메뉴 건너뛰기




Volumn 12, Issue , 2012, Pages

Computational models for in-vitro anti-tubercular activity of molecules based on high-throughput chemical biology screening datasets

Author keywords

[No Author keywords available]

Indexed keywords

TUBERCULOSTATIC AGENT;

EID: 84860490696     PISSN: None     EISSN: 14712210     Source Type: Journal    
DOI: 10.1186/1471-2210-12-1     Document Type: Article
Times cited : (25)

References (36)
  • 1
    • 80053533812 scopus 로고    scopus 로고
    • 2010/2011 Tuberculosis Global Facts
    • World Health Organization
    • World Health Organization 2010/2011 Tuberculosis Global Facts. World Health Organization., http://www.who.int/tb/publications/2010/factsheet_tb_2010.pdf
  • 2
    • 78650088377 scopus 로고    scopus 로고
    • The global plan to stop TB 2011-2015
    • Stop TB Partnership
    • Stop TB Partnership The global plan to stop TB 2011-2015. Stop TB Partnership., http://www.stoptb.org/assets/documents/global/plan/TB_GlobalPlanToStopTB2011-2015.pdf
  • 3
    • 79955877478 scopus 로고    scopus 로고
    • Towards universal access to diagnosis and treatment of multidrug-resistant and extensively drug-resistant tuberculosis by 2015
    • World Health Organization
    • World Health Organization Towards universal access to diagnosis and treatment of multidrug-resistant and extensively drug-resistant tuberculosis by 2015. World Health Organization., http://www.who.int/tb/challenges/mdr/factsheet_mdr_progress_march2011.pdf
  • 4
    • 82655161285 scopus 로고    scopus 로고
    • Tuberculosis Fact sheet N°104 November 2010
    • World Health Organization
    • World Health Organization Tuberculosis Fact sheet N°104 November 2010. World Health Organization., http://www.who.int/mediacentre/factsheets/fs104/en/
  • 5
    • 33845903833 scopus 로고    scopus 로고
    • Drugs for bad bugs: confronting the challenges of antibacterial discovery
    • 10.1038/nrd2201, 17159923
    • Payne DJ, Gwynn MN, Holmes DJ, Pompliano DL. Drugs for bad bugs: confronting the challenges of antibacterial discovery. Nat Rev Drug Discov 2007, 6:29-40. 10.1038/nrd2201, 17159923.
    • (2007) Nat Rev Drug Discov , vol.6 , pp. 29-40
    • Payne, D.J.1    Gwynn, M.N.2    Holmes, D.J.3    Pompliano, D.L.4
  • 6
    • 75149183709 scopus 로고    scopus 로고
    • Virtual screening of bioassay data
    • 10.1186/1758-2946-1-21, 2820499, 20150999
    • Schierz AC. Virtual screening of bioassay data. J Cheminform 2009, 1:21. 10.1186/1758-2946-1-21, 2820499, 20150999.
    • (2009) J Cheminform , vol.1 , pp. 21
    • Schierz, A.C.1
  • 7
    • 59149091775 scopus 로고    scopus 로고
    • Weka machine learning for predicting the phospholipidosis inducing potential
    • 10.2174/156802608786786589, 19075775
    • Ivanciuc O. Weka machine learning for predicting the phospholipidosis inducing potential. Curr Top Med Chem 2008, 8:1691-1709. 10.2174/156802608786786589, 19075775.
    • (2008) Curr Top Med Chem , vol.8 , pp. 1691-1709
    • Ivanciuc, O.1
  • 8
    • 77957730873 scopus 로고    scopus 로고
    • Predicting Phospholipidosis Using Machine Learning
    • Lowe R, Glen RC, Mitchell JB. Predicting Phospholipidosis Using Machine Learning. Mol Pharm 2010, 7:1708-1714.
    • (2010) Mol Pharm , vol.7 , pp. 1708-1714
    • Lowe, R.1    Glen, R.C.2    Mitchell, J.B.3
  • 9
    • 51349131079 scopus 로고    scopus 로고
    • Machine learning for in silico virtual screening and chemical genomics: new strategies
    • 10.2174/138620708785739899, 2748698, 18795887
    • Vert JP, Jacob L. Machine learning for in silico virtual screening and chemical genomics: new strategies. Comb Chem High Throughput Screen 2008, 11:677-685. 10.2174/138620708785739899, 2748698, 18795887.
    • (2008) Comb Chem High Throughput Screen , vol.11 , pp. 677-685
    • Vert, J.P.1    Jacob, L.2
  • 10
    • 61449101715 scopus 로고    scopus 로고
    • Classification of cytochrome P450 1A2 inhibitors and noninhibitors by machine learning techniques
    • 10.1124/dmd.108.023507, 19056915
    • Vasanthanathan P, Taboureau O, Oostenbrink C, Vermeulen NP, Olsen L, Jorgensen FS. Classification of cytochrome P450 1A2 inhibitors and noninhibitors by machine learning techniques. Drug Metab Dispos 2009, 37:658-664. 10.1124/dmd.108.023507, 19056915.
    • (2009) Drug Metab Dispos , vol.37 , pp. 658-664
    • Vasanthanathan, P.1    Taboureau, O.2    Oostenbrink, C.3    Vermeulen, N.P.4    Olsen, L.5    Jorgensen, F.S.6
  • 11
    • 52749098733 scopus 로고    scopus 로고
    • Virtual screening of GPCRs: an in silico chemogenomics approach
    • Jacob L, Hoffmann B, Stoven V, Vert JP. Virtual screening of GPCRs: an in silico chemogenomics approach. BMC Bioinforma 2008, 9:363.
    • (2008) BMC Bioinforma , vol.9 , pp. 363
    • Jacob, L.1    Hoffmann, B.2    Stoven, V.3    Vert, J.P.4
  • 12
    • 66249086244 scopus 로고    scopus 로고
    • Machine Learning in Virtual Screening
    • 10.2174/138620709788167980, 19442063
    • Melville JL, Burke EK, Hirst JD. Machine Learning in Virtual Screening. Comb Chem High Throughput Screen 2009, 12:332-343. 10.2174/138620709788167980, 19442063.
    • (2009) Comb Chem High Throughput Screen , vol.12 , pp. 332-343
    • Melville, J.L.1    Burke, E.K.2    Hirst, J.D.3
  • 13
    • 71849099675 scopus 로고    scopus 로고
    • PubChem BioAssays as a data source for predictive models
    • 10.1016/j.jmgm.2009.10.001, 19897391
    • Chen B, Wild DJ. PubChem BioAssays as a data source for predictive models. J Mol Graph Model 2010, 28:420-426. 10.1016/j.jmgm.2009.10.001, 19897391.
    • (2010) J Mol Graph Model , vol.28 , pp. 420-426
    • Chen, B.1    Wild, D.J.2
  • 14
    • 78649633211 scopus 로고    scopus 로고
    • PubChem as a public resource for drug discovery
    • 10.1016/j.drudis.2010.10.003, 3010383, 20970519
    • Li Q, Cheng T, Wang Y, Bryant SH. PubChem as a public resource for drug discovery. Drug Discov Today 2010, 15:1052-1057. 10.1016/j.drudis.2010.10.003, 3010383, 20970519.
    • (2010) Drug Discov Today , vol.15 , pp. 1052-1057
    • Li, Q.1    Cheng, T.2    Wang, Y.3    Bryant, S.H.4
  • 15
    • 81255128064 scopus 로고    scopus 로고
    • Predictive models for anti-tubercular molecules using machine learning on high-throughput biological screening datasets
    • 10.1186/1756-0500-4-504, 3228709, 22099929
    • Periwal V, Jinuraj KR, Jaleel UCA, Scaria V. Predictive models for anti-tubercular molecules using machine learning on high-throughput biological screening datasets. BMC Res Notes 2011, 4:504. 10.1186/1756-0500-4-504, 3228709, 22099929.
    • (2011) BMC Res Notes , vol.4 , pp. 504
    • Periwal, V.1    Jinuraj, K.R.2    Jaleel, U.C.A.3    Scaria, V.4
  • 18
    • 33846864233 scopus 로고    scopus 로고
    • Classification of highly unbalanced CYP450 data of drugs using cost sensitive machine learning techniques
    • 10.1021/ci6002619, 17238253
    • Eitrich T, Kless A, Druska C, Meyer W, Grotendorst J. Classification of highly unbalanced CYP450 data of drugs using cost sensitive machine learning techniques. J Chem Inf Model 2007, 47(1):92-103. 10.1021/ci6002619, 17238253.
    • (2007) J Chem Inf Model , vol.47 , Issue.1 , pp. 92-103
    • Eitrich, T.1    Kless, A.2    Druska, C.3    Meyer, W.4    Grotendorst, J.5
  • 19
    • 77952326917 scopus 로고    scopus 로고
    • A collaborative database and computational models for tuberculosis drug discovery
    • 10.1039/b917766c, 20567770
    • Ekins S, Bradford J, Dole K, Spektor A, Gregory K, Blondeau D, et al. A collaborative database and computational models for tuberculosis drug discovery. Mol Biosyst 2010, 6:840-851. 10.1039/b917766c, 20567770.
    • (2010) Mol Biosyst , vol.6 , pp. 840-851
    • Ekins, S.1    Bradford, J.2    Dole, K.3    Spektor, A.4    Gregory, K.5    Blondeau, D.6
  • 20
    • 77957680455 scopus 로고    scopus 로고
    • Analysis and hit filtering of a very large library of compounds screened against Mycobacterium tuberculosis
    • 10.1039/c0mb00104j, 20835433
    • Ekins S, Kaneko T, Lipinski CA, Bradford J, Dole K, Spektor A, et al. Analysis and hit filtering of a very large library of compounds screened against Mycobacterium tuberculosis. Mol Biosyst 2010, 6:2316-2324. 10.1039/c0mb00104j, 20835433.
    • (2010) Mol Biosyst , vol.6 , pp. 2316-2324
    • Ekins, S.1    Kaneko, T.2    Lipinski, C.A.3    Bradford, J.4    Dole, K.5    Spektor, A.6
  • 21
    • 79961170425 scopus 로고    scopus 로고
    • Validating New Tuberculosis Computational Models with Public Whole Cell Screening Aerobic Activity Datasets
    • 10.1007/s11095-011-0413-x, 21547522
    • Ekins S, Freundlich JS. Validating New Tuberculosis Computational Models with Public Whole Cell Screening Aerobic Activity Datasets. Pharm Res 2011, 28:1859-1869. 10.1007/s11095-011-0413-x, 21547522.
    • (2011) Pharm Res , vol.28 , pp. 1859-1869
    • Ekins, S.1    Freundlich, J.S.2
  • 22
    • 79952466815 scopus 로고    scopus 로고
    • Computational databases, pathway and cheminformatics tools for tuberculosis drug discovery
    • 10.1016/j.tim.2010.10.005, 3034835, 21129975
    • Ekins S, Freundlich JS, Choi I, Sarker M, Talcott C. Computational databases, pathway and cheminformatics tools for tuberculosis drug discovery. Trends Microbiol 2011, 19(2):65-74. 10.1016/j.tim.2010.10.005, 3034835, 21129975.
    • (2011) Trends Microbiol , vol.19 , Issue.2 , pp. 65-74
    • Ekins, S.1    Freundlich, J.S.2    Choi, I.3    Sarker, M.4    Talcott, C.5
  • 23
    • 67849104638 scopus 로고    scopus 로고
    • PubChem: a public information system for analyzing bioactivities of small molecules
    • 10.1093/nar/gkp456, 2703903, 19498078
    • Wang Y, Xiao J, Suzek TO, Zhang J, Wang J, Bryant SH. PubChem: a public information system for analyzing bioactivities of small molecules. Nucleic Acids Res 2009, 37:W623-W633. 10.1093/nar/gkp456, 2703903, 19498078.
    • (2009) Nucleic Acids Res , vol.37
    • Wang, Y.1    Xiao, J.2    Suzek, T.O.3    Zhang, J.4    Wang, J.5    Bryant, S.H.6
  • 24
    • 0030903133 scopus 로고    scopus 로고
    • Microplate alamar blue assay versus BACTEC 460 system for high-throughput screening of compounds against Mycobacterium tuberculosis and Mycobacterium avium
    • 163841, 9145860
    • Collins L, Franzblau SG. Microplate alamar blue assay versus BACTEC 460 system for high-throughput screening of compounds against Mycobacterium tuberculosis and Mycobacterium avium. Antimicrob Agents Chemother 1997, 41:1004-1009. 163841, 9145860.
    • (1997) Antimicrob Agents Chemother , vol.41 , pp. 1004-1009
    • Collins, L.1    Franzblau, S.G.2
  • 25
    • 18344379900 scopus 로고    scopus 로고
    • PowerMV: a software environment for molecular viewing, descriptor generation, data analysis and hit evaluation
    • 10.1021/ci049847v, 15807517
    • Liu K, Feng J, Young SS. PowerMV: a software environment for molecular viewing, descriptor generation, data analysis and hit evaluation. J Chem Inf Model 2005, 45:515-522. 10.1021/ci049847v, 15807517.
    • (2005) J Chem Inf Model , vol.45 , pp. 515-522
    • Liu, K.1    Feng, J.2    Young, S.S.3
  • 26
    • 79952352241 scopus 로고    scopus 로고
    • MayaChemTools
    • Sud M. MayaChemTools. , http://www.mayachemtools.org
    • Sud, M.1
  • 28
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • Breiman L. Random forests. Mach Learn 2001, 45:5-32.
    • (2001) Mach Learn , vol.45 , pp. 5-32
    • Breiman, L.1
  • 29
    • 0003120218 scopus 로고    scopus 로고
    • Sequential Minimal Optimization: A Fast Algorithm for Training Support Vector Machines
    • Platt JC. Sequential Minimal Optimization: A Fast Algorithm for Training Support Vector Machines. MSR-TR-98-14 1998,
    • (1998) MSR-TR-98-14
    • Platt, J.C.1
  • 32
    • 0005255842 scopus 로고    scopus 로고
    • The Class Imbalance Problem: Significance and Strategies
    • Japkowicz N. The Class Imbalance Problem: Significance and Strategies.
    • Japkowicz, N.1
  • 33
    • 0037867818 scopus 로고    scopus 로고
    • The Foundations of Cost-Sensitive Learning
    • Elkan C. The Foundations of Cost-Sensitive Learning. 973-978.
    • Elkan, C.1
  • 34
    • 33750689152 scopus 로고    scopus 로고
    • Thresholding for Making Classifiers Cost Sensitive
    • Sheng VS, Ling C. Thresholding for Making Classifiers Cost Sensitive. 476-481.
    • Sheng, V.S.1    Ling, C.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.