-
1
-
-
80053533812
-
2010/2011 Tuberculosis Global Facts
-
World Health Organization
-
World Health Organization 2010/2011 Tuberculosis Global Facts. World Health Organization., http://www.who.int/tb/publications/2010/factsheet_tb_2010.pdf
-
-
-
-
2
-
-
78650088377
-
The global plan to stop TB 2011-2015
-
Stop TB Partnership
-
Stop TB Partnership The global plan to stop TB 2011-2015. Stop TB Partnership., http://www.stoptb.org/assets/documents/global/plan/TB_GlobalPlanToStopTB2011-2015.pdf
-
-
-
-
3
-
-
79955877478
-
Towards universal access to diagnosis and treatment of multidrug-resistant and extensively drug-resistant tuberculosis by 2015
-
World Health Organization
-
World Health Organization Towards universal access to diagnosis and treatment of multidrug-resistant and extensively drug-resistant tuberculosis by 2015. World Health Organization., http://www.who.int/tb/challenges/mdr/factsheet_mdr_progress_march2011.pdf
-
-
-
-
4
-
-
82655161285
-
Tuberculosis Fact sheet N°104 November 2010
-
World Health Organization
-
World Health Organization Tuberculosis Fact sheet N°104 November 2010. World Health Organization., http://www.who.int/mediacentre/factsheets/fs104/en/
-
-
-
-
5
-
-
33845903833
-
Drugs for bad bugs: confronting the challenges of antibacterial discovery
-
10.1038/nrd2201, 17159923
-
Payne DJ, Gwynn MN, Holmes DJ, Pompliano DL. Drugs for bad bugs: confronting the challenges of antibacterial discovery. Nat Rev Drug Discov 2007, 6:29-40. 10.1038/nrd2201, 17159923.
-
(2007)
Nat Rev Drug Discov
, vol.6
, pp. 29-40
-
-
Payne, D.J.1
Gwynn, M.N.2
Holmes, D.J.3
Pompliano, D.L.4
-
6
-
-
75149183709
-
Virtual screening of bioassay data
-
10.1186/1758-2946-1-21, 2820499, 20150999
-
Schierz AC. Virtual screening of bioassay data. J Cheminform 2009, 1:21. 10.1186/1758-2946-1-21, 2820499, 20150999.
-
(2009)
J Cheminform
, vol.1
, pp. 21
-
-
Schierz, A.C.1
-
7
-
-
59149091775
-
Weka machine learning for predicting the phospholipidosis inducing potential
-
10.2174/156802608786786589, 19075775
-
Ivanciuc O. Weka machine learning for predicting the phospholipidosis inducing potential. Curr Top Med Chem 2008, 8:1691-1709. 10.2174/156802608786786589, 19075775.
-
(2008)
Curr Top Med Chem
, vol.8
, pp. 1691-1709
-
-
Ivanciuc, O.1
-
8
-
-
77957730873
-
Predicting Phospholipidosis Using Machine Learning
-
Lowe R, Glen RC, Mitchell JB. Predicting Phospholipidosis Using Machine Learning. Mol Pharm 2010, 7:1708-1714.
-
(2010)
Mol Pharm
, vol.7
, pp. 1708-1714
-
-
Lowe, R.1
Glen, R.C.2
Mitchell, J.B.3
-
9
-
-
51349131079
-
Machine learning for in silico virtual screening and chemical genomics: new strategies
-
10.2174/138620708785739899, 2748698, 18795887
-
Vert JP, Jacob L. Machine learning for in silico virtual screening and chemical genomics: new strategies. Comb Chem High Throughput Screen 2008, 11:677-685. 10.2174/138620708785739899, 2748698, 18795887.
-
(2008)
Comb Chem High Throughput Screen
, vol.11
, pp. 677-685
-
-
Vert, J.P.1
Jacob, L.2
-
10
-
-
61449101715
-
Classification of cytochrome P450 1A2 inhibitors and noninhibitors by machine learning techniques
-
10.1124/dmd.108.023507, 19056915
-
Vasanthanathan P, Taboureau O, Oostenbrink C, Vermeulen NP, Olsen L, Jorgensen FS. Classification of cytochrome P450 1A2 inhibitors and noninhibitors by machine learning techniques. Drug Metab Dispos 2009, 37:658-664. 10.1124/dmd.108.023507, 19056915.
-
(2009)
Drug Metab Dispos
, vol.37
, pp. 658-664
-
-
Vasanthanathan, P.1
Taboureau, O.2
Oostenbrink, C.3
Vermeulen, N.P.4
Olsen, L.5
Jorgensen, F.S.6
-
11
-
-
52749098733
-
Virtual screening of GPCRs: an in silico chemogenomics approach
-
Jacob L, Hoffmann B, Stoven V, Vert JP. Virtual screening of GPCRs: an in silico chemogenomics approach. BMC Bioinforma 2008, 9:363.
-
(2008)
BMC Bioinforma
, vol.9
, pp. 363
-
-
Jacob, L.1
Hoffmann, B.2
Stoven, V.3
Vert, J.P.4
-
12
-
-
66249086244
-
Machine Learning in Virtual Screening
-
10.2174/138620709788167980, 19442063
-
Melville JL, Burke EK, Hirst JD. Machine Learning in Virtual Screening. Comb Chem High Throughput Screen 2009, 12:332-343. 10.2174/138620709788167980, 19442063.
-
(2009)
Comb Chem High Throughput Screen
, vol.12
, pp. 332-343
-
-
Melville, J.L.1
Burke, E.K.2
Hirst, J.D.3
-
13
-
-
71849099675
-
PubChem BioAssays as a data source for predictive models
-
10.1016/j.jmgm.2009.10.001, 19897391
-
Chen B, Wild DJ. PubChem BioAssays as a data source for predictive models. J Mol Graph Model 2010, 28:420-426. 10.1016/j.jmgm.2009.10.001, 19897391.
-
(2010)
J Mol Graph Model
, vol.28
, pp. 420-426
-
-
Chen, B.1
Wild, D.J.2
-
14
-
-
78649633211
-
PubChem as a public resource for drug discovery
-
10.1016/j.drudis.2010.10.003, 3010383, 20970519
-
Li Q, Cheng T, Wang Y, Bryant SH. PubChem as a public resource for drug discovery. Drug Discov Today 2010, 15:1052-1057. 10.1016/j.drudis.2010.10.003, 3010383, 20970519.
-
(2010)
Drug Discov Today
, vol.15
, pp. 1052-1057
-
-
Li, Q.1
Cheng, T.2
Wang, Y.3
Bryant, S.H.4
-
15
-
-
81255128064
-
Predictive models for anti-tubercular molecules using machine learning on high-throughput biological screening datasets
-
10.1186/1756-0500-4-504, 3228709, 22099929
-
Periwal V, Jinuraj KR, Jaleel UCA, Scaria V. Predictive models for anti-tubercular molecules using machine learning on high-throughput biological screening datasets. BMC Res Notes 2011, 4:504. 10.1186/1756-0500-4-504, 3228709, 22099929.
-
(2011)
BMC Res Notes
, vol.4
, pp. 504
-
-
Periwal, V.1
Jinuraj, K.R.2
Jaleel, U.C.A.3
Scaria, V.4
-
16
-
-
70350765485
-
High-throughput screening for inhibitors of Mycobacterium tuberculosis H37Rv
-
Ananthan S, Faaleolea ER, Goldman RC, Hobrath JV, Kwong CD, Laughon BE, et al. High-throughput screening for inhibitors of Mycobacterium tuberculosis H37Rv. Tuberculosis (Edinb) 2009, 89:334-353.
-
(2009)
Tuberculosis (Edinb)
, vol.89
, pp. 334-353
-
-
Ananthan, S.1
Faaleolea, E.R.2
Goldman, R.C.3
Hobrath, J.V.4
Kwong, C.D.5
Laughon, B.E.6
-
17
-
-
70449108128
-
Antituberculosis activity of the molecular libraries screening center network library
-
Maddry JA, Ananthan S, Goldman RC, Hobrath JV, Kwong CD, Maddox C, et al. Antituberculosis activity of the molecular libraries screening center network library. Tuberculosis (Edinb) 2009, 89:354-363.
-
(2009)
Tuberculosis (Edinb)
, vol.89
, pp. 354-363
-
-
Maddry, J.A.1
Ananthan, S.2
Goldman, R.C.3
Hobrath, J.V.4
Kwong, C.D.5
Maddox, C.6
-
18
-
-
33846864233
-
Classification of highly unbalanced CYP450 data of drugs using cost sensitive machine learning techniques
-
10.1021/ci6002619, 17238253
-
Eitrich T, Kless A, Druska C, Meyer W, Grotendorst J. Classification of highly unbalanced CYP450 data of drugs using cost sensitive machine learning techniques. J Chem Inf Model 2007, 47(1):92-103. 10.1021/ci6002619, 17238253.
-
(2007)
J Chem Inf Model
, vol.47
, Issue.1
, pp. 92-103
-
-
Eitrich, T.1
Kless, A.2
Druska, C.3
Meyer, W.4
Grotendorst, J.5
-
19
-
-
77952326917
-
A collaborative database and computational models for tuberculosis drug discovery
-
10.1039/b917766c, 20567770
-
Ekins S, Bradford J, Dole K, Spektor A, Gregory K, Blondeau D, et al. A collaborative database and computational models for tuberculosis drug discovery. Mol Biosyst 2010, 6:840-851. 10.1039/b917766c, 20567770.
-
(2010)
Mol Biosyst
, vol.6
, pp. 840-851
-
-
Ekins, S.1
Bradford, J.2
Dole, K.3
Spektor, A.4
Gregory, K.5
Blondeau, D.6
-
20
-
-
77957680455
-
Analysis and hit filtering of a very large library of compounds screened against Mycobacterium tuberculosis
-
10.1039/c0mb00104j, 20835433
-
Ekins S, Kaneko T, Lipinski CA, Bradford J, Dole K, Spektor A, et al. Analysis and hit filtering of a very large library of compounds screened against Mycobacterium tuberculosis. Mol Biosyst 2010, 6:2316-2324. 10.1039/c0mb00104j, 20835433.
-
(2010)
Mol Biosyst
, vol.6
, pp. 2316-2324
-
-
Ekins, S.1
Kaneko, T.2
Lipinski, C.A.3
Bradford, J.4
Dole, K.5
Spektor, A.6
-
21
-
-
79961170425
-
Validating New Tuberculosis Computational Models with Public Whole Cell Screening Aerobic Activity Datasets
-
10.1007/s11095-011-0413-x, 21547522
-
Ekins S, Freundlich JS. Validating New Tuberculosis Computational Models with Public Whole Cell Screening Aerobic Activity Datasets. Pharm Res 2011, 28:1859-1869. 10.1007/s11095-011-0413-x, 21547522.
-
(2011)
Pharm Res
, vol.28
, pp. 1859-1869
-
-
Ekins, S.1
Freundlich, J.S.2
-
22
-
-
79952466815
-
Computational databases, pathway and cheminformatics tools for tuberculosis drug discovery
-
10.1016/j.tim.2010.10.005, 3034835, 21129975
-
Ekins S, Freundlich JS, Choi I, Sarker M, Talcott C. Computational databases, pathway and cheminformatics tools for tuberculosis drug discovery. Trends Microbiol 2011, 19(2):65-74. 10.1016/j.tim.2010.10.005, 3034835, 21129975.
-
(2011)
Trends Microbiol
, vol.19
, Issue.2
, pp. 65-74
-
-
Ekins, S.1
Freundlich, J.S.2
Choi, I.3
Sarker, M.4
Talcott, C.5
-
23
-
-
67849104638
-
PubChem: a public information system for analyzing bioactivities of small molecules
-
10.1093/nar/gkp456, 2703903, 19498078
-
Wang Y, Xiao J, Suzek TO, Zhang J, Wang J, Bryant SH. PubChem: a public information system for analyzing bioactivities of small molecules. Nucleic Acids Res 2009, 37:W623-W633. 10.1093/nar/gkp456, 2703903, 19498078.
-
(2009)
Nucleic Acids Res
, vol.37
-
-
Wang, Y.1
Xiao, J.2
Suzek, T.O.3
Zhang, J.4
Wang, J.5
Bryant, S.H.6
-
24
-
-
0030903133
-
Microplate alamar blue assay versus BACTEC 460 system for high-throughput screening of compounds against Mycobacterium tuberculosis and Mycobacterium avium
-
163841, 9145860
-
Collins L, Franzblau SG. Microplate alamar blue assay versus BACTEC 460 system for high-throughput screening of compounds against Mycobacterium tuberculosis and Mycobacterium avium. Antimicrob Agents Chemother 1997, 41:1004-1009. 163841, 9145860.
-
(1997)
Antimicrob Agents Chemother
, vol.41
, pp. 1004-1009
-
-
Collins, L.1
Franzblau, S.G.2
-
25
-
-
18344379900
-
PowerMV: a software environment for molecular viewing, descriptor generation, data analysis and hit evaluation
-
10.1021/ci049847v, 15807517
-
Liu K, Feng J, Young SS. PowerMV: a software environment for molecular viewing, descriptor generation, data analysis and hit evaluation. J Chem Inf Model 2005, 45:515-522. 10.1021/ci049847v, 15807517.
-
(2005)
J Chem Inf Model
, vol.45
, pp. 515-522
-
-
Liu, K.1
Feng, J.2
Young, S.S.3
-
26
-
-
79952352241
-
MayaChemTools
-
Sud M. MayaChemTools. , http://www.mayachemtools.org
-
-
-
Sud, M.1
-
27
-
-
78649394789
-
Weka -Experiences with a Java Open-Source Project
-
Bouckaert RR, Frank E, Hall MA, Holmes G, Pfahringer B, Reutemann P, et al. Weka -Experiences with a Java Open-Source Project. J Mach Learn Res 2010, 2533-2541.
-
(2010)
J Mach Learn Res
, pp. 2533-2541
-
-
Bouckaert, R.R.1
Frank, E.2
Hall, M.A.3
Holmes, G.4
Pfahringer, B.5
Reutemann, P.6
-
28
-
-
0035478854
-
Random forests
-
Breiman L. Random forests. Mach Learn 2001, 45:5-32.
-
(2001)
Mach Learn
, vol.45
, pp. 5-32
-
-
Breiman, L.1
-
29
-
-
0003120218
-
Sequential Minimal Optimization: A Fast Algorithm for Training Support Vector Machines
-
Platt JC. Sequential Minimal Optimization: A Fast Algorithm for Training Support Vector Machines. MSR-TR-98-14 1998,
-
(1998)
MSR-TR-98-14
-
-
Platt, J.C.1
-
32
-
-
0005255842
-
The Class Imbalance Problem: Significance and Strategies
-
Japkowicz N. The Class Imbalance Problem: Significance and Strategies.
-
-
-
Japkowicz, N.1
-
33
-
-
0037867818
-
The Foundations of Cost-Sensitive Learning
-
Elkan C. The Foundations of Cost-Sensitive Learning. 973-978.
-
-
-
Elkan, C.1
-
34
-
-
33750689152
-
Thresholding for Making Classifiers Cost Sensitive
-
Sheng VS, Ling C. Thresholding for Making Classifiers Cost Sensitive. 476-481.
-
-
-
Sheng, V.S.1
Ling, C.2
|