메뉴 건너뛰기




Volumn 53, Issue 11, 2013, Pages 3054-3063

Fusing dual-event data sets for mycobacterium tuberculosis machine learning models and their evaluation

Author keywords

[No Author keywords available]

Indexed keywords

CYTOTOXICITY; DATA FUSION; MOLECULES; REGRESSION ANALYSIS; SUPPORT VECTOR MACHINES;

EID: 84888586878     PISSN: 15499596     EISSN: 1549960X     Source Type: Journal    
DOI: 10.1021/ci400480s     Document Type: Article
Times cited : (29)

References (86)
  • 2
    • 13844319812 scopus 로고    scopus 로고
    • The magic bullets and tuberculosis drug targets
    • Zhang, Y. The magic bullets and tuberculosis drug targets Annu. Rev. Pharmacol. Toxicol. 2005, 45, 529-64
    • (2005) Annu. Rev. Pharmacol. Toxicol. , vol.45 , pp. 529-564
    • Zhang, Y.1
  • 5
    • 79251589638 scopus 로고    scopus 로고
    • The challenge of new drug discovery for tuberculosis
    • Koul, A.; Arnoult, E.; Lounis, N.; Guillemont, J.; Andries, K. The challenge of new drug discovery for tuberculosis Nature 2011, 469 (7331) 483-90
    • (2011) Nature , vol.469 , Issue.7331 , pp. 483-490
    • Koul, A.1    Arnoult, E.2    Lounis, N.3    Guillemont, J.4    Andries, K.5
  • 11
    • 0038700567 scopus 로고    scopus 로고
    • Combinatorial lead optimization of [1,2]-diamines based on ethambutol as potential antituberculosis preclinical candidates
    • Lee, R. E.; Protopopova, M.; Crooks, E.; Slayden, R. A.; Terrot, M.; Barry, C. E., 3rd Combinatorial lead optimization of [1,2]-diamines based on ethambutol as potential antituberculosis preclinical candidates J. Comb. Chem. 2003, 5 (2) 172-87
    • (2003) J. Comb. Chem. , vol.5 , Issue.2 , pp. 172-187
    • Lee, R.E.1    Protopopova, M.2    Crooks, E.3    Slayden, R.A.4    Terrot, M.5    Barry III, C.E.6
  • 14
    • 33244456408 scopus 로고    scopus 로고
    • Developing an antituberculosis compounds database and data mining in the search of a motif responsible for the activity of a diverse class of antituberculosis agents
    • Prakash, O.; Ghosh, I. Developing an antituberculosis compounds database and data mining in the search of a motif responsible for the activity of a diverse class of antituberculosis agents J. Chem. Inf. Model. 2006, 46 (1) 17-23
    • (2006) J. Chem. Inf. Model. , vol.46 , Issue.1 , pp. 17-23
    • Prakash, O.1    Ghosh, I.2
  • 16
  • 17
    • 58149105628 scopus 로고    scopus 로고
    • Global Bayesian models for the prioritization of antitubercular agents
    • Prathipati, P.; Ma, N. L.; Keller, T. H. Global Bayesian models for the prioritization of antitubercular agents J. Chem. Inf. Model. 2008, 48 (12) 2362-70
    • (2008) J. Chem. Inf. Model. , vol.48 , Issue.12 , pp. 2362-2370
    • Prathipati, P.1    Ma, N.L.2    Keller, T.H.3
  • 18
    • 34548070044 scopus 로고    scopus 로고
    • Computational approaches that predict metabolic intermediate complex formation with CYP3A4 (+b5)
    • Jones, D. R.; Ekins, S.; Li, L.; Hall, S. D. Computational approaches that predict metabolic intermediate complex formation with CYP3A4 (+b5) Drug Metab. Dispos. 2007, 35 (9) 1466-75
    • (2007) Drug Metab. Dispos. , vol.35 , Issue.9 , pp. 1466-1475
    • Jones, D.R.1    Ekins, S.2    Li, L.3    Hall, S.D.4
  • 19
    • 79961170425 scopus 로고    scopus 로고
    • Validating new tuberculosis computational models with public whole cell screening aerobic activity datasets
    • Ekins, S.; Freundlich, J. S. Validating new tuberculosis computational models with public whole cell screening aerobic activity datasets Pharm. Res. 2011, 28, 1859-69
    • (2011) Pharm. Res. , vol.28 , pp. 1859-1869
    • Ekins, S.1    Freundlich, J.S.2
  • 22
    • 84877123286 scopus 로고    scopus 로고
    • Enhancing hit identification in Mycobacterium tuberculosis drug discovery using validated dual-event Bayesian models
    • Ekins, S.; Reynolds, R. C.; Franzblau, S. G.; Wan, B.; Freundlich, J. S.; Bunin, B. A. Enhancing hit identification in Mycobacterium tuberculosis drug discovery using validated dual-event Bayesian models PLoS One 2013, 8, e63240
    • (2013) PLoS One , vol.8 , pp. 63240
    • Ekins, S.1    Reynolds, R.C.2    Franzblau, S.G.3    Wan, B.4    Freundlich, J.S.5    Bunin, B.A.6
  • 24
    • 84896809914 scopus 로고    scopus 로고
    • Combining computational methods for hit to lead optimization in Mycobacterium tuberculosis drug discovery
    • 10.1007/s11095-013-1172-7
    • Ekins, S.; Freundlich, J. S.; Hobrath, J. V.; White, E. L.; Reynolds, R. C. Combining computational methods for hit to lead optimization in Mycobacterium tuberculosis drug discovery Pharm. Res. 2013, 10.1007/s11095-013-1172-7
    • (2013) Pharm. Res.
    • Ekins, S.1    Freundlich, J.S.2    Hobrath, J.V.3    White, E.L.4    Reynolds, R.C.5
  • 26
    • 84888603358 scopus 로고    scopus 로고
    • Anon Collaborative Drug Discovery, Inc. (accessed October 29, 2013).
    • Anon Collaborative Drug Discovery, Inc. http://www.collaborativedrug.com/ register (accessed October 29, 2013).
  • 27
  • 28
    • 61849137243 scopus 로고    scopus 로고
    • Novel web-based tools combining chemistry informatics, biology and social networks for drug discovery
    • Hohman, M.; Gregory, K.; Chibale, K.; Smith, P. J.; Ekins, S.; Bunin, B. Novel web-based tools combining chemistry informatics, biology and social networks for drug discovery Drug Discovery Today 2009, 14, 261-270
    • (2009) Drug Discovery Today , vol.14 , pp. 261-270
    • Hohman, M.1    Gregory, K.2    Chibale, K.3    Smith, P.J.4    Ekins, S.5    Bunin, B.6
  • 29
    • 84888592928 scopus 로고    scopus 로고
    • Anon The PubChem Database. (accessed October 29, 2013).
    • Anon The PubChem Database. http://pubchem.ncbi.nlm.nih.gov/ (accessed October 29, 2013).
  • 30
    • 40049100210 scopus 로고    scopus 로고
    • Analysis of pharmacology data and the prediction of adverse drug reactions and off-target effects from chemical structure
    • Bender, A.; Scheiber, J.; Glick, M.; Davies, J. W.; Azzaoui, K.; Hamon, J.; Urban, L.; Whitebread, S.; Jenkins, J. L. Analysis of pharmacology data and the prediction of adverse drug reactions and off-target effects from chemical structure ChemMedChem 2007, 2 (6) 861-873
    • (2007) ChemMedChem , vol.2 , Issue.6 , pp. 861-873
    • Bender, A.1    Scheiber, J.2    Glick, M.3    Davies, J.W.4    Azzaoui, K.5    Hamon, J.6    Urban, L.7    Whitebread, S.8    Jenkins, J.L.9
  • 31
    • 33750350511 scopus 로고    scopus 로고
    • Improved naive Bayesian modeling of numerical data for absorption, distribution, metabolism and excretion (ADME) property prediction
    • Klon, A. E.; Lowrie, J. F.; Diller, D. J. Improved naive Bayesian modeling of numerical data for absorption, distribution, metabolism and excretion (ADME) property prediction J. Chem. Inf. Model. 2006, 46 (5) 1945-56
    • (2006) J. Chem. Inf. Model. , vol.46 , Issue.5 , pp. 1945-1956
    • Klon, A.E.1    Lowrie, J.F.2    Diller, D.J.3
  • 32
    • 33749598013 scopus 로고    scopus 로고
    • Cheminformatics analysis and learning in a data pipelining environment
    • Hassan, M.; Brown, R. D.; Varma-O'Brien, S.; Rogers, D. Cheminformatics analysis and learning in a data pipelining environment Mol. Diversity 2006, 10 (3) 283-99
    • (2006) Mol. Diversity , vol.10 , Issue.3 , pp. 283-299
    • Hassan, M.1    Brown, R.D.2    Varma-O'Brien, S.3    Rogers, D.4
  • 33
    • 26944503021 scopus 로고    scopus 로고
    • Using extended-connectivity fingerprints with Laplacian-modified Bayesian analysis in high-throughput screening follow-up
    • Rogers, D.; Brown, R. D.; Hahn, M. Using extended-connectivity fingerprints with Laplacian-modified Bayesian analysis in high-throughput screening follow-up J. Biomol. Screening 2005, 10 (7) 682-6
    • (2005) J. Biomol. Screening , vol.10 , Issue.7 , pp. 682-686
    • Rogers, D.1    Brown, R.D.2    Hahn, M.3
  • 34
    • 84888587580 scopus 로고    scopus 로고
    • (accessed October 29, 2013).
    • Anon, R. http://www.r-project.org/ (accessed October 29, 2013).
    • Anon, R.1
  • 36
    • 84864482915 scopus 로고    scopus 로고
    • Combining cheminformatics methods and pathway analysis to identify molecules with whole-cell activity against Mycobacterium tuberculosis
    • Sarker, M.; Talcott, C.; Madrid, P.; Chopra, S.; Bunin, B. A.; Lamichhane, G.; Freundlich, J. S.; Ekins, S. Combining cheminformatics methods and pathway analysis to identify molecules with whole-cell activity against Mycobacterium tuberculosis Pharm. Res. 2012, 29, 2115-2127
    • (2012) Pharm. Res. , vol.29 , pp. 2115-2127
    • Sarker, M.1    Talcott, C.2    Madrid, P.3    Chopra, S.4    Bunin, B.A.5    Lamichhane, G.6    Freundlich, J.S.7    Ekins, S.8
  • 37
    • 84877347898 scopus 로고    scopus 로고
    • TB Mobile: A mobile app for anti-tuberculosis molecules with known targets
    • Ekins, S.; Clark, A. M.; Sarker, M. TB Mobile: A mobile app for anti-tuberculosis molecules with known targets J. Cheminf. 2013, 5, 13
    • (2013) J. Cheminf. , vol.5 , pp. 13
    • Ekins, S.1    Clark, A.M.2    Sarker, M.3
  • 38
    • 77649220192 scopus 로고    scopus 로고
    • Current trends in ligand-based virtual screening: Molecular representations, data mining methods, new application areas, and performance evaluation
    • Geppert, H.; Vogt, M.; Bajorath, J. Current trends in ligand-based virtual screening: molecular representations, data mining methods, new application areas, and performance evaluation J. Chem. Inf. Model. 2010, 50 (2) 205-16
    • (2010) J. Chem. Inf. Model. , vol.50 , Issue.2 , pp. 205-216
    • Geppert, H.1    Vogt, M.2    Bajorath, J.3
  • 39
    • 84880544842 scopus 로고    scopus 로고
    • Comparison of confirmed inactive and randomly selected compounds as negative training examples in support vector machine-based virtual screening
    • Heikamp, K.; Bajorath, J. Comparison of confirmed inactive and randomly selected compounds as negative training examples in support vector machine-based virtual screening J. Chem. Inf. Model. 2013, 53 (7) 1595-601
    • (2013) J. Chem. Inf. Model. , vol.53 , Issue.7 , pp. 1595-1601
    • Heikamp, K.1    Bajorath, J.2
  • 43
    • 34249753618 scopus 로고
    • Support vector networks
    • Cortes, C.; Vapnik, V. Support vector networks Machine Learn. 1995, 20, 273-293
    • (1995) Machine Learn. , vol.20 , pp. 273-293
    • Cortes, C.1    Vapnik, V.2
  • 45
    • 0001907967 scopus 로고    scopus 로고
    • Support vector machines: Hype or hallelujah?
    • Bennet, K. P.; Campbell, C. Support vector machines: Hype or hallelujah? SIGKDD Explorations 2000, 2, 1-13
    • (2000) SIGKDD Explorations , vol.2 , pp. 1-13
    • Bennet, K.P.1    Campbell, C.2
  • 47
    • 0034740222 scopus 로고    scopus 로고
    • Drug design by machine learning: Support vector machines for pharmaceutical analysis
    • Burbidge, R.; Trotter, M.; Buxton, B.; Holden, S. Drug design by machine learning: support vector machines for pharmaceutical analysis Comput. Chem. 2001, 26, 5-14
    • (2001) Comput. Chem. , vol.26 , pp. 5-14
    • Burbidge, R.1    Trotter, M.2    Buxton, B.3    Holden, S.4
  • 48
    • 0035995959 scopus 로고    scopus 로고
    • Support vector machines for the classification and prediction of β-turn types
    • Cai, Y.-D.; Liu, X.-J.; Xu, X.-B.; Chou, K.-C. Support vector machines for the classification and prediction of β-turn types J. Pept. Sci. 2002, 8, 297-301
    • (2002) J. Pept. Sci. , vol.8 , pp. 297-301
    • Cai, Y.-D.1    Liu, X.-J.2    Xu, X.-B.3    Chou, K.-C.4
  • 49
    • 22144466197 scopus 로고    scopus 로고
    • A support vector machine approach to classify human cytochrome P450 3A4 inhibitors
    • Kriegl, J. M.; Arnhold, T.; Beck, B.; Fox, T. A support vector machine approach to classify human cytochrome P450 3A4 inhibitors J. Comput.-Aided Mol. Des. 2005, 19 (3) 189-201
    • (2005) J. Comput.-Aided Mol. Des. , vol.19 , Issue.3 , pp. 189-201
    • Kriegl, J.M.1    Arnhold, T.2    Beck, B.3    Fox, T.4
  • 50
    • 71949083397 scopus 로고    scopus 로고
    • Classification of cytochrome p(450) activities using machine learning methods
    • Hammann, F.; Gutmann, H.; Baumann, U.; Helma, C.; Drewe, J. Classification of cytochrome p(450) activities using machine learning methods Mol. Pharmaceutics 2009, 6 (6) 1920-6
    • (2009) Mol. Pharmaceutics , vol.6 , Issue.6 , pp. 1920-1926
    • Hammann, F.1    Gutmann, H.2    Baumann, U.3    Helma, C.4    Drewe, J.5
  • 51
    • 80053552409 scopus 로고    scopus 로고
    • Predicting P-glycoprotein-mediated drug transport based on support vector machine and three-dimensional crystal structure of P-glycoprotein
    • Bikadi, Z.; Hazai, I.; Malik, D.; Jemnitz, K.; Veres, Z.; Hari, P.; Ni, Z.; Loo, T. W.; Clarke, D. M.; Hazai, E.; Mao, Q. Predicting P-glycoprotein-mediated drug transport based on support vector machine and three-dimensional crystal structure of P-glycoprotein PLoS One 2011, 6 (10) e25815
    • (2011) PLoS One , vol.6 , Issue.10 , pp. 25815
    • Bikadi, Z.1    Hazai, I.2    Malik, D.3    Jemnitz, K.4    Veres, Z.5    Hari, P.6    Ni, Z.7    Loo, T.W.8    Clarke, D.M.9    Hazai, E.10    Mao, Q.11
  • 53
    • 33645675081 scopus 로고    scopus 로고
    • A hybrid mixture discriminant analysis-random forest computational model for the prediction of volume of distribution of drugs in human
    • Lombardo, F.; Obach, R. S.; Dicapua, F. M.; Bakken, G. A.; Lu, J.; Potter, D. M.; Gao, F.; Miller, M. D.; Zhang, Y. A hybrid mixture discriminant analysis-random forest computational model for the prediction of volume of distribution of drugs in human J. Med. Chem. 2006, 49 (7) 2262-7
    • (2006) J. Med. Chem. , vol.49 , Issue.7 , pp. 2262-2267
    • Lombardo, F.1    Obach, R.S.2    Dicapua, F.M.3    Bakken, G.A.4    Lu, J.5    Potter, D.M.6    Gao, F.7    Miller, M.D.8    Zhang, Y.9
  • 54
    • 0345040873 scopus 로고    scopus 로고
    • Classification and regression by random forest
    • Liaw, A.; Wiener, M. Classification and regression by random forest R News 2002, 2/3, 18-22
    • (2002) R News , vol.23 , pp. 18-22
    • Liaw, A.1    Wiener, M.2
  • 55
    • 84871210792 scopus 로고    scopus 로고
    • Predicting chemical ocular toxicity using a combinatorial QSAR approach
    • Solimeo, R.; Zhang, J.; Kim, M.; Sedykh, A.; Zhu, H. Predicting chemical ocular toxicity using a combinatorial QSAR approach Chem. Res. Toxicol. 2012, 25 (12) 2763-9
    • (2012) Chem. Res. Toxicol. , vol.25 , Issue.12 , pp. 2763-2769
    • Solimeo, R.1    Zhang, J.2    Kim, M.3    Sedykh, A.4    Zhu, H.5
  • 56
    • 18144369259 scopus 로고    scopus 로고
    • Development of CYP3A4 inhibition models: Comparisons of machine-learning techniques and molecular descriptors
    • Arimoto, R.; Prasad, M. A.; Gifford, E. M. Development of CYP3A4 inhibition models: comparisons of machine-learning techniques and molecular descriptors J. Biomol. Screening 2005, 10 (3) 197-205
    • (2005) J. Biomol. Screening , vol.10 , Issue.3 , pp. 197-205
    • Arimoto, R.1    Prasad, M.A.2    Gifford, E.M.3
  • 58
    • 78649621062 scopus 로고    scopus 로고
    • A predictive ligand-based Bayesian model for human drug induced liver injury
    • Ekins, S.; Williams, A. J.; Xu, J. J. A predictive ligand-based Bayesian model for human drug induced liver injury Drug Metab. Dispos. 2010, 38, 2302-2308
    • (2010) Drug Metab. Dispos. , vol.38 , pp. 2302-2308
    • Ekins, S.1    Williams, A.J.2    Xu, J.J.3
  • 59
    • 84861540616 scopus 로고    scopus 로고
    • Molecular determinants of ligand selectivity for the human multidrug and toxin extrusion proteins, MATE1 and MATE-2K
    • Astorga, B.; Ekins, S.; Morales, M.; Wright, S. H. Molecular determinants of ligand selectivity for the human multidrug and toxin extrusion proteins, MATE1 and MATE-2K J. Pharmacol. Exp. Ther. 2012, 341 (3) 743-55
    • (2012) J. Pharmacol. Exp. Ther. , vol.341 , Issue.3 , pp. 743-755
    • Astorga, B.1    Ekins, S.2    Morales, M.3    Wright, S.H.4
  • 60
    • 84874588814 scopus 로고    scopus 로고
    • Structure-activity relationship for FDA approved drugs as inhibitors of the human sodium taurocholate cotransporting polypeptide (NTCP)
    • Dong, Z.; Ekins, S.; Polli, J. E. Structure-activity relationship for FDA approved drugs as inhibitors of the human sodium taurocholate cotransporting polypeptide (NTCP) Mol. Pharmaceutics 2013, 10 (3) 1008-19
    • (2013) Mol. Pharmaceutics , vol.10 , Issue.3 , pp. 1008-1019
    • Dong, Z.1    Ekins, S.2    Polli, J.E.3
  • 61
    • 79251516763 scopus 로고    scopus 로고
    • Identification and validation of novel hPXR activators amongst prescribed drugs via ligand-based virtual screening
    • Pan, Y.; Li, L.; Kim, G.; Ekins, S.; Wang, H.; Swaan, P. W. Identification and validation of novel hPXR activators amongst prescribed drugs via ligand-based virtual screening Drug Metab. Dispos. 2011, 39, 337-344
    • (2011) Drug Metab. Dispos. , vol.39 , pp. 337-344
    • Pan, Y.1    Li, L.2    Kim, G.3    Ekins, S.4    Wang, H.5    Swaan, P.W.6
  • 62
    • 78650901912 scopus 로고    scopus 로고
    • Predicting cytotoxicity from heterogeneous data sources with Bayesian learning
    • Langdon, S. R.; Mulgrew, J.; Paolini, G. V.; van Hoorn, W. P. Predicting cytotoxicity from heterogeneous data sources with Bayesian learning J. Cheminf. 2010, 2 (1) 11
    • (2010) J. Cheminf. , vol.2 , Issue.1 , pp. 11
    • Langdon, S.R.1    Mulgrew, J.2    Paolini, G.V.3    Van Hoorn, W.P.4
  • 63
    • 84864705133 scopus 로고    scopus 로고
    • QSAR modeling and data mining link torsades de pointes risk to the interplay of extent of metabolism, active transport, and hERG liability
    • Broccatelli, F.; Mannhold, R.; Moriconi, A.; Giuli, S.; Carosati, E. QSAR modeling and data mining link torsades de pointes risk to the interplay of extent of metabolism, active transport, and hERG liability Mol. Pharmaceutics 2012, 9 (8) 2290-2301
    • (2012) Mol. Pharmaceutics , vol.9 , Issue.8 , pp. 2290-2301
    • Broccatelli, F.1    Mannhold, R.2    Moriconi, A.3    Giuli, S.4    Carosati, E.5
  • 65
    • 84884218994 scopus 로고    scopus 로고
    • Computational models for tuberculosis drug discovery
    • Ekins, S.; Freundlich, J. S. Computational models for tuberculosis drug discovery Methods Mol. Biol. 2013, 993, 245-62
    • (2013) Methods Mol. Biol. , vol.993 , pp. 245-262
    • Ekins, S.1    Freundlich, J.S.2
  • 66
    • 79952466815 scopus 로고    scopus 로고
    • Computational databases, pathway and cheminformatics tools for tuberculosis drug discovery
    • Ekins, S.; Freundlich, J. S.; Choi, I.; Sarker, M.; Talcott, C. Computational databases, pathway and cheminformatics tools for tuberculosis drug discovery Trends Microbiol. 2011, 19, 65-74
    • (2011) Trends Microbiol. , vol.19 , pp. 65-74
    • Ekins, S.1    Freundlich, J.S.2    Choi, I.3    Sarker, M.4    Talcott, C.5
  • 67
    • 84860490696 scopus 로고    scopus 로고
    • Computational models for in-vitro anti-tubercular activity of molecules based on high-throughput chemical biology screening datasets
    • Periwal, V.; Kishtapuram, S.; Consortium, O. S.; Scaria, V. Computational models for in-vitro anti-tubercular activity of molecules based on high-throughput chemical biology screening datasets BMC Pharmacol. 2012, 12 (1) 1
    • (2012) BMC Pharmacol. , vol.12 , Issue.1 , pp. 1
    • Periwal, V.1    Kishtapuram, S.2    Consortium, O.S.3    Scaria, V.4
  • 68
    • 81255128064 scopus 로고    scopus 로고
    • Predictive models for anti-tubercular molecules using machine learning on high-throughput biological screening datasets
    • Periwal, V.; Rajappan, J. K.; Jaleel, A. U.; Scaria, V. Predictive models for anti-tubercular molecules using machine learning on high-throughput biological screening datasets BMC Res. Notes 2011, 4, 504
    • (2011) BMC Res. Notes , vol.4 , pp. 504
    • Periwal, V.1    Rajappan, J.K.2    Jaleel, A.U.3    Scaria, V.4
  • 70
    • 77957676467 scopus 로고    scopus 로고
    • When pharmaceutical companies publish large datasets: An abundance of riches or fool's gold?
    • Ekins, S.; Williams, A. J. When pharmaceutical companies publish large datasets: An abundance of riches or fool's gold? Drug Discovery Today 2010, 15, 812-815
    • (2010) Drug Discovery Today , vol.15 , pp. 812-815
    • Ekins, S.1    Williams, A.J.2
  • 72
    • 77952832818 scopus 로고    scopus 로고
    • A CROC stronger than ROC: Measuring, visualizing and optimizing early retrieval
    • Swamidass, S. J.; Azencott, C. A.; Daily, K.; Baldi, P. A CROC stronger than ROC: Measuring, visualizing and optimizing early retrieval Bioinformatics 2010, 26 (10) 1348-56
    • (2010) Bioinformatics , vol.26 , Issue.10 , pp. 1348-1356
    • Swamidass, S.J.1    Azencott, C.A.2    Daily, K.3    Baldi, P.4
  • 74
    • 0002763063 scopus 로고    scopus 로고
    • Metric for analyzing hit lists and pharmacophores
    • Guner, O. F. International University Line: La Jolla, CA
    • Guner, O. F.; Henry, D. R. Metric for analyzing hit lists and pharmacophores. In Pharmacophore perception, development, and use in drug design; Guner, O. F., Ed.; International University Line: La Jolla, CA, 2000; pp 191-211.
    • (2000) Pharmacophore Perception, Development, and Use in Drug Design , pp. 191-211
    • Guner, O.F.1    Henry, D.R.2
  • 75
    • 80054917638 scopus 로고    scopus 로고
    • Mixed learning algorithms and features ensemble in hepatotoxicity prediction
    • Liew, C. Y.; Lim, Y. C.; Yap, C. W. Mixed learning algorithms and features ensemble in hepatotoxicity prediction J. Comput.-Aided Mol. Des. 2011, 25 (9) 855-71
    • (2011) J. Comput.-Aided Mol. Des. , vol.25 , Issue.9 , pp. 855-871
    • Liew, C.Y.1    Lim, Y.C.2    Yap, C.W.3
  • 76
    • 84873681137 scopus 로고    scopus 로고
    • Combination of similarity rankings using data fusion
    • Willett, P. Combination of similarity rankings using data fusion J. Chem. Inf. Model. 2013, 53 (1) 1-10
    • (2013) J. Chem. Inf. Model. , vol.53 , Issue.1 , pp. 1-10
    • Willett, P.1
  • 77
    • 77951213013 scopus 로고    scopus 로고
    • Modeling liver-related adverse effects of drugs using knearest neighbor quantitative structure-activity relationship method
    • Rodgers, A. D.; Zhu, H.; Fourches, D.; Rusyn, I.; Tropsha, A. Modeling liver-related adverse effects of drugs using knearest neighbor quantitative structure-activity relationship method Chem. Res. Toxicol. 2010, 23 (4) 724-32
    • (2010) Chem. Res. Toxicol. , vol.23 , Issue.4 , pp. 724-732
    • Rodgers, A.D.1    Zhu, H.2    Fourches, D.3    Rusyn, I.4    Tropsha, A.5
  • 78
    • 33847395360 scopus 로고    scopus 로고
    • Classification of metabolites with kernel-partial least squares (K-PLS)
    • Embrechts, M. J.; Ekins, S. Classification of metabolites with kernel-partial least squares (K-PLS) Drug Metab. Dispos. 2007, 35 (3) 325-7
    • (2007) Drug Metab. Dispos. , vol.35 , Issue.3 , pp. 325-327
    • Embrechts, M.J.1    Ekins, S.2
  • 81
    • 77954978807 scopus 로고    scopus 로고
    • Towards interoperable and reproducible QSAR analyses: Exchange of datasets
    • Spjuth, O.; Willighagen, E. L.; Guha, R.; Eklund, M.; Wikberg, J. E. Towards interoperable and reproducible QSAR analyses: Exchange of datasets J. Cheminf. 2010, 2 (1) 5
    • (2010) J. Cheminf. , vol.2 , Issue.1 , pp. 5
    • Spjuth, O.1    Willighagen, E.L.2    Guha, R.3    Eklund, M.4    Wikberg, J.E.5
  • 84
    • 84884226265 scopus 로고    scopus 로고
    • The Collaborative Drug Discovery (CDD) database
    • Ekins, S.; Bunin, B. A. The Collaborative Drug Discovery (CDD) database Methods Mol. Biol. 2013, 993, 139-54
    • (2013) Methods Mol. Biol. , vol.993 , pp. 139-154
    • Ekins, S.1    Bunin, B.A.2
  • 85
    • 78049385182 scopus 로고    scopus 로고
    • Using open source computational tools for predicting human metabolic stability and additional ADME/TOX properties
    • Gupta, R. R.; Gifford, E. M.; Liston, T.; Waller, C. L.; Bunin, B.; Ekins, S. Using open source computational tools for predicting human metabolic stability and additional ADME/TOX properties Drug Metab. Dispos. 2010, 38, 2083-2090
    • (2010) Drug Metab. Dispos. , vol.38 , pp. 2083-2090
    • Gupta, R.R.1    Gifford, E.M.2    Liston, T.3    Waller, C.L.4    Bunin, B.5    Ekins, S.6
  • 86
    • 84896729192 scopus 로고    scopus 로고
    • Computational models for neglected diseases: Gaps and opportunities
    • 10.1007/s11095-013-1170-9
    • Ponder, E. L.; Freundlich, J. S.; Sarker, M.; Ekins, S. Computational models for neglected diseases: Gaps and opportunities Pharm. Res. 2013, 10.1007/s11095-013-1170-9 Diseases
    • (2013) Pharm. Res.
    • Ponder, E.L.1    Freundlich, J.S.2    Sarker, M.3    Ekins, S.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.