메뉴 건너뛰기




Volumn 3, Issue 3, 2013, Pages 223-239

“More Is Different” in Functional Magnetic Resonance Imaging: A Review of Recent Data Analysis Techniques

Author keywords

algorithms; complex systems; connectivity; data analysis techniques; fMRI; multivariate; networks; pattern analysis

Indexed keywords


EID: 84888379494     PISSN: 21580014     EISSN: 21580022     Source Type: Journal    
DOI: 10.1089/brain.2012.0133     Document Type: Review
Times cited : (21)

References (173)
  • 2
    • 30744439313 scopus 로고    scopus 로고
    • A resilient, low-frequency, small-world human brain functional network with highly connected association cortical hubs
    • Achard S, Salvador R, Whitcher B, Suckling J, Bullmore E. 2006. A resilient, low-frequency, small-world human brain functional network with highly connected association cortical hubs. J Neurosci 26:63-72.
    • (2006) J Neurosci , vol.26 , pp. 63-72
    • Achard, S.1    Salvador, R.2    Whitcher, B.3    Suckling, J.4    Bullmore, E.5
  • 3
    • 34247953814 scopus 로고
    • More is different
    • Anderson P. 1972. More is different. Science 177:393-396.
    • (1972) Science , vol.177 , pp. 393-396
    • Anderson, P.1
  • 5
    • 84856221111 scopus 로고    scopus 로고
    • Ultrahigh field systems and applications at 7 T and beyond: progress, pitfalls, and potential
    • Bandettini P, Bowtell R, Jezzard P, Turner R. 2012. Ultrahigh field systems and applications at 7 T and beyond: progress, pitfalls, and potential. Magn Reson Med 67:317-321.
    • (2012) Magn Reson Med , vol.67 , pp. 317-321
    • Bandettini, P.1    Bowtell, R.2    Jezzard, P.3    Turner, R.4
  • 6
    • 0038483826 scopus 로고    scopus 로고
    • Emergence of scaling in random networks
    • Barabasi A, Albert R. 1999. Emergence of scaling in random networks. Science 286:509-512.
    • (1999) Science , vol.286 , pp. 509-512
    • Barabasi, A.1    Albert, R.2
  • 7
    • 33749236398 scopus 로고    scopus 로고
    • Chaos, complexity, and entropy: a physics talk for non-physicists
    • Baranger M. 2012. Chaos, complexity, and entropy: a physics talk for non-physicists. http://necsi.edu/projects/baranger/cce.pdf
    • (2012)
    • Baranger, M.1
  • 8
    • 33750466904 scopus 로고    scopus 로고
    • Small-world brain networks
    • Bassett D, Bullmore E. 2008. Small-world brain networks. Neuroscientist 12:512-523.
    • (2008) Neuroscientist , vol.12 , pp. 512-523
    • Bassett, D.1    Bullmore, E.2
  • 9
    • 25444456446 scopus 로고    scopus 로고
    • Investigations into resting-state connectivity using independent component analysis
    • Beckmann C, De Luca M, Devlin J, Smith S. 2005. Investigations into resting-state connectivity using independent component analysis. Philos Trans R Soc Lond Ser B 360:1001-1013.
    • (2005) Philos Trans R Soc Lond Ser B , vol.360 , pp. 1001-1013
    • Beckmann, C.1    De Luca, M.2    Devlin, J.3    Smith, S.4
  • 10
    • 14244251502 scopus 로고    scopus 로고
    • Tensorial extensions of independent component analysis for group FMRI data analysis
    • Beckmann C, Smith S. 2005. Tensorial extensions of independent component analysis for group FMRI data analysis. NeuroImage 25:294-311.
    • (2005) NeuroImage , vol.25 , pp. 294-311
    • Beckmann, C.1    Smith, S.2
  • 11
    • 0029411030 scopus 로고
    • An information maximisation approach to blind separation and blind deconvolution
    • Bell A, Sejnowski T. 1995. An information maximisation approach to blind separation and blind deconvolution. Neural Comput 7:1129-1159.
    • (1995) Neural Comput , vol.7 , pp. 1129-1159
    • Bell, A.1    Sejnowski, T.2
  • 12
    • 62149144693 scopus 로고    scopus 로고
    • Beyond the data deluge
    • Bell G, Hey T, Szalay A. 2009. Beyond the data deluge. Science 323:1297-1298.
    • (2009) Science , vol.323 , pp. 1297-1298
    • Bell, G.1    Hey, T.2    Szalay, A.3
  • 13
    • 44949194744 scopus 로고    scopus 로고
    • The effect of respiration variations on independent component analysis results of resting state functional connectivity
    • Birn R, Murphy K, Bandettini P. 2008. The effect of respiration variations on independent component analysis results of resting state functional connectivity. Hum Brain Mapp 29:740-750.
    • (2008) Hum Brain Mapp , vol.29 , pp. 740-750
    • Birn, R.1    Murphy, K.2    Bandettini, P.3
  • 15
    • 0029166541 scopus 로고
    • Functional connectivity in the motor cortex of resting human brain using echo-planar mri
    • Biswal B, Yetkin F, Haughton V, Hyde J. 1995. Functional connectivity in the motor cortex of resting human brain using echo-planar mri. Magn Reson Med 34:537-541.
    • (1995) Magn Reson Med , vol.34 , pp. 537-541
    • Biswal, B.1    Yetkin, F.2    Haughton, V.3    Hyde, J.4
  • 17
    • 80051989247 scopus 로고    scopus 로고
    • Classifying cognitive states of brain activity via one-class neural networks with feature selection by genetic algorithms
    • Boehm O, Hardoon D, Manevitz L. 2011. Classifying cognitive states of brain activity via one-class neural networks with feature selection by genetic algorithms. Int J Mach Learn Cybernet 2:125-134.
    • (2011) Int J Mach Learn Cybernet , vol.2 , pp. 125-134
    • Boehm, O.1    Hardoon, D.2    Manevitz, L.3
  • 18
    • 0001316531 scopus 로고
    • Factoring and weighting approaches to clique identification
    • Bonacich P. 1972. Factoring and weighting approaches to clique identification. J Math Soc 2:113-120.
    • (1972) J Math Soc , vol.2 , pp. 113-120
    • Bonacich, P.1
  • 20
    • 84876421432 scopus 로고    scopus 로고
    • Dynamic and stochastic models of neuroimaging data: a comment on Lohmann
    • et al
    • Breakspear M. 2013. Dynamic and stochastic models of neuroimaging data: a comment on Lohmann et al. Neuroimage 75:270-274.
    • (2013) Neuroimage , vol.75 , pp. 270-274
    • Breakspear, M.1
  • 21
    • 80051721063 scopus 로고    scopus 로고
    • Networks, noise and models: reconceptualizing the brain as a complex, distributed system
    • Breakspear M, McIntosh R. 2011. Networks, noise and models: reconceptualizing the brain as a complex, distributed system. Neuroimage 58:293-295.
    • (2011) Neuroimage , vol.58 , pp. 293-295
    • Breakspear, M.1    McIntosh, R.2
  • 22
    • 77952881705 scopus 로고    scopus 로고
    • Large-scale brain networks in cognition: emerging methods and principles
    • Bressler S, Menon V. 2010. Large-scale brain networks in cognition: emerging methods and principles. Trends Cogn Sci 14:277-290.
    • (2010) Trends Cogn Sci , vol.14 , pp. 277-290
    • Bressler, S.1    Menon, V.2
  • 23
    • 60849136325 scopus 로고    scopus 로고
    • Cortical hubs revealed by intrinsic functional connectivity: mapping, assessment of stability, and relation to Alzheimers disease
    • Buckner R, Sepulcre J, Talukdar T, Krienen F, Liu H, Hedden T, Andrewshanna J, Sperling R, Johnson K. 2009. Cortical hubs revealed by intrinsic functional connectivity: mapping, assessment of stability, and relation to Alzheimers disease. J Neurosci 29:1860-1873.
    • (2009) J Neurosci , vol.29 , pp. 1860-1873
    • Buckner, R.1    Sepulcre, J.2    Talukdar, T.3    Krienen, F.4    Liu, H.5    Hedden, T.6    Andrewshanna, J.7    Sperling, R.8    Johnson, K.9
  • 24
    • 60549103853 scopus 로고    scopus 로고
    • Complex brain networks: graph theoretical analysis of structural and functional systems
    • Bullmore E, Sporns O. 2009. Complex brain networks: graph theoretical analysis of structural and functional systems. Nat Rev Neurosci 10:186-198.
    • (2009) Nat Rev Neurosci , vol.10 , pp. 186-198
    • Bullmore, E.1    Sporns, O.2
  • 25
    • 0031809018 scopus 로고    scopus 로고
    • Dynamics of blood flow and oxygenation changes during brain activation: the Balloon model
    • Buxton R, Wong E, Frank L. 1998. Dynamics of blood flow and oxygenation changes during brain activation: the Balloon model. MRM 39:855-864.
    • (1998) MRM , vol.39 , pp. 855-864
    • Buxton, R.1    Wong, E.2    Frank, L.3
  • 26
    • 65549097795 scopus 로고    scopus 로고
    • A review of group ICA for fMRI data and ICA for joint inference of imaging, genetic, and ERP data
    • Calhoun V, Liu J, Adali T. 2009. A review of group ICA for fMRI data and ICA for joint inference of imaging, genetic, and ERP data. Neuroimage 45(Supplement 1):S163-S172.
    • (2009) Neuroimage , vol.45 , pp. S163-S172
    • Calhoun, V.1    Liu, J.2    Adali, T.3
  • 27
    • 0037765189 scopus 로고    scopus 로고
    • Patterns of activity in the categorical representations of objects
    • Carlson T, Schrater P, He S. 2003. Patterns of activity in the categorical representations of objects. J Cogn Neurosci 15:704-717.
    • (2003) J Cogn Neurosci , vol.15 , pp. 704-717
    • Carlson, T.1    Schrater, P.2    He, S.3
  • 28
    • 84870979883 scopus 로고    scopus 로고
    • On the plurality of (methodological) worlds: estimating the analytic flexibility of fMRI experiments
    • Carp J. 2012. On the plurality of (methodological) worlds: estimating the analytic flexibility of fMRI experiments. Front Neurosci 6:149.
    • (2012) Front Neurosci , vol.6 , pp. 149
    • Carp, J.1
  • 29
    • 55149117963 scopus 로고    scopus 로고
    • Prediction and interpretation of distributed neural activity with sparse models
    • Carroll M, Cecchi G, Rish I, Garg R, Rao A. 2009. Prediction and interpretation of distributed neural activity with sparse models. Neuroimage 44:112-122.
    • (2009) Neuroimage , vol.44 , pp. 112-122
    • Carroll, M.1    Cecchi, G.2    Rish, I.3    Garg, R.4    Rao, A.5
  • 31
    • 75249093217 scopus 로고    scopus 로고
    • Time-frequency dynamics of resting-state brain connectivity measured with fMRI
    • Chang C, Glover GH. 2010. Time-frequency dynamics of resting-state brain connectivity measured with fMRI. Neuroimage 50:81-98.
    • (2010) Neuroimage , vol.50 , pp. 81-98
    • Chang, C.1    Glover, G.H.2
  • 33
    • 0002157592 scopus 로고
    • Learning Bayesian networks: search methods and experimental results
    • In Proceedings of the Fifth Conference on Artificial Intelligence and Statistics Ft. Lauderdale
    • Chickering D, Geiger D, Heckerman D. 1995. Learning Bayesian networks: search methods and experimental results. In Proceedings of the Fifth Conference on Artificial Intelligence and Statistics, Ft. Lauderdale, F.L., pp. 112-128.
    • (1995) , pp. 112-128
    • Chickering, D.1    Geiger, D.2    Heckerman, D.3
  • 34
    • 0026028794 scopus 로고
    • The FDG/PET methodology for early detection of disease onset: a statistical model
    • Clark C, Ammann W, Martin W, Ty P, Hayden M. 1991. The FDG/PET methodology for early detection of disease onset: a statistical model. J Cereb Blood Flow Metab 11:A96-A102.
    • (1991) J Cereb Blood Flow Metab , vol.11 , pp. A96-A102
    • Clark, C.1    Ammann, W.2    Martin, W.3    Ty, P.4    Hayden, M.5
  • 35
    • 0037423295 scopus 로고    scopus 로고
    • Scale-free networks are ultrasmall
    • Cohen R, Havlin S. 2003. Scale-free networks are ultrasmall. Phys Rev Lett 90:058701.
    • (2003) Phys Rev Lett , vol.90 , pp. 058701
    • Cohen, R.1    Havlin, S.2
  • 36
    • 0041737619 scopus 로고    scopus 로고
    • Functional magnetic resonance imaging (fMRI) “brain reading”: detecting and classifying distributed patterns of fMRI activity in human visual cortex
    • Cox D, Savoy R. 2003. Functional magnetic resonance imaging (fMRI) “brain reading”: detecting and classifying distributed patterns of fMRI activity in human visual cortex. Neuroimage 19(2 Pt 1):261-270.
    • (2003) Neuroimage , vol.19 , Issue.2 , pp. 261-270
    • Cox, D.1    Savoy, R.2
  • 37
    • 84863882574 scopus 로고    scopus 로고
    • A whole brain fMRI atlas generated via spatially constrained spectral clustering
    • Craddock R, James G, Holtzheimer P, Hu X, Mayberg H. 2012. A whole brain fMRI atlas generated via spatially constrained spectral clustering. Hum Brain Mapp 33:1914-1928.
    • (2012) Hum Brain Mapp , vol.33 , pp. 1914-1928
    • Craddock, R.1    James, G.2    Holtzheimer, P.3    Hu, X.4    Mayberg, H.5
  • 39
    • 52049116700 scopus 로고    scopus 로고
    • Combining multivariate voxel selection and support vector machines for mapping and classification of fMRI spatial patterns
    • De Martino F, Valente G, Staeren N, Ashburner J, Goebel R, Formisano E. 2008. Combining multivariate voxel selection and support vector machines for mapping and classification of fMRI spatial patterns. Neuroimage 43:44-58.
    • (2008) Neuroimage , vol.43 , pp. 44-58
    • De Martino, F.1    Valente, G.2    Staeren, N.3    Ashburner, J.4    Goebel, R.5    Formisano, E.6
  • 41
    • 78649656025 scopus 로고    scopus 로고
    • Instantaneous and causal connectivity in resting state brain networks derived from functional MRI data
    • Deshpande G, Santhanam P, Hu X. 2011. Instantaneous and causal connectivity in resting state brain networks derived from functional MRI data. Neuroimage 54:1043-1052.
    • (2011) Neuroimage , vol.54 , pp. 1043-1052
    • Deshpande, G.1    Santhanam, P.2    Hu, X.3
  • 42
    • 77954383549 scopus 로고    scopus 로고
    • Effect of hemodynamic variability on granger causality analysis of fMRI
    • Deshpande G, Sathian K, Hu X. 2010. Effect of hemodynamic variability on granger causality analysis of fMRI. Neuroimage 52:884-896.
    • (2010) Neuroimage , vol.52 , pp. 884-896
    • Deshpande, G.1    Sathian, K.2    Hu, X.3
  • 43
    • 84875974096 scopus 로고    scopus 로고
    • Two Distinct ipsilateral cortical representations for individuated finger movements
    • Diedrichsen J, Wiestler T, Krakauer JW. 2013. Two Distinct ipsilateral cortical representations for individuated finger movements. Cereb Cortex 23:1362-1377.
    • (2013) Cereb Cortex , vol.23 , pp. 1362-1377
    • Diedrichsen, J.1    Wiestler, T.2    Krakauer, J.W.3
  • 45
    • 17844400960 scopus 로고    scopus 로고
    • A new SPM toolbox for combining probabilistic cytoarchitectonic maps and functional imaging data
    • Eickhoff S, Stephan K, Mohlberg H, Grefkes C, Fink G, Amunts K, Zilles K. 2005. A new SPM toolbox for combining probabilistic cytoarchitectonic maps and functional imaging data. Neuroimage 25:1325-1335.
    • (2005) Neuroimage , vol.25 , pp. 1325-1335
    • Eickhoff, S.1    Stephan, K.2    Mohlberg, H.3    Grefkes, C.4    Fink, G.5    Amunts, K.6    Zilles, K.7
  • 46
    • 67649666979 scopus 로고    scopus 로고
    • An introduction to anatomical ROI-based fMRI classification analysis
    • Etzel J, Gazzola V, Keysers C. 2009. An introduction to anatomical ROI-based fMRI classification analysis. Brain Res 1282:114-125.
    • (2009) Brain Res , vol.1282 , pp. 114-125
    • Etzel, J.1    Gazzola, V.2    Keysers, C.3
  • 47
    • 84055184816 scopus 로고    scopus 로고
    • A new spatially constrained NMF with application to fMRI
    • In Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society EMBS, Boston
    • Ferdowsi S, Abolghasemi V, Makkiabadi B, Sanei S. A new spatially constrained NMF with application to fMRI. In Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS, Boston, M.A., 2011, pp. 5052-5055.
    • (2011) , pp. 5052-5055
    • Ferdowsi, S.1    Abolghasemi, V.2    Makkiabadi, B.3    Sanei, S.4
  • 48
    • 48549099375 scopus 로고    scopus 로고
    • Multivariate analysis of fMRI time series: classification and regression of brain responses using machine learning
    • Formisano E, De Martino F, Valente G. 2008. Multivariate analysis of fMRI time series: classification and regression of brain responses using machine learning. Magn Reson Imaging 26:921-934.
    • (2008) Magn Reson Imaging , vol.26 , pp. 921-934
    • Formisano, E.1    De Martino, F.2    Valente, G.3
  • 49
    • 84866463827 scopus 로고    scopus 로고
    • What kind of noise is brain noise: anomalous scaling behavior of the resting brain activity fluctuations
    • [Epub ahead of print] 10.3389/fphys.2012.00307
    • Fraiman D, Chialvo D. 2012. What kind of noise is brain noise: anomalous scaling behavior of the resting brain activity fluctuations. Front Physiol 3 [Epub ahead of print]; DOI: 10.3389/fphys.2012.00307.
    • (2012) Front Physiol , vol.3
    • Fraiman, D.1    Chialvo, D.2
  • 50
    • 81355137473 scopus 로고    scopus 로고
    • Functional and effective connectivity: a review
    • Friston K. 2011. Functional and effective connectivity: a review. Brain Connect 1:13-36.
    • (2011) Brain Connect , vol.1 , pp. 13-36
    • Friston, K.1
  • 51
    • 84876438555 scopus 로고    scopus 로고
    • Model selection and gobbledygook: response to Lohmann
    • et al
    • Friston K, Daunizeau J, Stephan K. 2013. Model selection and gobbledygook: response to Lohmann et al. Neuroimage 75:275-278.
    • (2013) Neuroimage , vol.75 , pp. 275-278
    • Friston, K.1    Daunizeau, J.2    Stephan, K.3
  • 54
    • 82955235647 scopus 로고    scopus 로고
    • Microstructural parcellation of the human cerebral cortex - from brodmann's post-mortem map to in vivo mapping with high-field magnetic resonance imaging
    • Geyer S, Weiss M, Reimann K, Lohmann G, Turner R. 2011. Microstructural parcellation of the human cerebral cortex - from brodmann's post-mortem map to in vivo mapping with high-field magnetic resonance imaging. Front Hum Neurosci 5:19.
    • (2011) Front Hum Neurosci , vol.5 , pp. 19
    • Geyer, S.1    Weiss, M.2    Reimann, K.3    Lohmann, G.4    Turner, R.5
  • 55
    • 84951507118 scopus 로고
    • Genetic algorithms and machine learning
    • Goldberg D, Holland J. 1988. Genetic algorithms and machine learning. Mach Learn 3:95-99.
    • (1988) Mach Learn , vol.3 , pp. 95-99
    • Goldberg, D.1    Holland, J.2
  • 56
    • 0004236492 scopus 로고    scopus 로고
    • 3rd Baltimore, MD Johns Hopkins Univ Press
    • Golub G, van Loan C. 1996. Matrix Computations. 3rd edition. Baltimore, MD: Johns Hopkins Univ Press.
    • (1996) Matrix Computations
    • Golub, G.1    van Loan, C.2
  • 57
    • 84859451115 scopus 로고    scopus 로고
    • Whole-brain, time-locked activation with simple tasks revealed using massive averaging and model-free analysis
    • Gonzalez-Castillo J, Saad Z, Handwerker D, Inati S, Brenowitz N, Ban-Dettini, P. 2012. Whole-brain, time-locked activation with simple tasks revealed using massive averaging and model-free analysis. PNAS 109:5487-5492.
    • (2012) PNAS , vol.109 , pp. 5487-5492
    • Gonzalez-Castillo, J.1    Saad, Z.2    Handwerker, D.3    Inati, S.4    Brenowitz, N.5    Ban-Dettini, P.6
  • 58
    • 33745561205 scopus 로고    scopus 로고
    • An introduction to variable and feature selection
    • Guyon I, Elisseeff A. 2003. An introduction to variable and feature selection. J Mach Learn Res 3:1157-1182.
    • (2003) J Mach Learn Res , vol.3 , pp. 1157-1182
    • Guyon, I.1    Elisseeff, A.2
  • 59
    • 0042178307 scopus 로고    scopus 로고
    • Multivariate autoregressive modeling of fMRI time series
    • Harrison L, Penny W, Friston K. 2003. Multivariate autoregressive modeling of fMRI time series. Neuroimage 19:1477-1491.
    • (2003) Neuroimage , vol.19 , pp. 1477-1491
    • Harrison, L.1    Penny, W.2    Friston, K.3
  • 60
    • 84862981977 scopus 로고    scopus 로고
    • Future trends in neuroimaging: neural processes as expressed within real-life contexts
    • Hasson U, Honey C. 2012. Future trends in neuroimaging: neural processes as expressed within real-life contexts. Neuroimage 62:1272-1278.
    • (2012) Neuroimage , vol.62 , pp. 1272-1278
    • Hasson, U.1    Honey, C.2
  • 61
    • 84862993252 scopus 로고    scopus 로고
    • Multivariate pattern analysis of fMRI: the early beginnings
    • Haxby J. 2012. Multivariate pattern analysis of fMRI: the early beginnings. Neuroimage 62:852-855.
    • (2012) Neuroimage , vol.62 , pp. 852-855
    • Haxby, J.1
  • 62
    • 0035964792 scopus 로고    scopus 로고
    • Distributed and overlapping representations of faces and objects in ventral temporal cortex
    • Haxby J, Gobbini M, Furey M, Ishai A. 2001. Distributed and overlapping representations of faces and objects in ventral temporal cortex. Science 293:2425-2430.
    • (2001) Science , vol.293 , pp. 2425-2430
    • Haxby, J.1    Gobbini, M.2    Furey, M.3    Ishai, A.4
  • 63
    • 17844361888 scopus 로고    scopus 로고
    • Predicting the orientation of invisible stimuli from activity in human primary visual cortex
    • Haynes J-D, Rees G. 2005. Predicting the orientation of invisible stimuli from activity in human primary visual cortex. Nat Neurosci 8:686-691.
    • (2005) Nat Neurosci , vol.8 , pp. 686-691
    • Haynes, J.-D.1    Rees, G.2
  • 64
    • 80053292350 scopus 로고    scopus 로고
    • Scale-free properties of the functional magnetic resonance imaging signal during rest and task
    • He B. 2011. Scale-free properties of the functional magnetic resonance imaging signal during rest and task. J Neurosci 31:13786-13795.
    • (2011) J Neurosci , vol.31 , pp. 13786-13795
    • He, B.1
  • 65
    • 33746885846 scopus 로고    scopus 로고
    • Causal visual interactions as revealed by an information theoretic measure and fMRI
    • Hinrichs H, Heinze H, Schoenfeld M. 2006. Causal visual interactions as revealed by an information theoretic measure and fMRI. Neuroimage 31:1051-1060.
    • (2006) Neuroimage , vol.31 , pp. 1051-1060
    • Hinrichs, H.1    Heinze, H.2    Schoenfeld, M.3
  • 66
    • 84942487147 scopus 로고
    • Ridge regression: applications to nonorthogonal problems
    • Hoerl A, Kennard R. 1970. Ridge regression: applications to nonorthogonal problems. Technometrics 12:69-82.
    • (1970) Technometrics , vol.12 , pp. 69-82
    • Hoerl, A.1    Kennard, R.2
  • 68
    • 33748946079 scopus 로고    scopus 로고
    • Studying complex adaptive systems
    • Holland J. 2006. Studying complex adaptive systems. J Syst Sci Complex 19:1-8.
    • (2006) J Syst Sci Complex , vol.19 , pp. 1-8
    • Holland, J.1
  • 69
    • 77954386968 scopus 로고    scopus 로고
    • Can structure predict function in the human brain?
    • Honey C, Thivierge J-P, Sporns O. 2010. Can structure predict function in the human brain? Neuroimage 52:766-776.
    • (2010) Neuroimage , vol.52 , pp. 766-776
    • Honey, C.1    Thivierge, J.-P.2    Sporns, O.3
  • 70
    • 0042826822 scopus 로고    scopus 로고
    • Independent component analysis: algorithms and application
    • Hyvãrinen A, Oja E. 2000. Independent component analysis: algorithms and application. Neural Netw 13:411-430.
    • (2000) Neural Netw , vol.13 , pp. 411-430
    • Hyvãrinen, A.1    Oja, E.2
  • 71
    • 17844380475 scopus 로고    scopus 로고
    • Decoding the visual and subjective contents of the human brain
    • Kamitani Y, Tong F. 2005. Decoding the visual and subjective contents of the human brain. Nat Neurosci 8:679-685.
    • (2005) Nat Neurosci , vol.8 , pp. 679-685
    • Kamitani, Y.1    Tong, F.2
  • 72
    • 34547844077 scopus 로고    scopus 로고
    • Sparse non-negative matrix factorizations via alternating non-negativity-constrained least squares for microarray data analysis
    • Kim H, Park H. 2007. Sparse non-negative matrix factorizations via alternating non-negativity-constrained least squares for microarray data analysis. Bioinformatics 23:1495-1502.
    • (2007) Bioinformatics , vol.23 , pp. 1495-1502
    • Kim, H.1    Park, H.2
  • 75
    • 0033515743 scopus 로고    scopus 로고
    • Complexity and the nervous system
    • Koch C, Laurent G. 1999. Complexity and the nervous system. Science 284:96-98.
    • (1999) Science , vol.284 , pp. 96-98
    • Koch, C.1    Laurent, G.2
  • 77
    • 79955035342 scopus 로고    scopus 로고
    • Pattern-information analysis: from stimulus decoding to computational-model testing
    • Kriegeskorte N. 2011. Pattern-information analysis: from stimulus decoding to computational-model testing. Neuroimage 56:411-421.
    • (2011) Neuroimage , vol.56 , pp. 411-421
    • Kriegeskorte, N.1
  • 78
    • 35448999574 scopus 로고    scopus 로고
    • Analyzing for information, not activation, to exploit high-resolution fMRI
    • Kriegeskorte N, Bandettini P. 2007. Analyzing for information, not activation, to exploit high-resolution fMRI. Neuroimage 38:649-652.
    • (2007) Neuroimage , vol.38 , pp. 649-652
    • Kriegeskorte, N.1    Bandettini, P.2
  • 80
    • 85018864418 scopus 로고    scopus 로고
    • The social evolution of a human brain mapping database
    • Laird A, Lancaster J, Fox P. 2005. The social evolution of a human brain mapping database. NeuroInformatics 3:6577.
    • (2005) NeuroInformatics , vol.3 , pp. 6577
    • Laird, A.1    Lancaster, J.2    Fox, P.3
  • 82
    • 21844462365 scopus 로고    scopus 로고
    • Tutorial on practical prediction theory for classification
    • Langford J. 2005. Tutorial on practical prediction theory for classification. J Mach Learn Res 6:273-306.
    • (2005) J Mach Learn Res , vol.6 , pp. 273-306
    • Langford, J.1
  • 84
    • 0033592606 scopus 로고    scopus 로고
    • Learning the parts of objects by nonnegative matrix factorization
    • Lee D, Seung H. 1999. Learning the parts of objects by nonnegative matrix factorization. Nature 401:788-791.
    • (1999) Nature , vol.401 , pp. 788-791
    • Lee, D.1    Seung, H.2
  • 86
    • 35948939625 scopus 로고    scopus 로고
    • Estimating the number of independent components for functional magnetic resonance imaging data
    • Li Y, Adali T, Calhoun V. 2007. Estimating the number of independent components for functional magnetic resonance imaging data. Neuroimage 28:1251-1266.
    • (2007) Neuroimage , vol.28 , pp. 1251-1266
    • Li, Y.1    Adali, T.2    Calhoun, V.3
  • 87
    • 79952283352 scopus 로고    scopus 로고
    • Multivariate information-theoretic measures reveal directed information structure and task relevant changes in fMRI connectivity
    • Lizier J, Heinzle J, Horstmann A, Haynes J, Prokopenko M. 2011. Multivariate information-theoretic measures reveal directed information structure and task relevant changes in fMRI connectivity. J Comput Neurosci 30:85-107.
    • (2011) J Comput Neurosci , vol.30 , pp. 85-107
    • Lizier, J.1    Heinzle, J.2    Horstmann, A.3    Haynes, J.4    Prokopenko, M.5
  • 88
    • 43049104255 scopus 로고    scopus 로고
    • What we can do and what we cannot do with fMRI
    • Logothetis N. 2008. What we can do and what we cannot do with fMRI. Nature 453:869-878.
    • (2008) Nature , vol.453 , pp. 869-878
    • Logothetis, N.1
  • 89
    • 84862993157 scopus 로고    scopus 로고
    • Intracortical recordings and fMRI: an attempt to study operational modules and networks simultaneously
    • Logothetis N. 2012. Intracortical recordings and fMRI: an attempt to study operational modules and networks simultaneously. Neuroimage 62:962-069.
    • (2012) Neuroimage , vol.62 , pp. 069-962
    • Logothetis, N.1
  • 90
    • 0036557909 scopus 로고    scopus 로고
    • Using replicator dynamics for analyzing fMRI data of the human brain
    • Lohmann G, Bohn S. 2002. Using replicator dynamics for analyzing fMRI data of the human brain. IEEE Trans Med Imaging 21:485-492.
    • (2002) IEEE Trans Med Imaging , vol.21 , pp. 485-492
    • Lohmann, G.1    Bohn, S.2
  • 91
    • 84855419311 scopus 로고    scopus 로고
    • Critical comments on dynamic causal modelling
    • Lohmann G, Erfurth K, Müller K, Turner R. 2012. Critical comments on dynamic causal modelling. NeuroImage 59:2322-2329.
    • (2012) NeuroImage , vol.59 , pp. 2322-2329
    • Lohmann, G.1    Erfurth, K.2    Müller, K.3    Turner, R.4
  • 93
    • 84876453343 scopus 로고    scopus 로고
    • Response to commentaries on our paper: critical comments in dynamic causal modelling
    • Lohmann G, Müller K, Turner R. 2013. Response to commentaries on our paper: critical comments in dynamic causal modelling. Neuroimage 75:279-281.
    • (2013) Neuroimage , vol.75 , pp. 279-281
    • Lohmann, G.1    Müller, K.2    Turner, R.3
  • 94
    • 34548525757 scopus 로고    scopus 로고
    • Using non-negative matrix factorization for single-trial analysis of fmri data
    • Lohmann G, Volz K, Ullsperger M. 2007. Using non-negative matrix factorization for single-trial analysis of fmri data. Neuroimage 37:1148-1160.
    • (2007) Neuroimage , vol.37 , pp. 1148-1160
    • Lohmann, G.1    Volz, K.2    Ullsperger, M.3
  • 95
    • 84863533841 scopus 로고    scopus 로고
    • Modulations of functional connectivity in the healthy and schizophrenia groups during task and rest
    • Ma S, Calhoun V, Eichele T, Du W, Adali T. 2012. Modulations of functional connectivity in the healthy and schizophrenia groups during task and rest. Neuroimage 62:1694-1704.
    • (2012) Neuroimage , vol.62 , pp. 1694-1704
    • Ma, S.1    Calhoun, V.2    Eichele, T.3    Du, W.4    Adali, T.5
  • 97
    • 0029941179 scopus 로고    scopus 로고
    • Spatial pattern analysis of functional brain images using partial least squares
    • McIntosh A, Bookstein F, Haxby J. 1996. Spatial pattern analysis of functional brain images using partial least squares. Neuroimage 3:143-157.
    • (1996) Neuroimage , vol.3 , pp. 143-157
    • McIntosh, A.1    Bookstein, F.2    Haxby, J.3
  • 99
    • 77955307443 scopus 로고    scopus 로고
    • Comparison of multivariate classifiers and response normalizations for pattern-information fMRI
    • Misaki M, Kim Y, Bandettini P, Kriegeskorte N. 2010. Comparison of multivariate classifiers and response normalizations for pattern-information fMRI. Neuroimage 53:103-118.
    • (2010) Neuroimage , vol.53 , pp. 103-118
    • Misaki, M.1    Kim, Y.2    Bandettini, P.3    Kriegeskorte, N.4
  • 100
    • 0025969753 scopus 로고
    • Abstract of article: a regional covariance approach to the analysis of functional patterns in positron emission tomographic data
    • Moeller J.R., Strother SC. 1991. Abstract of article: a regional covariance approach to the analysis of functional patterns in positron emission tomographic data. J Cereb Blood Flow Metab 11:A121-A135.
    • (1991) J Cereb Blood Flow Metab , vol.11 , pp. A121-A135
    • Moeller, J.R.1    Strother, S.C.2
  • 101
    • 28244492778 scopus 로고    scopus 로고
    • Classifying brain states and determining the discriminating activation patterns: support vector machine on functional MRI data
    • Mourão-Miranda J, Bokde A, Born C, Hampel H, Stetter M. 2005. Classifying brain states and determining the discriminating activation patterns: support vector machine on functional MRI data. Neuroimage 28:980-995.
    • (2005) Neuroimage , vol.28 , pp. 980-995
    • Mourão-Miranda, J.1    Bokde, A.2    Born, C.3    Hampel, H.4    Stetter, M.5
  • 102
    • 0037371403 scopus 로고    scopus 로고
    • Investigating the stimulus-dependent temporal dynamics of the BOLD signal using spectral methods
    • Müller K, Mildner T, Lohman G, von Cramon DY. 2003. Investigating the stimulus-dependent temporal dynamics of the BOLD signal using spectral methods. J Magn Reson Imaging 17:375-382.
    • (2003) J Magn Reson Imaging , vol.17 , pp. 375-382
    • Müller, K.1    Mildner, T.2    Lohman, G.3    von Cramon, D.Y.4
  • 103
    • 37349107079 scopus 로고    scopus 로고
    • Detecting groups of coherent voxels in fMRI data using spectral analysis and replicator dynamics
    • Müller K, Neumann J, Grigutsch M, von Cramon D, Lohmann G. 2007. Detecting groups of coherent voxels in fMRI data using spectral analysis and replicator dynamics. J Magn Reson Imaging 26:1642-1650.
    • (2007) J Magn Reson Imaging , vol.26 , pp. 1642-1650
    • Müller, K.1    Neumann, J.2    Grigutsch, M.3    von Cramon, D.4    Lohmann, G.5
  • 104
  • 105
    • 57649158932 scopus 로고    scopus 로고
    • The impact of global signal regression on resting state correlations: are anti-correlated networks introduced?
    • Murphy K, Birn R, Handwerker D, Jones T, Bandettini P. 2009. The impact of global signal regression on resting state correlations: are anti-correlated networks introduced? Neuroimage 44:893-905.
    • (2009) Neuroimage , vol.44 , pp. 893-905
    • Murphy, K.1    Birn, R.2    Handwerker, D.3    Jones, T.4    Bandettini, P.5
  • 107
    • 70749094781 scopus 로고    scopus 로고
    • Learning partially directed functional networks from meta-analysis imaging data
    • Neumann J, Fox P.T., Turner R, Lohmann G. 2010. Learning partially directed functional networks from meta-analysis imaging data. NeuroImage 49:1372-1384.
    • (2010) NeuroImage , vol.49 , pp. 1372-1384
    • Neumann, J.1    Fox, P.T.2    Turner, R.3    Lohmann, G.4
  • 108
    • 18544372166 scopus 로고    scopus 로고
    • Meta-analysis of functional imaging data using replicator dynamics
    • Neumann J, Lohmann G, Derrfuss J, Von Cramon D. 2005. Meta-analysis of functional imaging data using replicator dynamics. Hum Brain Mapp 25:165-173.
    • (2005) Hum Brain Mapp , vol.25 , pp. 165-173
    • Neumann, J.1    Lohmann, G.2    Derrfuss, J.3    Von Cramon, D.4
  • 109
    • 0042671268 scopus 로고    scopus 로고
    • Within-subject variability of BOLD response dynamics
    • Neumann J, Lohmann G, Zysset S, Von Cramon D. 2003. Within-subject variability of BOLD response dynamics. NeuroImage 19:784-796.
    • (2003) NeuroImage , vol.19 , pp. 784-796
    • Neumann, J.1    Lohmann, G.2    Zysset, S.3    Von Cramon, D.4
  • 110
    • 79958751356 scopus 로고    scopus 로고
    • Exploring functional relations between brain regions from fmri meta-analysis data: comments on ramsey, spirtes, and glymour
    • Neumann J, Turner R, Fox P.T., Lohmann G. 2011. Exploring functional relations between brain regions from fmri meta-analysis data: comments on ramsey, spirtes, and glymour. NeuroImage 57:331-333.
    • (2011) NeuroImage , vol.57 , pp. 331-333
    • Neumann, J.1    Turner, R.2    Fox, P.T.3    Lohmann, G.4
  • 111
  • 113
    • 8644263667 scopus 로고    scopus 로고
    • On discriminative vs. generative classifiers: a comparison of logistic regression and naive bayes
    • Neural Information Processing Systems (NIPS) Vancouver, B.C., Canada
    • Ng A, Jordan M. 2001. On discriminative vs. generative classifiers: a comparison of logistic regression and naive bayes. In Neural Information Processing Systems (NIPS), Vancouver, B.C., Canada.
    • (2001)
    • Ng, A.1    Jordan, M.2
  • 114
    • 84857929858 scopus 로고    scopus 로고
    • Group replicator dynamics: a novel group-wise evolutionary approach for sparse brain network detection
    • Ng B, McKeown M, Abugharbieh R. 2012. Group replicator dynamics: a novel group-wise evolutionary approach for sparse brain network detection. IEEE Trans Med Imaging 31:576-585.
    • (2012) IEEE Trans Med Imaging , vol.31 , pp. 576-585
    • Ng, B.1    McKeown, M.2    Abugharbieh, R.3
  • 115
  • 116
    • 80053974018 scopus 로고    scopus 로고
    • Reconstructing visual experiences from brain activity evoked by natural movies
    • Nishimoto S, Vu A, Naselaris T, Benjamini Y, Yu B, Gallant J. 2011. Reconstructing visual experiences from brain activity evoked by natural movies. Curr Biol 21:1641-1646.
    • (2011) Curr Biol , vol.21 , pp. 1641-1646
    • Nishimoto, S.1    Vu, A.2    Naselaris, T.3    Benjamini, Y.4    Yu, B.5    Gallant, J.6
  • 117
    • 33748178966 scopus 로고    scopus 로고
    • Beyond mind-reading: multivoxel pattern analysis of fMRI data
    • Norman K, Polyn S, Detre G, Haxby J. 2006. Beyond mind-reading: multivoxel pattern analysis of fMRI data. Trends Cogn Sci 10:424-430.
    • (2006) Trends Cogn Sci , vol.10 , pp. 424-430
    • Norman, K.1    Polyn, S.2    Detre, G.3    Haxby, J.4
  • 119
    • 35748950120 scopus 로고    scopus 로고
    • Theoretical, statistical, and practical perspectives on pattern-based classification approaches to the analysis of functional neuroimaging data
    • O'Toole A, Jiang F, Abdi H, Pãnard N, Dunlop J, Parent M. 2007. Theoretical, statistical, and practical perspectives on pattern-based classification approaches to the analysis of functional neuroimaging data. J Cogn Neurosci 19:1735-1752.
    • (2007) J Cogn Neurosci , vol.19 , pp. 1735-1752
    • O'Toole, A.1    Jiang, F.2    Abdi, H.3    Pãnard, N.4    Dunlop, J.5    Parent, M.6
  • 120
    • 0028561099 scopus 로고
    • Positive matrix factorization: a nonnegative factor model with optimal utilization of error estimates of data values
    • Paatero P, Tapper U. 1994. Positive matrix factorization: a nonnegative factor model with optimal utilization of error estimates of data values. Environmetrics 5:111-126.
    • (1994) Environmetrics , vol.5 , pp. 111-126
    • Paatero, P.1    Tapper, U.2
  • 121
    • 84861953039 scopus 로고    scopus 로고
    • Neuronal discharges and gamma oscillations explicitly reflect visual consciousness in the lateral prefrontal cortex
    • Panagiotaropoulos T, Deco G, Kapoor V, Logothetis N. 2012. Neuronal discharges and gamma oscillations explicitly reflect visual consciousness in the lateral prefrontal cortex. Neuron 74:924-935.
    • (2012) Neuron , vol.74 , pp. 924-935
    • Panagiotaropoulos, T.1    Deco, G.2    Kapoor, V.3    Logothetis, N.4
  • 122
    • 33645218351 scopus 로고    scopus 로고
    • A Bayesian approach to determining connectivity of the human brain
    • Patel R, Bowman F, Rilling J. 2006. A Bayesian approach to determining connectivity of the human brain. Hum Brain Mapp 27:267-276.
    • (2006) Hum Brain Mapp , vol.27 , pp. 267-276
    • Patel, R.1    Bowman, F.2    Rilling, J.3
  • 123
    • 0004213845 scopus 로고    scopus 로고
    • Cambridge University Press Cambridge, UK
    • Pearl J. 2000. Causality. Cambridge University Press, Cambridge, UK.
    • (2000) Causality
    • Pearl, J.1
  • 124
    • 77649325496 scopus 로고    scopus 로고
    • Causal inference in statistics: an overview
    • Pearl J. 2009. Causal inference in statistics: an overview. Stat Surveys 3:96-146.
    • (2009) Stat Surveys , vol.3 , pp. 96-146
    • Pearl, J.1
  • 125
    • 0000325341 scopus 로고
    • On lines and planes of closest fit to systems of points in space
    • Pearson K. 1901. On lines and planes of closest fit to systems of points in space. Philos Mag 2:559-572.
    • (1901) Philos Mag , vol.2 , pp. 559-572
    • Pearson, K.1
  • 127
    • 65549168742 scopus 로고    scopus 로고
    • Machine learning classifiers and fMRI: a tutorial overview
    • Pereira F, Mitchell T, Botvinick M. 2009. Machine learning classifiers and fMRI: a tutorial overview. Neuroimage 45:S199-S209.
    • (2009) Neuroimage , vol.45 , pp. S199-S209
    • Pereira, F.1    Mitchell, T.2    Botvinick, M.3
  • 128
    • 34447651185 scopus 로고    scopus 로고
    • Region of interest analysis for fMRI
    • Poldrack R. 2007. Region of interest analysis for fMRI. Soc Cogn Affect Neurosci 2:67-70.
    • (2007) Soc Cogn Affect Neurosci , vol.2 , pp. 67-70
    • Poldrack, R.1
  • 129
    • 51749096658 scopus 로고    scopus 로고
    • Group learning using contrast NMF: application to functional and structural MRI of schizophrenia
    • In IEEE International Symposium on Circuits and Systems (ISCAS 2008) Seattle
    • Potluru V, Calhoun V. 2008. Group learning using contrast NMF: application to functional and structural MRI of schizophrenia. In IEEE International Symposium on Circuits and Systems (ISCAS 2008), Seattle, W.A., pp. 1336-1339.
    • (2008) , pp. 1336-1339
    • Potluru, V.1    Calhoun, V.2
  • 131
    • 14244259417 scopus 로고    scopus 로고
    • Mapping directed influence over the brain using granger causality and fMRI
    • Roebroeck A, Formisano E, Goebel R. 2005. Mapping directed influence over the brain using granger causality and fMRI. Neuroimage 25:230-242.
    • (2005) Neuroimage , vol.25 , pp. 230-242
    • Roebroeck, A.1    Formisano, E.2    Goebel, R.3
  • 132
    • 77954385460 scopus 로고    scopus 로고
    • Complex network measures of brain connectivity: uses and interpretations
    • Rubinov M, Sporns O. 2010. Complex network measures of brain connectivity: uses and interpretations. Neuroimage 52:1059-1069.
    • (2010) Neuroimage , vol.52 , pp. 1059-1069
    • Rubinov, M.1    Sporns, O.2
  • 133
    • 77951976541 scopus 로고    scopus 로고
    • Sparse logistic regression for whole-brain classification of fMRI data
    • Ryali S, Supekar K, Abrams D, Menon V. 2010. Sparse logistic regression for whole-brain classification of fMRI data. Neuroimage 51:752-764.
    • (2010) Neuroimage , vol.51 , pp. 752-764
    • Ryali, S.1    Supekar, K.2    Abrams, D.3    Menon, V.4
  • 135
    • 33644751686 scopus 로고    scopus 로고
    • Evolutionary dynamics of social dilemmas in structured heterogeneous populations
    • Santos F, Pacheco J, Lenaerts T. 2006. Evolutionary dynamics of social dilemmas in structured heterogeneous populations. PNAS 103:3490-3494.
    • (2006) PNAS , vol.103 , pp. 3490-3494
    • Santos, F.1    Pacheco, J.2    Lenaerts, T.3
  • 136
    • 79956224696 scopus 로고    scopus 로고
    • The effect of intra- and inter-subject variability of hemodynamic responses on group level Granger causality analyses
    • Schippers M, Renken R, Keysers C. 2011. The effect of intra- and inter-subject variability of hemodynamic responses on group level Granger causality analyses. Neuroimage 57:22-36.
    • (2011) Neuroimage , vol.57 , pp. 22-36
    • Schippers, M.1    Renken, R.2    Keysers, C.3
  • 138
    • 12944275674 scopus 로고    scopus 로고
    • Measuring information transfer
    • Schreiber T. 2000. Measuring information transfer. Phys Rev Lett 85:461-464.
    • (2000) Phys Rev Lett , vol.85 , pp. 461-464
    • Schreiber, T.1
  • 140
    • 84870266555 scopus 로고    scopus 로고
    • Granger causality analysis of fMRI BOLD signals is invariant to hemodynamic convolution but not downsampling
    • Seth A, Chorley P, Barnett L. 2013. Granger causality analysis of fMRI BOLD signals is invariant to hemodynamic convolution but not downsampling. Neuroimage 65:540-555.
    • (2013) Neuroimage , vol.65 , pp. 540-555
    • Seth, A.1    Chorley, P.2    Barnett, L.3
  • 141
    • 0000911680 scopus 로고
    • Chaos and the new science of the brain
    • Skarda C, Freeman W. 1990. Chaos and the new science of the brain. Concepts Neurosci 1:275-285.
    • (1990) Concepts Neurosci , vol.1 , pp. 275-285
    • Skarda, C.1    Freeman, W.2
  • 146
    • 13444263410 scopus 로고    scopus 로고
    • Self-similarity of complex networks
    • Song C, Makse H. 2005. Self-similarity of complex networks. Nature 433:392-395.
    • (2005) Nature , vol.433 , pp. 392-395
    • Song, C.1    Makse, H.2
  • 147
    • 42649117791 scopus 로고    scopus 로고
    • Unconscious determinants of free decisions in the human brain
    • Soon C, Brass M, Heinze H, Haynes JD. 2008. Unconscious determinants of free decisions in the human brain. Nat Neurosci 11:543-545.
    • (2008) Nat Neurosci , vol.11 , pp. 543-545
    • Soon, C.1    Brass, M.2    Heinze, H.3    Haynes, J.D.4
  • 150
    • 84892566412 scopus 로고    scopus 로고
    • The non-random brain: efficiency, economy, and complex dynamics
    • Sporns O. 2011b. The non-random brain: efficiency, economy, and complex dynamics. Front Comput Neurosci 5:5.
    • (2011) Front Comput Neurosci , vol.5 , pp. 5
    • Sporns, O.1
  • 151
    • 35148879706 scopus 로고    scopus 로고
    • Graph theoretical analysis of complex networks in the brain
    • Stam C, Reijneveld J. 2007. Graph theoretical analysis of complex networks in the brain. Nonlin Biomed Phys 1:3.
    • (2007) Nonlin Biomed Phys , vol.1 , pp. 3
    • Stam, C.1    Reijneveld, J.2
  • 152
    • 84868260207 scopus 로고    scopus 로고
    • Statistical inference and multiple testing correction in classification-based multi-voxel pattern analysis (MVPA): random permutations and cluster size control
    • Stelzer J, Chen Y, Turner R. 2012. Statistical inference and multiple testing correction in classification-based multi-voxel pattern analysis (MVPA): random permutations and cluster size control. Neuroimage 65C:69-82.
    • (2012) Neuroimage , vol.65C , pp. 69-82
    • Stelzer, J.1    Chen, Y.2    Turner, R.3
  • 154
    • 0037564509 scopus 로고    scopus 로고
    • Inferring causal networks from observations and interventions
    • Steyvers M, Tenenbaum J, Wagenmakers E-J, Blum B. 2003. Inferring causal networks from observations and interventions. Cogn Sci 27:453-489.
    • (2003) Cogn Sci , vol.27 , pp. 453-489
    • Steyvers, M.1    Tenenbaum, J.2    Wagenmakers, E.-J.3    Blum, B.4
  • 155
    • 33645227944 scopus 로고    scopus 로고
    • Evaluating fMRI preprocessing pipelines
    • Strother S. 2006. Evaluating fMRI preprocessing pipelines. IEEE Eng Med Biol Mag 25:27-41.
    • (2006) IEEE Eng Med Biol Mag , vol.25 , pp. 27-41
    • Strother, S.1
  • 157
    • 84863686049 scopus 로고    scopus 로고
    • Measuring granger causality between cortical regions from voxelwise fMRI BOLD signals with LASSO
    • Tang W, Bressler S, Sylvester C, Shulman G, Corbetta M. 2012. Measuring granger causality between cortical regions from voxelwise fMRI BOLD signals with LASSO. PLoS Comput Biol 8:e1002513.
    • (2012) PLoS Comput Biol , vol.8 , pp. e1002513
    • Tang, W.1    Bressler, S.2    Sylvester, C.3    Shulman, G.4    Corbetta, M.5
  • 158
    • 0001287271 scopus 로고    scopus 로고
    • Regression shrinkage and selection via the Lasso
    • Tibshirani R. 1996. Regression shrinkage and selection via the Lasso. J R Stat Soc Ser B 58:267-288.
    • (1996) J R Stat Soc Ser B , vol.58 , pp. 267-288
    • Tibshirani, R.1
  • 159
    • 79959712051 scopus 로고    scopus 로고
    • Functional connectivity hubs in the human brain
    • Tomasi D, Volkow N. 2011. Functional connectivity hubs in the human brain. Neuroimage 57:908-917.
    • (2011) Neuroimage , vol.57 , pp. 908-917
    • Tomasi, D.1    Volkow, N.2
  • 160
    • 0028245445 scopus 로고
    • A measure for brain complexity: relating functional segregation and integration in the nervous system
    • Tononi G, Sporns O, Edelman G. 1994. A measure for brain complexity: relating functional segregation and integration in the nervous system. Proc Natl Acad Sci U S A 91:5033-5037.
    • (1994) Proc Natl Acad Sci U S A , vol.91 , pp. 5033-5037
    • Tononi, G.1    Sporns, O.2    Edelman, G.3
  • 161
  • 163
    • 84868301997 scopus 로고    scopus 로고
    • Markov models for fMRI correlation structure: is brain functional connectivity small world, or decomposable into networks?
    • Varoquaux G, Gramfort A, Poline J, Thirion B. 2012. Markov models for fMRI correlation structure: is brain functional connectivity small world, or decomposable into networks? J Physiol Paris 106:212-221.
    • (2012) J Physiol Paris , vol.106 , pp. 212-221
    • Varoquaux, G.1    Gramfort, A.2    Poline, J.3    Thirion, B.4
  • 165
    • 0032482432 scopus 로고    scopus 로고
    • Collective dynamics of ‘small-world’ networks
    • Watts D, Strogatz D. 1998. Collective dynamics of ‘small-world’ networks. Nature 393:440-442.
    • (1998) Nature , vol.393 , pp. 440-442
    • Watts, D.1    Strogatz, D.2
  • 166
    • 67651033257 scopus 로고    scopus 로고
    • Correlations and anticorrelations in resting-state functional connectivity mri: a quantitative comparison of preprocessing strategies
    • Weissenbacher A, Kasess C, Gerstl F, Lanzenberger R, Moser E, Windischberger C. 2009. Correlations and anticorrelations in resting-state functional connectivity mri: a quantitative comparison of preprocessing strategies. Neuroimage 47:1408-1416.
    • (2009) Neuroimage , vol.47 , pp. 1408-1416
    • Weissenbacher, A.1    Kasess, C.2    Gerstl, F.3    Lanzenberger, R.4    Moser, E.5    Windischberger, C.6
  • 167
    • 79955045640 scopus 로고    scopus 로고
    • Dimensionality estimation for optimal detection of functional networks in bold fmri data
    • Yourganov G, Chen X, Lukic A, Grady C, Small S, Wernick M, Strother S. 2011. Dimensionality estimation for optimal detection of functional networks in bold fmri data. Neuroimage 56:531-543.
    • (2011) Neuroimage , vol.56 , pp. 531-543
    • Yourganov, G.1    Chen, X.2    Lukic, A.3    Grady, C.4    Small, S.5    Wernick, M.6    Strother, S.7
  • 168
    • 34250676530 scopus 로고    scopus 로고
    • Recursive Cluster Elimination (RCE) for classification and feature selection from gene expression data
    • Yousef M, Jung S, Showe L, Showe M. 2007. Recursive Cluster Elimination (RCE) for classification and feature selection from gene expression data. BMC Bioinform 8:144.
    • (2007) BMC Bioinform , vol.8 , pp. 144
    • Yousef, M.1    Jung, S.2    Showe, L.3    Showe, M.4
  • 169
    • 84858138977 scopus 로고    scopus 로고
    • On the use of correlation as a measure of network connectivity
    • Zalesky A, Fornito A, Bullmore E. 2012. On the use of correlation as a measure of network connectivity. Neuroimage 60:2096-2106.
    • (2012) Neuroimage , vol.60 , pp. 2096-2106
    • Zalesky, A.1    Fornito, A.2    Bullmore, E.3
  • 172
    • 16244401458 scopus 로고    scopus 로고
    • Regularization and variable selection via the elastic net
    • Zou H, Hastie T. 2005. Regularization and variable selection via the elastic net. J R Stat Soc Ser B 67:301-320.
    • (2005) J R Stat Soc Ser B , vol.67 , pp. 301-320
    • Zou, H.1    Hastie, T.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.