  • 10
    • 0023781837 scopus 로고
    • Topography of cognition: parallel distributed networks in primate association cortex
    • Goldman-Rakic P.S. Topography of cognition: parallel distributed networks in primate association cortex. Annu. Rev. Neurosci. 1988, 11:137-156.
    • (1988) Annu. Rev. Neurosci. , vol.11 , pp. 137-156
    • Goldman-Rakic, P.S.1
  • 11
    • 0027481223 scopus 로고
    • Synchronization of cortical activity and its putative role in information processing and learning
    • Singer W. Synchronization of cortical activity and its putative role in information processing and learning. Annu. Rev. Physiol. 1993, 55:349-374.
    • (1993) Annu. Rev. Physiol. , vol.55 , pp. 349-374
    • Singer, W.1
  • 12
    • 34250876405 scopus 로고    scopus 로고
    • The gamma cycle
    • Fries P., et al. The gamma cycle. Trends Neurosci. 2007, 30:309-316.
    • (2007) Trends Neurosci. , vol.30 , pp. 309-316
    • Fries, P.1
  • 13
    • 3042795832 scopus 로고    scopus 로고
    • Beta oscillations in a large-scale sensorimotor cortical network: directional influences revealed by Granger causality
    • Brovelli A., et al. Beta oscillations in a large-scale sensorimotor cortical network: directional influences revealed by Granger causality. Proc. Natl. Acad. Sci. U.S.A. 2004, 101:9849-9854.
    • (2004) Proc. Natl. Acad. Sci. U.S.A. , vol.101 , pp. 9849-9854
    • Brovelli, A.1
  • 14
    • 0031835226 scopus 로고    scopus 로고
    • From sensation to cognition
    • Mesulam M.M. From sensation to cognition. Brain 1998, 121:1013-1052.
    • (1998) Brain , vol.121 , pp. 1013-1052
    • Mesulam, M.M.1
  • 15
    • 0025718412 scopus 로고
    • Distributed hierarchical processing in the primate cerebral cortex
    • Felleman D.J., Van Essen D.C. Distributed hierarchical processing in the primate cerebral cortex. Cereb. Cortex 1991, 1:1-47.
    • (1991) Cereb. Cortex , vol.1 , pp. 1-47
    • Felleman, D.J.1    Van Essen, D.C.2
  • 16
    • 0024763056 scopus 로고
    • Time-locked multiregional retroactivation: a systems-level proposal for the neural substrates of recall and recognition
    • Damasio A.R. Time-locked multiregional retroactivation: a systems-level proposal for the neural substrates of recall and recognition. Cognition 1989, 33:25-62.
    • (1989) Cognition , vol.33 , pp. 25-62
    • Damasio, A.R.1
  • 17
    • 67649413275 scopus 로고    scopus 로고
    • Convergence and divergence in a neural architecture for recognition and memory
    • Meyer K., Damasio A. Convergence and divergence in a neural architecture for recognition and memory. Trends Neurosci. 2009, 32:376-382.
    • (2009) Trends Neurosci. , vol.32 , pp. 376-382
    • Meyer, K.1    Damasio, A.2
  • 18
    • 4444318641 scopus 로고    scopus 로고
    • Organization, development and function of complex brain networks
    • Sporns O., et al. Organization, development and function of complex brain networks. Trends Cogn. Sci. 2004, 8:418-425.
    • (2004) Trends Cogn. Sci. , vol.8 , pp. 418-425
    • Sporns, O.1
  • 19
  • 20
    • 60549103853 scopus 로고    scopus 로고
    • Complex brain networks: graph theoretical analysis of structural and functional systems
    • Bullmore E., Sporns O. Complex brain networks: graph theoretical analysis of structural and functional systems. Nat. Rev. Neurosci. 2009, 10:186-198.
    • (2009) Nat. Rev. Neurosci. , vol.10 , pp. 186-198
    • Bullmore, E.1    Sporns, O.2
  • 22
    • 31144436747 scopus 로고    scopus 로고
    • The human connectome: a structural description of the human brain
    • Sporns O., et al. The human connectome: a structural description of the human brain. PLoS Comput. Biol. 2005, 1:e42.
    • (2005) PLoS Comput. Biol. , vol.1
    • Sporns, O.1
  • 24
    • 84861459104 scopus 로고    scopus 로고
    • The organization of physiological brain networks
    • Stam C.J., van Straaten E.C. The organization of physiological brain networks. Clin. Neurophysiol. 2012, 123:1067-1087.
    • (2012) Clin. Neurophysiol. , vol.123 , pp. 1067-1087
    • Stam, C.J.1    van Straaten, E.C.2
  • 25
    • 84880332133 scopus 로고    scopus 로고
    • Graph analysis of the human connectome: promise, progress, and pitfalls
    • Fornito A., et al. Graph analysis of the human connectome: promise, progress, and pitfalls. Neuroimage 2013, 80:426-444.
    • (2013) Neuroimage , vol.80 , pp. 426-444
    • Fornito, A.1
  • 26
    • 84888379494 scopus 로고    scopus 로고
    • "More is different" in functional magnetic resonance imaging: a review of recent data analysis techniques
    • Lohmann G., et al. "More is different" in functional magnetic resonance imaging: a review of recent data analysis techniques. Brain Connect. 2013, 3:223-239.
    • (2013) Brain Connect. , vol.3 , pp. 223-239
    • Lohmann, G.1
  • 27
    • 84880330701 scopus 로고    scopus 로고
    • The parcellation-based connectome: limitations and extensions
    • de Reus M.A., van den Heuvel M.P. The parcellation-based connectome: limitations and extensions. Neuroimage 2013, 80:397-404.
    • (2013) Neuroimage , vol.80 , pp. 397-404
    • de Reus, M.A.1    van den Heuvel, M.P.2
  • 28
    • 77953961776 scopus 로고    scopus 로고
    • Exploring the brain network: a review on resting-state fMRI functional connectivity
    • van den Heuvel M.P., Hulshoff Pol H.E. Exploring the brain network: a review on resting-state fMRI functional connectivity. Eur. Neuropsychopharmacol. 2010, 20:519-534.
    • (2010) Eur. Neuropsychopharmacol. , vol.20 , pp. 519-534
    • van den Heuvel, M.P.1    Hulshoff Pol, H.E.2
  • 29
    • 31344474880 scopus 로고    scopus 로고
    • Complex networks: structure and dynamics
    • Boccaletti S., et al. Complex networks: structure and dynamics. Phys. Rep. 2006, 424:175-308.
    • (2006) Phys. Rep. , vol.424 , pp. 175-308
    • Boccaletti, S.1
  • 30
    • 77954826067 scopus 로고    scopus 로고
    • Oxford University Press
    • Newman M.E.J. Networks 2010, Oxford University Press.
    • (2010) Networks
    • Newman, M.E.J.1
  • 32
    • 38349140387 scopus 로고    scopus 로고
    • Identification and classification of hubs in brain networks
    • Sporns O., et al. Identification and classification of hubs in brain networks. PLoS ONE 2007, 2:e1049.
    • (2007) PLoS ONE , vol.2
    • Sporns, O.1
  • 33
    • 77954385460 scopus 로고    scopus 로고
    • Complex network measures of brain connectivity: uses and interpretations
    • Rubinov M., Sporns O. Complex network measures of brain connectivity: uses and interpretations. Neuroimage 2010, 52:1059-1069.
    • (2010) Neuroimage , vol.52 , pp. 1059-1069
    • Rubinov, M.1    Sporns, O.2
  • 34
    • 77956545427 scopus 로고    scopus 로고
    • Eigenvector centrality mapping for analyzing connectivity patterns in fMRI data of the human brain
    • Lohmann G., et al. Eigenvector centrality mapping for analyzing connectivity patterns in fMRI data of the human brain. PLoS ONE 2010, 5:e10232.
    • (2010) PLoS ONE , vol.5
    • Lohmann, G.1
  • 35
    • 84865730611 scopus 로고
    • A set of measures of centrality based on betweenness
    • Freeman L.C. A set of measures of centrality based on betweenness. Sociometry 1977, 40:35-41.
    • (1977) Sociometry , vol.40 , pp. 35-41
    • Freeman, L.C.1
  • 36
    • 4344645036 scopus 로고    scopus 로고
    • Edge vulnerability in neural and metabolic networks
    • Kaiser M., Hilgetag C.C. Edge vulnerability in neural and metabolic networks. Biol. Cybern. 2004, 90:311-317.
    • (2004) Biol. Cybern. , vol.90 , pp. 311-317
    • Kaiser, M.1    Hilgetag, C.C.2
  • 37
    • 33748335612 scopus 로고    scopus 로고
    • Characterizing the dynamical importance of network nodes and links
    • Restrepo J.G., et al. Characterizing the dynamical importance of network nodes and links. Phys. Rev. Lett. 2006, 97:094102.
    • (2006) Phys. Rev. Lett. , vol.97 , pp. 094102
    • Restrepo, J.G.1
  • 38
    • 78649423768 scopus 로고    scopus 로고
    • Aberrant frontal and temporal complex network structure in schizophrenia: a graph theoretical analysis
    • van den Heuvel M.P., et al. Aberrant frontal and temporal complex network structure in schizophrenia: a graph theoretical analysis. J. Neurosci. 2010, 30:15915-15926.
    • (2010) J. Neurosci. , vol.30 , pp. 15915-15926
    • van den Heuvel, M.P.1
  • 39
    • 55249083831 scopus 로고    scopus 로고
    • Hierarchical organization of human cortical networks in health and schizophrenia
    • Bassett D.S., et al. Hierarchical organization of human cortical networks in health and schizophrenia. J. Neurosci. 2008, 28:9239-9248.
    • (2008) J. Neurosci. , vol.28 , pp. 9239-9248
    • Bassett, D.S.1
  • 40
    • 37649028224 scopus 로고    scopus 로고
    • Finding and evaluating community structure in networks
    • Newman M.E., Girvan M. Finding and evaluating community structure in networks. Phys. Rev. E 2004, 69:026113.
    • (2004) Phys. Rev. E , vol.69 , pp. 026113
    • Newman, M.E.1    Girvan, M.2
  • 41
    • 74049087026 scopus 로고    scopus 로고
    • Community detection in graphs
    • Fortunato S. Community detection in graphs. Phys. Rep. 2010, 486:75-174.
    • (2010) Phys. Rep. , vol.486 , pp. 75-174
    • Fortunato, S.1
  • 42
    • 67049119331 scopus 로고    scopus 로고
    • Functional brain networks develop from a "local to distributed" organization
    • Fair D.A., et al. Functional brain networks develop from a "local to distributed" organization. PLoS Comput. Biol. 2009, 5:e1000381.
    • (2009) PLoS Comput. Biol. , vol.5
    • Fair, D.A.1
  • 43
    • 84879891020 scopus 로고    scopus 로고
    • Cognitive relevance of the community structure of the human brain functional coactivation network
    • Crossley N.A., et al. Cognitive relevance of the community structure of the human brain functional coactivation network. Proc. Natl. Acad. Sci. U.S.A. 2013, 110:11583-11588.
    • (2013) Proc. Natl. Acad. Sci. U.S.A. , vol.110 , pp. 11583-11588
    • Crossley, N.A.1
  • 44
    • 14644396645 scopus 로고    scopus 로고
    • Functional cartography of complex metabolic networks
    • Guimera R., Amaral L.A.N. Functional cartography of complex metabolic networks. Nature 2005, 433:895-900.
    • (2005) Nature , vol.433 , pp. 895-900
    • Guimera, R.1    Amaral, L.A.N.2
  • 45
    • 84870346734 scopus 로고    scopus 로고
    • Intrinsic architecture underlying the relations among the default, dorsal attention, and frontoparietal control networks of the human brain
    • Spreng R.N., et al. Intrinsic architecture underlying the relations among the default, dorsal attention, and frontoparietal control networks of the human brain. J. Cogn. Neurosci. 2012, 25:74-86.
    • (2012) J. Cogn. Neurosci. , vol.25 , pp. 74-86
    • Spreng, R.N.1
  • 46
    • 33646680105 scopus 로고    scopus 로고
    • Detecting rich-club ordering in complex networks
    • Colizza V., et al. Detecting rich-club ordering in complex networks. Nat. Phys. 2006, 2:5.
    • (2006) Nat. Phys. , vol.2 , pp. 5
    • Colizza, V.1
  • 47
    • 84864040903 scopus 로고    scopus 로고
    • Large scale networks fingerprinting and visualization using the k-core decomposition
    • Alvarez-Hamelin J.I., et al. Large scale networks fingerprinting and visualization using the k-core decomposition. Adv. Neural Inf. Process. Syst. 2005, 9:41-50.
    • (2005) Adv. Neural Inf. Process. Syst. , vol.9 , pp. 41-50
    • Alvarez-Hamelin, J.I.1
  • 48
    • 84880333792 scopus 로고    scopus 로고
    • Dynamic functional connectivity: promise, issues, and interpretations
    • Hutchison R.M., et al. Dynamic functional connectivity: promise, issues, and interpretations. Neuroimage 2013, 80:360-378.
    • (2013) Neuroimage , vol.80 , pp. 360-378
    • Hutchison, R.M.1
  • 49
    • 60549089357 scopus 로고    scopus 로고
    • Predicting human resting-state functional connectivity from structural connectivity
    • Honey C.J., et al. Predicting human resting-state functional connectivity from structural connectivity. Proc. Natl. Acad. Sci. U.S.A. 2009, 106:2035-2040.
    • (2009) Proc. Natl. Acad. Sci. U.S.A. , vol.106 , pp. 2035-2040
    • Honey, C.J.1
  • 50
    • 84862892867 scopus 로고    scopus 로고
    • Functional connectivity between anatomically unconnected areas is shaped by collective network-level effects in the macaque cortex
    • Adachi Y., et al. Functional connectivity between anatomically unconnected areas is shaped by collective network-level effects in the macaque cortex. Cereb. Cortex 2012, 22:1586-1592.
    • (2012) Cereb. Cortex , vol.22 , pp. 1586-1592
    • Adachi, Y.1
  • 51
    • 84876044828 scopus 로고    scopus 로고
    • Structural foundations of resting-state and task-based functional connectivity in the human brain
    • Hermundstad A.M., et al. Structural foundations of resting-state and task-based functional connectivity in the human brain. Proc. Natl. Acad. Sci. U.S.A. 2013, 110:6169-6174.
    • (2013) Proc. Natl. Acad. Sci. U.S.A. , vol.110 , pp. 6169-6174
    • Hermundstad, A.M.1
  • 52
    • 84858138977 scopus 로고    scopus 로고
    • On the use of correlation as a measure of network connectivity
    • Zalesky A., et al. On the use of correlation as a measure of network connectivity. Neuroimage 2012, 60:2096-2106.
    • (2012) Neuroimage , vol.60 , pp. 2096-2106
    • Zalesky, A.1
  • 53
    • 84882600940 scopus 로고    scopus 로고
    • Evidence for hubs in human functional brain networks
    • Power J.D., et al. Evidence for hubs in human functional brain networks. Neuron 2013, 79:798-813.
    • (2013) Neuron , vol.79 , pp. 798-813
    • Power, J.D.1
  • 54
    • 84863952016 scopus 로고    scopus 로고
    • High-cost, high-capacity backbone for global brain communication
    • van den Heuvel M.P., et al. High-cost, high-capacity backbone for global brain communication. Proc. Natl. Acad. Sci. U.S.A. 2012, 109:11372-11377.
    • (2012) Proc. Natl. Acad. Sci. U.S.A. , vol.109 , pp. 11372-11377
    • van den Heuvel, M.P.1
  • 55
    • 84875269684 scopus 로고    scopus 로고
    • Genome-wide scan of healthy human connectome discovers SPON1 gene variant influencing dementia severity
    • Jahanshad N., et al. Genome-wide scan of healthy human connectome discovers SPON1 gene variant influencing dementia severity. Proc. Natl. Acad. Sci. U.S.A. 2013, 110:4768-4773.
    • (2013) Proc. Natl. Acad. Sci. U.S.A. , vol.110 , pp. 4768-4773
    • Jahanshad, N.1
  • 56
    • 84880331553 scopus 로고    scopus 로고
    • Mapping putative hubs in human, chimpanzee and rhesus macaque connectomes via diffusion tractography
    • Li L., et al. Mapping putative hubs in human, chimpanzee and rhesus macaque connectomes via diffusion tractography. Neuroimage 2013, 80:462-474.
    • (2013) Neuroimage , vol.80 , pp. 462-474
    • Li, L.1
  • 57
    • 84883343021 scopus 로고    scopus 로고
    • An anatomical infrastructure for integration between functional networks in human cerebral cortex
    • van den Heuvel M.P., Sporns O. An anatomical infrastructure for integration between functional networks in human cerebral cortex. J. Neurosci. 2013, 33:14489-14500.
    • (2013) J. Neurosci. , vol.33 , pp. 14489-14500
    • van den Heuvel, M.P.1    Sporns, O.2
  • 58
    • 84861219957 scopus 로고    scopus 로고
    • Mapping connectivity damage in the case of Phineas Gage
    • Van Horn J.D., et al. Mapping connectivity damage in the case of Phineas Gage. PLoS ONE 2013, 7:e37454.
    • (2013) PLoS ONE , vol.7
    • Van Horn, J.D.1
  • 59
    • 84878844684 scopus 로고    scopus 로고
    • Topographic hub maps of the human structural neocortical network
    • Nijhuis E.H., et al. Topographic hub maps of the human structural neocortical network. PLoS ONE 2013, 8:e65511.
    • (2013) PLoS ONE , vol.8
    • Nijhuis, E.H.1
  • 60
    • 77349095673 scopus 로고    scopus 로고
    • Whole-brain anatomical networks: does the choice of nodes matter?
    • Zalesky A., et al. Whole-brain anatomical networks: does the choice of nodes matter?. Neuroimage 2010, 50:970-983.
    • (2010) Neuroimage , vol.50 , pp. 970-983
    • Zalesky, A.1
  • 61
    • 59749085044 scopus 로고    scopus 로고
    • Mapping anatomical connectivity patterns of human cerebral cortex using in vivo diffusion tensor imaging tractography
    • Gong G., et al. Mapping anatomical connectivity patterns of human cerebral cortex using in vivo diffusion tensor imaging tractography. Cereb. Cortex 2009, 19:524-536.
    • (2009) Cereb. Cortex , vol.19 , pp. 524-536
    • Gong, G.1
  • 62
    • 40849085402 scopus 로고    scopus 로고
    • Studying the human brain anatomical network via diffusion-weighted MRI and graph theory
    • Iturria-Medina Y., et al. Studying the human brain anatomical network via diffusion-weighted MRI and graph theory. Neuroimage 2008, 40:1064-1076.
    • (2008) Neuroimage , vol.40 , pp. 1064-1076
    • Iturria-Medina, Y.1
  • 63
    • 48349097292 scopus 로고    scopus 로고
    • Mapping the structural core of human cerebral cortex
    • Hagmann P., et al. Mapping the structural core of human cerebral cortex. PLoS Biol. 2008, 6:e159.
    • (2008) PLoS Biol. , vol.6
    • Hagmann, P.1
  • 64
    • 80155148207 scopus 로고    scopus 로고
    • Rich-club organization of the human connectome
    • van den Heuvel M.P., Sporns O. Rich-club organization of the human connectome. J. Neurosci. 2011, 31:15775-15786.
    • (2011) J. Neurosci. , vol.31 , pp. 15775-15786
    • van den Heuvel, M.P.1    Sporns, O.2
  • 65
    • 0036674417 scopus 로고    scopus 로고
    • The anatomical basis of functional localization in the cortex
    • Passingham R.E., et al. The anatomical basis of functional localization in the cortex. Nat. Rev. Neurosci. 2002, 3:606-616.
    • (2002) Nat. Rev. Neurosci. , vol.3 , pp. 606-616
    • Passingham, R.E.1
  • 66
    • 84865403478 scopus 로고    scopus 로고
    • The brain's connective core and its role in animal cognition
    • Shanahan M. The brain's connective core and its role in animal cognition. Philos. Trans. R. Soc. Lond. B: Biol. Sci. 2012, 367:2704-2714.
    • (2012) Philos. Trans. R. Soc. Lond. B: Biol. Sci. , vol.367 , pp. 2704-2714
    • Shanahan, M.1
  • 67
    • 84881140572 scopus 로고    scopus 로고
    • Rich club organization and its role in intermodular communication in the cat cortex
    • de Reus M.A., van den Heuvel M.P. Rich club organization and its role in intermodular communication in the cat cortex. J. Neurosci. 2013, 33:12929-12939.
    • (2013) J. Neurosci. , vol.33 , pp. 12929-12939
    • de Reus, M.A.1    van den Heuvel, M.P.2
  • 68
    • 77957866078 scopus 로고    scopus 로고
    • From modular to centralized organization of synchronization in functional areas of the cat cerebral cortex
    • Gomez-Gardenes J., et al. From modular to centralized organization of synchronization in functional areas of the cat cerebral cortex. PLoS ONE 2010, 5:e12313.
    • (2010) PLoS ONE , vol.5
    • Gomez-Gardenes, J.1
  • 69
    • 84906976790 scopus 로고    scopus 로고
    • Structural and functional aspects relating to cost and benefit of rich club organization in the human cerebral cortex
    • Collin G., et al. Structural and functional aspects relating to cost and benefit of rich club organization in the human cerebral cortex. Cereb. Cortex 2013, 10.1093/cercor/bht064.
    • (2013) Cereb. Cortex
    • Collin, G.1
  • 70
    • 63849280988 scopus 로고    scopus 로고
    • Graph analysis of cortical networks reveals complex anatomical communication substrate
    • Zamora-López G., et al. Graph analysis of cortical networks reveals complex anatomical communication substrate. Chaos 2009, 19:015117.
    • (2009) Chaos , vol.19 , pp. 015117
    • Zamora-López, G.1
  • 71
    • 77953367591 scopus 로고    scopus 로고
    • Cortical hubs form a module for multisensory integration on top of the hierarchy of cortical networks
    • Zamora-López G., et al. Cortical hubs form a module for multisensory integration on top of the hierarchy of cortical networks. Front. Neuroinform. 2010, 4:1.
    • (2010) Front. Neuroinform. , vol.4 , pp. 1
    • Zamora-López, G.1
  • 72
    • 80055002278 scopus 로고    scopus 로고
    • Exploring brain function from anatomical connectivity
    • Zamora-López G., et al. Exploring brain function from anatomical connectivity. Front. Neurosci. 2011, 5:83.
    • (2011) Front. Neurosci. , vol.5 , pp. 83
    • Zamora-López, G.1
  • 73
    • 84875517090 scopus 로고    scopus 로고
    • The role of long-range connections on the specificity of the macaque interareal cortical network
    • Markov N.T., et al. The role of long-range connections on the specificity of the macaque interareal cortical network. Proc. Natl. Acad. Sci. U.S.A. 2013, 110:5187-5192.
    • (2013) Proc. Natl. Acad. Sci. U.S.A. , vol.110 , pp. 5187-5192
    • Markov, N.T.1
  • 74
    • 84898905248 scopus 로고    scopus 로고
    • Mapping the hierarchical layout of the structural network of the macaque prefrontal cortex
    • Goulas A., et al. Mapping the hierarchical layout of the structural network of the macaque prefrontal cortex. Cereb. Cortex 2013, 10.1093/cercor/bhs399.
    • (2013) Cereb. Cortex
    • Goulas, A.1
  • 75
    • 84875998286 scopus 로고    scopus 로고
    • Trade-off between multiple constraints enables simultaneous formation of modules and hubs in neural systems
    • Chen Y., et al. Trade-off between multiple constraints enables simultaneous formation of modules and hubs in neural systems. PLoS Comput. Biol. 2013, 9:e1002937.
    • (2013) PLoS Comput. Biol. , vol.9
    • Chen, Y.1
  • 76
    • 73749084057 scopus 로고    scopus 로고
    • Identifying the brain's most globally connected regions
    • Cole M.W., et al. Identifying the brain's most globally connected regions. Neuroimage 2009, 49:3132-3148.
    • (2009) Neuroimage , vol.49 , pp. 3132-3148
    • Cole, M.W.1
  • 78
    • 84863702137 scopus 로고    scopus 로고
    • Network centrality in the human functional connectome
    • Zuo X.N., et al. Network centrality in the human functional connectome. Cereb. Cortex 2012, 22:1862-1875.
    • (2012) Cereb. Cortex , vol.22 , pp. 1862-1875
    • Zuo, X.N.1
  • 79
    • 80051735046 scopus 로고    scopus 로고
    • Association between functional connectivity hubs and brain networks
    • Tomasi D., Volkow N.D. Association between functional connectivity hubs and brain networks. Cereb. Cortex 2011, 21:2003-2013.
    • (2011) Cereb. Cortex , vol.21 , pp. 2003-2013
    • Tomasi, D.1    Volkow, N.D.2
  • 80
    • 60849136325 scopus 로고    scopus 로고
    • Cortical hubs revealed by intrinsic functional connectivity: mapping, assessment of stability, and relation to Alzheimer's disease
    • Buckner R.L., et al. Cortical hubs revealed by intrinsic functional connectivity: mapping, assessment of stability, and relation to Alzheimer's disease. J. Neurosci. 2009, 29:1860-1873.
    • (2009) J. Neurosci. , vol.29 , pp. 1860-1873
    • Buckner, R.L.1
  • 81
    • 84864497113 scopus 로고    scopus 로고
    • Competitive and cooperative dynamics of large-scale brain functional networks supporting recollection
    • Fornito A., et al. Competitive and cooperative dynamics of large-scale brain functional networks supporting recollection. Proc. Natl. Acad. Sci. U.S.A. 2012, 109:12788-12793.
    • (2012) Proc. Natl. Acad. Sci. U.S.A. , vol.109 , pp. 12788-12793
    • Fornito, A.1
  • 82
    • 84863724428 scopus 로고    scopus 로고
    • Stepwise connectivity of the modal cortex reveals the multimodal organization of the human brain
    • Sepulcre J., et al. Stepwise connectivity of the modal cortex reveals the multimodal organization of the human brain. J. Neurosci. 2012, 32:10649-10661.
    • (2012) J. Neurosci. , vol.32 , pp. 10649-10661
    • Sepulcre, J.1
  • 83
    • 84855917489 scopus 로고    scopus 로고
    • Echoes of the brain within the posterior cingulate cortex
    • Leech R., et al. Echoes of the brain within the posterior cingulate cortex. J. Neurosci. 2012, 32:215-222.
    • (2012) J. Neurosci. , vol.32 , pp. 215-222
    • Leech, R.1
  • 84
    • 84883453761 scopus 로고    scopus 로고
    • Multi-task connectivity reveals flexible hubs for adaptive task control
    • Cole M.W., et al. Multi-task connectivity reveals flexible hubs for adaptive task control. Nat. Neurosci. 2013, 16:1348-1355.
    • (2013) Nat. Neurosci. , vol.16 , pp. 1348-1355
    • Cole, M.W.1
  • 85
    • 84874386904 scopus 로고    scopus 로고
    • Describing functional diversity of brain regions and brain networks
    • Anderson M.L., et al. Describing functional diversity of brain regions and brain networks. Neuroimage 2013, 73:50-58.
    • (2013) Neuroimage , vol.73 , pp. 50-58
    • Anderson, M.L.1
  • 86
    • 84861423904 scopus 로고    scopus 로고
    • A cortical core for dynamic integration of functional networks in the resting human brain
    • de Pasquale F., et al. A cortical core for dynamic integration of functional networks in the resting human brain. Neuron 2012, 74:753-764.
    • (2012) Neuron , vol.74 , pp. 753-764
    • de Pasquale, F.1
  • 87
    • 84863251089 scopus 로고    scopus 로고
    • Rat brains also have a default mode network
    • Lu H., et al. Rat brains also have a default mode network. Proc. Natl. Acad. Sci. U.S.A. 2011, 109:3979-3984.
    • (2011) Proc. Natl. Acad. Sci. U.S.A. , vol.109 , pp. 3979-3984
    • Lu, H.1
  • 88
    • 80054002592 scopus 로고    scopus 로고
    • Altered connectivity pattern of hubs in default-mode network with Alzheimer's disease: a Granger causality modeling approach
    • Miao X., et al. Altered connectivity pattern of hubs in default-mode network with Alzheimer's disease: a Granger causality modeling approach. PLoS ONE 2011, 6:e25546.
    • (2011) PLoS ONE , vol.6
    • Miao, X.1
  • 89
    • 81355153871 scopus 로고    scopus 로고
    • Functional network organization of the human brain
    • Power J.D., et al. Functional network organization of the human brain. Neuron 2011, 72:665-678.
    • (2011) Neuron , vol.72 , pp. 665-678
    • Power, J.D.1
  • 90
    • 67049115651 scopus 로고    scopus 로고
    • Brain anatomical network and intelligence
    • Li Y., et al. Brain anatomical network and intelligence. PLoS Comput. Biol. 2009, 5:e1000395.
    • (2009) PLoS Comput. Biol. , vol.5
    • Li, Y.1
  • 91
    • 67049097328 scopus 로고    scopus 로고
    • Efficiency of functional brain networks and intellectual performance
    • van den Heuvel M.P., et al. Efficiency of functional brain networks and intellectual performance. J. Neurosci. 2009, 29:7619-7624.
    • (2009) J. Neurosci. , vol.29 , pp. 7619-7624
    • van den Heuvel, M.P.1
  • 92
    • 78650031397 scopus 로고    scopus 로고
    • Disrupted axonal fiber connectivity in schizophrenia
    • Zalesky A., et al. Disrupted axonal fiber connectivity in schizophrenia. Biol. Psychiatry 2011, 69:80-89.
    • (2011) Biol. Psychiatry , vol.69 , pp. 80-89
    • Zalesky, A.1
  • 93
    • 67650908925 scopus 로고    scopus 로고
    • Cognitive fitness of cost-efficient brain functional networks
    • Bassett D.S., et al. Cognitive fitness of cost-efficient brain functional networks. Proc. Natl. Acad. Sci. U.S.A. 2009, 106:11747-11752.
    • (2009) Proc. Natl. Acad. Sci. U.S.A. , vol.106 , pp. 11747-11752
    • Bassett, D.S.1
  • 94
    • 84862838133 scopus 로고    scopus 로고
    • Global connectivity of prefrontal cortex predicts cognitive control and intelligence
    • Cole M.W., et al. Global connectivity of prefrontal cortex predicts cognitive control and intelligence. J. Neurosci. 2012, 32:8988-8999.
    • (2012) J. Neurosci. , vol.32 , pp. 8988-8999
    • Cole, M.W.1
  • 95
    • 84863495491 scopus 로고    scopus 로고
    • The brain structural hub of interhemispheric information integration for visual motion perception
    • Shimono M., et al. The brain structural hub of interhemispheric information integration for visual motion perception. Cereb. Cortex 2012, 22:337-344.
    • (2012) Cereb. Cortex , vol.22 , pp. 337-344
    • Shimono, M.1
  • 96
    • 82455217247 scopus 로고    scopus 로고
    • Personality is reflected in the brain's intrinsic functional architecture
    • Adelstein J.S., et al. Personality is reflected in the brain's intrinsic functional architecture. PLoS ONE 2011, 6:e27633.
    • (2011) PLoS ONE , vol.6
    • Adelstein, J.S.1
  • 97
    • 84855225832 scopus 로고    scopus 로고
    • Hierarchical topological network analysis of anatomical human brain connectivity and differences related to sex and kinship
    • Duarte-Carvajalino J.M., et al. Hierarchical topological network analysis of anatomical human brain connectivity and differences related to sex and kinship. Neuroimage 2013, 59:3784-3804.
    • (2013) Neuroimage , vol.59 , pp. 3784-3804
    • Duarte-Carvajalino, J.M.1
  • 98
    • 79952274702 scopus 로고    scopus 로고
    • Genetic influences on cost-efficient organization of human cortical functional networks
    • Fornito A., et al. Genetic influences on cost-efficient organization of human cortical functional networks. J. Neurosci. 2011, 31:3261-3270.
    • (2011) J. Neurosci. , vol.31 , pp. 3261-3270
    • Fornito, A.1
  • 99
    • 84874439821 scopus 로고    scopus 로고
    • Genetic control of functional brain network efficiency in children
    • van den Heuvel M.P., et al. Genetic control of functional brain network efficiency in children. Eur. Neuropsychopharmacol. 2012, 23:19-23.
    • (2012) Eur. Neuropsychopharmacol. , vol.23 , pp. 19-23
    • van den Heuvel, M.P.1
  • 100
    • 75749118564 scopus 로고    scopus 로고
    • Genetic control over the resting brain
    • Glahn D.C., et al. Genetic control over the resting brain. Proc. Natl. Acad. Sci. U.S.A. 2010, 107:1223-1228.
    • (2010) Proc. Natl. Acad. Sci. U.S.A. , vol.107 , pp. 1223-1228
    • Glahn, D.C.1
  • 101
    • 84863084801 scopus 로고    scopus 로고
    • Gene network effects on brain microstructure and intellectual performance identified in 472 twins
    • Chiang M.C., et al. Gene network effects on brain microstructure and intellectual performance identified in 472 twins. J. Neurosci. 2012, 32:8732-8745.
    • (2012) J. Neurosci. , vol.32 , pp. 8732-8745
    • Chiang, M.C.1
  • 102
    • 84887474242 scopus 로고    scopus 로고
    • The ontogeny of the human connectome: development and dynamic changes of brain connectivity across the lifespan
    • Collin G., van den Heuvel M.P. The ontogeny of the human connectome: development and dynamic changes of brain connectivity across the lifespan. Neuroscientist 2013, 10.1177/1073858413503712.
    • (2013) Neuroscientist
    • Collin, G.1    van den Heuvel, M.P.2
  • 103
    • 84880589602 scopus 로고    scopus 로고
    • Mapping connectivity in the developing brain
    • Dennis E.L., Thompson P.M. Mapping connectivity in the developing brain. Int. J. Dev. Neurosci. 2013, 31:525-542.
    • (2013) Int. J. Dev. Neurosci. , vol.31 , pp. 525-542
    • Dennis, E.L.1    Thompson, P.M.2
  • 104
    • 77956517416 scopus 로고    scopus 로고
    • Prediction of individual brain maturity using fMRI
    • Dosenbach N.U., et al. Prediction of individual brain maturity using fMRI. Science 2010, 329:1358-1361.
    • (2010) Science , vol.329 , pp. 1358-1361
    • Dosenbach, N.U.1
  • 105
    • 84863522528 scopus 로고    scopus 로고
    • Altered structural connectivity in neonates at genetic risk for schizophrenia: a combined study using morphological and white matter networks
    • Shi F., et al. Altered structural connectivity in neonates at genetic risk for schizophrenia: a combined study using morphological and white matter networks. Neuroimage 2012, 62:1622-1633.
    • (2012) Neuroimage , vol.62 , pp. 1622-1633
    • Shi, F.1
  • 106
    • 78650504202 scopus 로고    scopus 로고
    • White matter maturation reshapes structural connectivity in the late developing human brain
    • Hagmann P., et al. White matter maturation reshapes structural connectivity in the late developing human brain. Proc. Natl. Acad. Sci. U.S.A. 2010, 107:19067-19072.
    • (2010) Proc. Natl. Acad. Sci. U.S.A. , vol.107 , pp. 19067-19072
    • Hagmann, P.1
  • 107
    • 78651314423 scopus 로고    scopus 로고
    • The functional architecture of the infant brain as revealed by resting-state fMRI
    • Fransson P., et al. The functional architecture of the infant brain as revealed by resting-state fMRI. Cereb. Cortex 2011, 21:145-154.
    • (2011) Cereb. Cortex , vol.21 , pp. 145-154
    • Fransson, P.1
  • 108
    • 84886407072 scopus 로고    scopus 로고
    • The development of hub architecture in the human functional brain network
    • Hwang K., et al. The development of hub architecture in the human functional brain network. Cereb. Cortex 2012, 23:2380-2393.
    • (2012) Cereb. Cortex , vol.23 , pp. 2380-2393
    • Hwang, K.1
  • 109
    • 83455199059 scopus 로고    scopus 로고
    • Dynamic reconfiguration of structural and functional connectivity across core neurocognitive brain networks with development
    • Uddin L.Q., et al. Dynamic reconfiguration of structural and functional connectivity across core neurocognitive brain networks with development. J. Neurosci. 2011, 31:18578-18589.
    • (2011) J. Neurosci. , vol.31 , pp. 18578-18589
    • Uddin, L.Q.1
  • 110
    • 68049128346 scopus 로고    scopus 로고
    • Development of large-scale functional brain networks in children
    • Supekar K., et al. Development of large-scale functional brain networks in children. PLoS Biol. 2009, 7:e1000157.
    • (2009) PLoS Biol. , vol.7
    • Supekar, K.1
  • 111
    • 80051475230 scopus 로고    scopus 로고
    • Sex steroids and connectivity in the human brain: a review of neuroimaging studies
    • Peper J.S., et al. Sex steroids and connectivity in the human brain: a review of neuroimaging studies. Psychoneuroendocrinology 2012, 36:1101-1113.
    • (2012) Psychoneuroendocrinology , vol.36 , pp. 1101-1113
    • Peper, J.S.1
  • 112
    • 84859948255 scopus 로고    scopus 로고
    • The economy of brain network organization
    • Bullmore E., Sporns O. The economy of brain network organization. Nat. Rev. Neurosci. 2012, 13:336-349.
    • (2012) Nat. Rev. Neurosci. , vol.13 , pp. 336-349
    • Bullmore, E.1    Sporns, O.2
  • 113
    • 64149093013 scopus 로고    scopus 로고
    • Neurodegenerative diseases target large-scale human brain networks
    • Seeley W.W., et al. Neurodegenerative diseases target large-scale human brain networks. Neuron 2009, 62:42-52.
    • (2009) Neuron , vol.62 , pp. 42-52
    • Seeley, W.W.1
  • 114
    • 68449088228 scopus 로고    scopus 로고
    • Human brain networks in health and disease
    • Bassett D.S., Bullmore E.T. Human brain networks in health and disease. Curr. Opin. Neurol. 2009, 22:340-347.
    • (2009) Curr. Opin. Neurol. , vol.22 , pp. 340-347
    • Bassett, D.S.1    Bullmore, E.T.2
  • 115
    • 77954739673 scopus 로고    scopus 로고
    • Functional connectivity and brain networks in schizophrenia
    • Lynall M.E., et al. Functional connectivity and brain networks in schizophrenia. J. Neurosci. 2010, 30:9477-9487.
    • (2010) J. Neurosci. , vol.30 , pp. 9477-9487
    • Lynall, M.E.1
  • 116
    • 84865305316 scopus 로고    scopus 로고
    • Schizophrenia, neuroimaging and connectomics
    • Fornito A., et al. Schizophrenia, neuroimaging and connectomics. Neuroimage 2012, 62:2296-2314.
    • (2012) Neuroimage , vol.62 , pp. 2296-2314
    • Fornito, A.1
  • 117
    • 84863784244 scopus 로고    scopus 로고
    • Altered default network resting state functional connectivity in patients with a first episode of psychosis
    • Alonso-Solis A., et al. Altered default network resting state functional connectivity in patients with a first episode of psychosis. Schizophr. Res. 2013, 139:13-18.
    • (2013) Schizophr. Res. , vol.139 , pp. 13-18
    • Alonso-Solis, A.1
  • 119
    • 84881169556 scopus 로고    scopus 로고
    • Abnormal rich club organization and functional brain dynamics in schizophrenia
    • van den Heuvel M.P., et al. Abnormal rich club organization and functional brain dynamics in schizophrenia. JAMA Psychiatry 2013, 70:783-792.
    • (2013) JAMA Psychiatry , vol.70 , pp. 783-792
    • van den Heuvel, M.P.1
  • 120
    • 84871933030 scopus 로고    scopus 로고
    • Disrupted correlation between low frequency power and connectivity strength of resting state brain networks in schizophrenia
    • Yu Q., et al. Disrupted correlation between low frequency power and connectivity strength of resting state brain networks in schizophrenia. Schizophr. Res. 2013, 143:165-171.
    • (2013) Schizophr. Res. , vol.143 , pp. 165-171
    • Yu, Q.1
  • 121
    • 84877631590 scopus 로고    scopus 로고
    • Altered modular organization of structural cortical networks in children with autism
    • Shi F., et al. Altered modular organization of structural cortical networks in children with autism. PLoS ONE 2013, 8:e63131.
    • (2013) PLoS ONE , vol.8
    • Shi, F.1
  • 122
    • 79953669487 scopus 로고    scopus 로고
    • Disrupted modularity and local connectivity of brain functional networks in childhood-onset schizophrenia
    • Alexander-Bloch A.F., et al. Disrupted modularity and local connectivity of brain functional networks in childhood-onset schizophrenia. Front. Syst. Neurosci. 2010, 4:147.
    • (2010) Front. Syst. Neurosci. , vol.4 , pp. 147
    • Alexander-Bloch, A.F.1
  • 123
    • 84870818294 scopus 로고    scopus 로고
    • The anatomical distance of functional connections predicts brain network topology in health and schizophrenia
    • Alexander-Bloch A.F., et al. The anatomical distance of functional connections predicts brain network topology in health and schizophrenia. Cereb. Cortex 2013, 23:127-138.
    • (2013) Cereb. Cortex , vol.23 , pp. 127-138
    • Alexander-Bloch, A.F.1
  • 124
    • 84866104849 scopus 로고    scopus 로고
    • Activity dependent degeneration explains hub vulnerability in Alzheimer's disease
    • de Haan W., et al. Activity dependent degeneration explains hub vulnerability in Alzheimer's disease. PLoS Comput. Biol. 2013, 8:e1002582.
    • (2013) PLoS Comput. Biol. , vol.8
    • de Haan, W.1
  • 125
    • 1842427969 scopus 로고    scopus 로고
    • Default-mode network activity distinguishes Alzheimer's disease from healthy aging: evidence from functional MRI
    • Greicius M.D., et al. Default-mode network activity distinguishes Alzheimer's disease from healthy aging: evidence from functional MRI. Proc. Natl. Acad. Sci. U.S.A. 2004, 101:4637-4642.
    • (2004) Proc. Natl. Acad. Sci. U.S.A. , vol.101 , pp. 4637-4642
    • Greicius, M.D.1
  • 126
    • 46249131887 scopus 로고    scopus 로고
    • Network analysis of intrinsic functional brain connectivity in Alzheimer's disease
    • Supekar K., et al. Network analysis of intrinsic functional brain connectivity in Alzheimer's disease. PLoS Comput. Biol. 2008, 4:e1000100.
    • (2008) PLoS Comput. Biol. , vol.4
    • Supekar, K.1
  • 127
    • 58949094701 scopus 로고    scopus 로고
    • Graph theoretical analysis of magnetoencephalographic functional connectivity in Alzheimer's disease
    • Stam C.J., et al. Graph theoretical analysis of magnetoencephalographic functional connectivity in Alzheimer's disease. Brain 2009, 132:213-224.
    • (2009) Brain , vol.132 , pp. 213-224
    • Stam, C.J.1
  • 128
    • 84881290421 scopus 로고    scopus 로고
    • Brain network connectivity assessed using graph theory in frontotemporal dementia
    • Agosta F., et al. Brain network connectivity assessed using graph theory in frontotemporal dementia. Neurology 2013, 81:134-143.
    • (2013) Neurology , vol.81 , pp. 134-143
    • Agosta, F.1
  • 129
    • 84858648349 scopus 로고    scopus 로고
    • A network diffusion model of disease progression in dementia
    • Raj A., et al. A network diffusion model of disease progression in dementia. Neuron 2012, 73:1204-1215.
    • (2012) Neuron , vol.73 , pp. 1204-1215
    • Raj, A.1
  • 130
    • 79954614292 scopus 로고    scopus 로고
    • Towards a neuroimaging biomarker for amyotrophic lateral sclerosis
    • Turner M.R., et al. Towards a neuroimaging biomarker for amyotrophic lateral sclerosis. Lancet Neurol. 2011, 10:400-403.
    • (2011) Lancet Neurol. , vol.10 , pp. 400-403
    • Turner, M.R.1
  • 131
    • 84896393813 scopus 로고    scopus 로고
    • Structural brain network imaging shows expanding disconnection of the motor system in amyotrophic lateral sclerosis
    • Verstraete E., et al. Structural brain network imaging shows expanding disconnection of the motor system in amyotrophic lateral sclerosis. Hum. Brain Mapp. 2013, 10.1002/hbm.22258.
    • (2013) Hum. Brain Mapp.
    • Verstraete, E.1
  • 132
    • 78149434140 scopus 로고    scopus 로고
    • Motor network degeneration in amyotrophic lateral sclerosis: a structural and functional connectivity study
    • Verstraete E., et al. Motor network degeneration in amyotrophic lateral sclerosis: a structural and functional connectivity study. PLoS ONE 2010, 5:e13664.
    • (2010) PLoS ONE , vol.5
    • Verstraete, E.1
  • 133
    • 84860375866 scopus 로고    scopus 로고
    • Focal brain lesions to critical locations cause widespread disruption of the modular organization of the brain
    • Gratton C., et al. Focal brain lesions to critical locations cause widespread disruption of the modular organization of the brain. J. Cogn. Neurosci. 2012, 24:1275-1285.
    • (2012) J. Cogn. Neurosci. , vol.24 , pp. 1275-1285
    • Gratton, C.1
  • 134
    • 84879075234 scopus 로고    scopus 로고
    • Traumatic brain injury impairs small-world topology
    • Pandit A.S., et al. Traumatic brain injury impairs small-world topology. Neurology 2013, 80:1826-1833.
    • (2013) Neurology , vol.80 , pp. 1826-1833
    • Pandit, A.S.1
  • 135
    • 84883421551 scopus 로고    scopus 로고
    • Structural and functional changes of the cingulate gyrus following traumatic brain injury: relation to attention and executive skills
    • Merkley T.L., et al. Structural and functional changes of the cingulate gyrus following traumatic brain injury: relation to attention and executive skills. J. Int. Neuropsychol. Soc. 2013, 19:1-12.
    • (2013) J. Int. Neuropsychol. Soc. , vol.19 , pp. 1-12
    • Merkley, T.L.1
  • 136
    • 4644280204 scopus 로고    scopus 로고
    • Brain function in coma, vegetative state, and related disorders
    • Laureys S., et al. Brain function in coma, vegetative state, and related disorders. Lancet Neurol. 2004, 3:537-546.
    • (2004) Lancet Neurol. , vol.3 , pp. 537-546
    • Laureys, S.1
  • 137
    • 84862758299 scopus 로고    scopus 로고
    • Functional neuroanatomy underlying the clinical subcategorization of minimally conscious state patients
    • Bruno M.A., et al. Functional neuroanatomy underlying the clinical subcategorization of minimally conscious state patients. J. Neurol. 2012, 259:1087-1098.
    • (2012) J. Neurol. , vol.259 , pp. 1087-1098
    • Bruno, M.A.1
  • 138
    • 84874437705 scopus 로고    scopus 로고
    • Hubs of brain functional networks are radically reorganized in comatose patients
    • Achard S., et al. Hubs of brain functional networks are radically reorganized in comatose patients. Proc. Natl. Acad. Sci. U.S.A. 2013, 109:20608-20613.
    • (2013) Proc. Natl. Acad. Sci. U.S.A. , vol.109 , pp. 20608-20613
    • Achard, S.1
  • 139
    • 84875836831 scopus 로고    scopus 로고
    • Consciousness supporting networks
    • Demertzi A., et al. Consciousness supporting networks. Curr. Opin. Neurobiol. 2013, 23:239-244.
    • (2013) Curr. Opin. Neurobiol. , vol.23 , pp. 239-244
    • Demertzi, A.1
  • 140
    • 84857366858 scopus 로고    scopus 로고
    • Recovery of cortical effective connectivity and recovery of consciousness in vegetative patients
    • Rosanova M., et al. Recovery of cortical effective connectivity and recovery of consciousness in vegetative patients. Brain 2012, 135:1308-1320.
    • (2012) Brain , vol.135 , pp. 1308-1320
    • Rosanova, M.1
  • 141
    • 79959898630 scopus 로고    scopus 로고
    • The hippocampus: hub of brain network communication for memory
    • Battaglia F.P., et al. The hippocampus: hub of brain network communication for memory. Trends Cogn. Sci. 2011, 15:310-318.
    • (2011) Trends Cogn. Sci. , vol.15 , pp. 310-318
    • Battaglia, F.P.1
  • 142
    • 19544390006 scopus 로고    scopus 로고
    • Capacity limits of information processing in the brain
    • Marois R., Ivanoff J. Capacity limits of information processing in the brain. Trends Cogn. Sci. 2005, 9:296-305.
    • (2005) Trends Cogn. Sci. , vol.9 , pp. 296-305
    • Marois, R.1    Ivanoff, J.2
  • 143
    • 84890545141 scopus 로고    scopus 로고
    • A weighted and directed interareal connectivity matrix for macaque cerebral cortex
    • Markov N.T., et al. A weighted and directed interareal connectivity matrix for macaque cerebral cortex. Cereb. Cortex 2012, 10.1093/cercor/bhs270.
    • (2012) Cereb. Cortex
    • Markov, N.T.1
  • 144
    • 84867025663 scopus 로고    scopus 로고
    • Rich club organization of macaque cerebral cortex and its role in network communication
    • Harriger L., et al. Rich club organization of macaque cerebral cortex and its role in network communication. PLoS ONE 2012, 7:e46497.
    • (2012) PLoS ONE , vol.7
    • Harriger, L.1
  • 145
    • 80051640494 scopus 로고    scopus 로고
    • Driving and driven architectures of directed small-world human brain functional networks
    • Yan C., He Y. Driving and driven architectures of directed small-world human brain functional networks. PLoS ONE 2012, 6:e23460.
    • (2012) PLoS ONE , vol.6
    • Yan, C.1    He, Y.2
  • 146
    • 0141645490 scopus 로고    scopus 로고
    • Communication in neuronal networks
    • Laughlin S.B., Sejnowski T.J. Communication in neuronal networks. Science 2003, 301:1870-1874.
    • (2003) Science , vol.301 , pp. 1870-1874
    • Laughlin, S.B.1    Sejnowski, T.J.2
  • 147
    • 84866790204 scopus 로고    scopus 로고
    • How anatomy shapes dynamics: a semi-analytical study of the brain at rest by a simple spin model
    • Deco G., et al. How anatomy shapes dynamics: a semi-analytical study of the brain at rest by a simple spin model. Front. Comput. Neurosci. 2012, 6:68.
    • (2012) Front. Comput. Neurosci. , vol.6 , pp. 68
    • Deco, G.1
  • 148
    • 84884419435 scopus 로고    scopus 로고
    • Dynamic cooperation and competition between brain systems during cognitive control
    • Cocchi L., et al. Dynamic cooperation and competition between brain systems during cognitive control. Trends Cogn. Sci. 2013, 17:493-501.
    • (2013) Trends Cogn. Sci. , vol.17 , pp. 493-501
    • Cocchi, L.1
  • 149
    • 79955837996 scopus 로고    scopus 로고
    • The overlapping community structure of structural brain network in young healthy individuals
    • Wu K., et al. The overlapping community structure of structural brain network in young healthy individuals. PLoS ONE 2011, 6:e19608.
    • (2011) PLoS ONE , vol.6
    • Wu, K.1
  • 150
    • 67649503007 scopus 로고    scopus 로고
    • Symbiotic relationship between brain structure and dynamics
    • Rubinov M., et al. Symbiotic relationship between brain structure and dynamics. BMC Neurosci. 2009, 10:55.
    • (2009) BMC Neurosci. , vol.10 , pp. 55
    • Rubinov, M.1
  • 151
    • 84858710481 scopus 로고    scopus 로고
    • Structural connectivity allows for multi-threading during rest: the structure of the cortex leads to efficient alternation between resting state exploratory behavior and default mode processing
    • Senden M., et al. Structural connectivity allows for multi-threading during rest: the structure of the cortex leads to efficient alternation between resting state exploratory behavior and default mode processing. Neuroimage 2012, 60:2274-2284.
    • (2012) Neuroimage , vol.60 , pp. 2274-2284
    • Senden, M.1
  • 152
    • 67650904951 scopus 로고    scopus 로고
    • Modeling the impact of lesions in the human brain
    • Alstott J., et al. Modeling the impact of lesions in the human brain. PLoS Comput. Biol. 2009, 5:e1000408.
    • (2009) PLoS Comput. Biol. , vol.5
    • Alstott, J.1
  • 153
    • 44949108212 scopus 로고    scopus 로고
    • Dynamical consequences of lesions in cortical networks
    • Honey C.J., Sporns O. Dynamical consequences of lesions in cortical networks. Hum. Brain Mapp. 2008, 29:802-809.
    • (2008) Hum. Brain Mapp. , vol.29 , pp. 802-809
    • Honey, C.J.1    Sporns, O.2
  • 154
    • 84880791381 scopus 로고    scopus 로고
    • Making sense of brain network data
    • Sporns O. Making sense of brain network data. Nat. Methods 2013, 10:491-493.
    • (2013) Nat. Methods , vol.10 , pp. 491-493
    • Sporns, O.1
  • 155
    • 0037171822 scopus 로고    scopus 로고
    • Wiring optimization in cortical circuits
    • Chklovskii D.B., et al. Wiring optimization in cortical circuits. Neuron 2002, 34:341-347.
    • (2002) Neuron , vol.34 , pp. 341-347
    • Chklovskii, D.B.1
  • 156
    • 33746636451 scopus 로고    scopus 로고
    • Nonoptimal component placement, but short processing paths, due to long-distance projections in neural systems
    • Kaiser M., Hilgetag C.C. Nonoptimal component placement, but short processing paths, due to long-distance projections in neural systems. PLoS Comput. Biol. 2006, 2:e95.
    • (2006) PLoS Comput. Biol. , vol.2
    • Kaiser, M.1    Hilgetag, C.C.2
  • 157
    • 0035017915 scopus 로고    scopus 로고
    • Regional dendritic and spine variation in human cerebral cortex: a quantitative Golgi study
    • Jacobs B., et al. Regional dendritic and spine variation in human cerebral cortex: a quantitative Golgi study. Cereb. Cortex 2001, 11:558-571.
    • (2001) Cereb. Cortex , vol.11 , pp. 558-571
    • Jacobs, B.1
  • 158
    • 77958477311 scopus 로고    scopus 로고
    • Regional aerobic glycolysis in the human brain
    • Vaishnavi S.N., et al. Regional aerobic glycolysis in the human brain. Proc. Natl. Acad. Sci. U.S.A. 2011, 107:17757-17762.
    • (2011) Proc. Natl. Acad. Sci. U.S.A. , vol.107 , pp. 17757-17762
    • Vaishnavi, S.N.1
  • 159
    • 79955540144 scopus 로고    scopus 로고
    • Quantifying the link between anatomical connectivity, gray matter volume and regional cerebral blood flow: an integrative MRI study
    • Varkuti B., et al. Quantifying the link between anatomical connectivity, gray matter volume and regional cerebral blood flow: an integrative MRI study. PLoS ONE 2010, 6:e14801.
    • (2010) PLoS ONE , vol.6
    • Varkuti, B.1
  • 160
    • 84873283933 scopus 로고    scopus 로고
    • Individual variability in functional connectivity architecture of the human brain
    • Mueller S., et al. Individual variability in functional connectivity architecture of the human brain. Neuron 2013, 77:586-595.
    • (2013) Neuron , vol.77 , pp. 586-595
    • Mueller, S.1
  • 161
    • 82055191416 scopus 로고    scopus 로고
    • Mapping the human connectome at multiple scales with diffusion spectrum MRI
    • Cammoun L., et al. Mapping the human connectome at multiple scales with diffusion spectrum MRI. J. Neurosci. Methods 2012, 203:386-397.
    • (2012) J. Neurosci. Methods , vol.203 , pp. 386-397
    • Cammoun, L.1
  • 162
    • 85088338939 scopus 로고    scopus 로고
    • The intrinsic connectome of the rat amygdala
    • Schmitt O., et al. The intrinsic connectome of the rat amygdala. Front. Neural Circuits 2012, 6:81.
    • (2012) Front. Neural Circuits , vol.6 , pp. 81
    • Schmitt, O.1
  • 163
    • 84879147080 scopus 로고    scopus 로고
    • Large-scale network organization in the avian forebrain: a connectivity matrix and theoretical analysis
    • Shanahan M., et al. Large-scale network organization in the avian forebrain: a connectivity matrix and theoretical analysis. Front. Comput. Neurosci. 2013, 7:89.
    • (2013) Front. Comput. Neurosci. , vol.7 , pp. 89
    • Shanahan, M.1
  • 164
    • 84862107197 scopus 로고    scopus 로고
    • Graph theoretical model of a sensorimotor connectome in zebrafish
    • Stobb M., et al. Graph theoretical model of a sensorimotor connectome in zebrafish. PLoS ONE 2012, 7:e37292.
    • (2012) PLoS ONE , vol.7
    • Stobb, M.1
  • 165
    • 79151480913 scopus 로고    scopus 로고
    • Three-dimensional reconstruction of brain-wide wiring networks in Drosophila at single-cell resolution
    • Chiang A.S., et al. Three-dimensional reconstruction of brain-wide wiring networks in Drosophila at single-cell resolution. Curr. Biol. 2010, 21:1-11.
    • (2010) Curr. Biol. , vol.21 , pp. 1-11
    • Chiang, A.S.1
  • 166
    • 79952483532 scopus 로고    scopus 로고
    • Structural properties of the Caenorhabditis elegans neuronal network
    • Varshney L.R., et al. Structural properties of the Caenorhabditis elegans neuronal network. PLoS Comput. Biol. 2010, 7:e1001066.
    • (2010) PLoS Comput. Biol. , vol.7
    • Varshney, L.R.1
  • 167
    • 84876008722 scopus 로고    scopus 로고
    • The rich club of the C. elegans neuronal connectome
    • Towlson E.K., et al. The rich club of the C. elegans neuronal connectome. J. Neurosci. 2013, 33:6380-6387.
    • (2013) J. Neurosci. , vol.33 , pp. 6380-6387
    • Towlson, E.K.1
  • 168
    • 0028909231 scopus 로고
    • Analysis of connectivity in the cat cerebral cortex
    • Scannell J.W., et al. Analysis of connectivity in the cat cerebral cortex. J. Neurosci. 1995, 15:1463-1483.
    • (1995) J. Neurosci. , vol.15 , pp. 1463-1483
    • Scannell, J.W.1
  • 169
    • 77955834422 scopus 로고    scopus 로고
    • Network architecture of the long-distance pathways in the macaque brain
    • Modha D.S., Singh R. Network architecture of the long-distance pathways in the macaque brain. Proc. Natl. Acad. Sci. U.S.A. 2010, 107:13485-13490.
    • (2010) Proc. Natl. Acad. Sci. U.S.A. , vol.107 , pp. 13485-13490
    • Modha, D.S.1    Singh, R.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.