-
1
-
-
77649220192
-
Current trends in ligand-based virtual screening: Molecular representations, data mining methods, new application areas, and performance evaluation
-
Geppert, H.; Vogt, M.; Bajorath, J. Current trends in ligand-based virtual screening: Molecular representations, data mining methods, new application areas, and performance evaluation J. Chem. Inf. Model. 2010, 50, 205-216
-
(2010)
J. Chem. Inf. Model.
, vol.50
, pp. 205-216
-
-
Geppert, H.1
Vogt, M.2
Bajorath, J.3
-
2
-
-
33947245022
-
Evaluation of machine-learning methods for ligand-based virtual screening
-
Chen, B.; Harrison, R. F.; Papadatos, G.; Willett, P.; Wood, D. J.; Lewell, X. Q.; Greenidge, P.; Stiefl, N. Evaluation of machine-learning methods for ligand-based virtual screening J. Comput.-Aided Mol. Des. 2007, 21, 53-62
-
(2007)
J. Comput.-Aided Mol. Des.
, vol.21
, pp. 53-62
-
-
Chen, B.1
Harrison, R.F.2
Papadatos, G.3
Willett, P.4
Wood, D.J.5
Lewell, X.Q.6
Greenidge, P.7
Stiefl, N.8
-
3
-
-
0003922190
-
-
2 nd ed. Wiley-Interscience: New York
-
Duda, R. O.; Hart, P. E.; Stork, D. G. Pattern Classification, 2 nd ed.; Wiley-Interscience: New York, 2000, pp 20-83.
-
(2000)
Pattern Classification
, pp. 20-83
-
-
Duda, R.O.1
Hart, P.E.2
Stork, D.G.3
-
4
-
-
1842690601
-
Molecular similarity searching using atom environments, information-based feature selection, and a naïve Bayesian classifier
-
Bender, A.; Mussa, H. Y.; Glen, R. C.; Reiling, S. Molecular similarity searching using atom environments, information-based feature selection, and a naïve Bayesian classifier J. Chem. Inf. Comput. Sci. 2004, 44, 170-178
-
(2004)
J. Chem. Inf. Comput. Sci.
, vol.44
, pp. 170-178
-
-
Bender, A.1
Mussa, H.Y.2
Glen, R.C.3
Reiling, S.4
-
5
-
-
33745391215
-
Prediction of biological targets for compounds using multiple-category bayesian models trained on chemogenomics databases
-
Nidhi; Glick, M.; Davies, J. W.; Jenkins, J. L. Prediction of biological targets for compounds using multiple-category bayesian models trained on chemogenomics databases J. Chem. Inf. Model. 2006, 46, 1124-1133
-
(2006)
J. Chem. Inf. Model.
, vol.46
, pp. 1124-1133
-
-
Nidhi1
Glick, M.2
Davies, J.W.3
Jenkins, J.L.4
-
6
-
-
39449088858
-
Naive Bayes classification using 2D pharmacophore feature triplet vectors
-
Watson, P. Naive Bayes classification using 2D pharmacophore feature triplet vectors J. Chem. Inf. Model. 2008, 48, 166-178
-
(2008)
J. Chem. Inf. Model.
, vol.48
, pp. 166-178
-
-
Watson, P.1
-
8
-
-
27144489164
-
A tutorial on support vector machines for pattern recognition
-
Burges, C. J. C. A tutorial on support vector machines for pattern recognition Data Min. Knowl. Discovery 1998, 2, 121-167
-
(1998)
Data Min. Knowl. Discovery
, vol.2
, pp. 121-167
-
-
Burges, C.J.C.1
-
9
-
-
0034740222
-
Drug design by machine learning: Support vector machines for pharmaceutical data analysis
-
Burbidge, R.; Trotter, M.; Buxton, B.; Holden, S. Drug design by machine learning: Support vector machines for pharmaceutical data analysis Comput. Chem. 2001, 26, 5-14
-
(2001)
Comput. Chem.
, vol.26
, pp. 5-14
-
-
Burbidge, R.1
Trotter, M.2
Buxton, B.3
Holden, S.4
-
10
-
-
0037365194
-
Active learning with support vector machines in the drug discovery process
-
Warmuth, M. K.; Liao, J.; Rätsch, G.; Mathieson, M.; Putta, S.; Lemmen, C. Active learning with support vector machines in the drug discovery process J. Chem. Inf. Comput. Sci. 2003, 43, 667-673
-
(2003)
J. Chem. Inf. Comput. Sci.
, vol.43
, pp. 667-673
-
-
Warmuth, M.K.1
Liao, J.2
Rätsch, G.3
Mathieson, M.4
Putta, S.5
Lemmen, C.6
-
11
-
-
20444410410
-
Virtual screening of molecular databases using a support vector machine
-
Jorissen, R. N.; Gilson, M. K. Virtual screening of molecular databases using a support vector machine J. Chem. Inf. Model. 2005, 45, 549-561
-
(2005)
J. Chem. Inf. Model.
, vol.45
, pp. 549-561
-
-
Jorissen, R.N.1
Gilson, M.K.2
-
12
-
-
84862192766
-
ChEMBL: A large-scale bioactivity database for drug discovery
-
Gaulton, A.; Bellis, L. J.; Bento, A. P.; Chambers, J.; Davies, M.; Hersey, A.; Light, Y.; McGlinchey, S.; Michalovich, D.; Al-Lazikani, B.; Overington, J. P. ChEMBL: A large-scale bioactivity database for drug discovery Nucleic Acids Res. 2012, 40, D1100-D1107
-
(2012)
Nucleic Acids Res.
, vol.40
-
-
Gaulton, A.1
Bellis, L.J.2
Bento, A.P.3
Chambers, J.4
Davies, M.5
Hersey, A.6
Light, Y.7
McGlinchey, S.8
Michalovich, D.9
Al-Lazikani, B.10
Overington, J.P.11
-
13
-
-
33846108633
-
BindingDB: A Web-accessible database of experimentally determined protein-ligand binding affinities
-
Liu, T.; Lin, Y.; Wen, X.; Jorisson, R. N.; Gilson, M. K. BindingDB: A Web-accessible database of experimentally determined protein-ligand binding affinities Nucleic Acids Res. 2007, 35, D198-D201
-
(2007)
Nucleic Acids Res.
, vol.35
-
-
Liu, T.1
Lin, Y.2
Wen, X.3
Jorisson, R.N.4
Gilson, M.K.5
-
14
-
-
43049157546
-
A support vector machines approach for virtual screening of active compounds of single and multiple mechanisms from large libraries at an improved hit-rate and enrichment factor
-
Han, L. Y.; Ma, X. H.; Lin, H. H.; Jia, J.; Zhu, F.; Xue, Y.; Li, Z. R.; Cao, Z. W.; Ji, Z. L.; Chen, Y. Z. A support vector machines approach for virtual screening of active compounds of single and multiple mechanisms from large libraries at an improved hit-rate and enrichment factor J. Mol. Graph. Model. 2008, 26, 1276-1286
-
(2008)
J. Mol. Graph. Model.
, vol.26
, pp. 1276-1286
-
-
Han, L.Y.1
Ma, X.H.2
Lin, H.H.3
Jia, J.4
Zhu, F.5
Xue, Y.6
Li, Z.R.7
Cao, Z.W.8
Ji, Z.L.9
Chen, Y.Z.10
-
15
-
-
33745420796
-
Assessing different classification methods for virtual screening
-
Plewczynski, D.; Spieser, S. A. H.; Koch, U. Assessing different classification methods for virtual screening J. Chem. Inf. Model. 2006, 46, 1098-1106
-
(2006)
J. Chem. Inf. Model.
, vol.46
, pp. 1098-1106
-
-
Plewczynski, D.1
Spieser, S.A.H.2
Koch, U.3
-
16
-
-
0032015361
-
Identification of biological activity profiles using substructural analysis and genetic algorithms
-
Gillet, V. J.; Willett, P.; Bradshaw, J. Identification of biological activity profiles using substructural analysis and genetic algorithms J. Chem. Inf. Comput. Sci. 1998, 38, 165-179
-
(1998)
J. Chem. Inf. Comput. Sci.
, vol.38
, pp. 165-179
-
-
Gillet, V.J.1
Willett, P.2
Bradshaw, J.3
-
17
-
-
84877347625
-
The influence of the inactives subset generation on the performance of machine learning methods
-
10.1186/1758-2946-5-17
-
Smusz, S.; Kurczab, R.; Bojarski, A. J. The influence of the inactives subset generation on the performance of machine learning methods J. Cheminf. 2013, 5, 17 10.1186/1758-2946-5-17
-
(2013)
J. Cheminf.
, vol.5
, pp. 17
-
-
Smusz, S.1
Kurczab, R.2
Bojarski, A.J.3
-
18
-
-
84864199587
-
ZINC: A free tool to discover chemistry for biology
-
Irwin, J. J.; Sterling, T.; Mysinger, M. M.; Bolstad, E. S.; Coleman, R. G. ZINC: A free tool to discover chemistry for biology J. Chem. Inf. Model. 2012, 52, 1757-1768
-
(2012)
J. Chem. Inf. Model.
, vol.52
, pp. 1757-1768
-
-
Irwin, J.J.1
Sterling, T.2
Mysinger, M.M.3
Bolstad, E.S.4
Coleman, R.G.5
-
19
-
-
33645664689
-
-
Accelrys, Inc. San Diego, CA. (accessed June 28, 2013)
-
Molecular Drug Data Report (MDDR); Accelrys, Inc., San Diego, CA. http://www.accelrys.com (accessed June 28, 2013).
-
Molecular Drug Data Report (MDDR)
-
-
-
20
-
-
33750991346
-
Benchmarking sets for molecular docking
-
Huang, N.; Shoichet, B. K.; Irwin, J. J. Benchmarking sets for molecular docking J. Med. Chem. 2006, 49, 6789-6801
-
(2006)
J. Med. Chem.
, vol.49
, pp. 6789-6801
-
-
Huang, N.1
Shoichet, B.K.2
Irwin, J.J.3
-
21
-
-
84861400021
-
PubChem's bioassay database
-
Wang, Y.; Xiao, J.; Suzek, T. O.; Zhang, J.; Wang, J.; Zhou, Z.; Han, L.; Karapetyan, K.; Dracheva, S.; Shoemaker, B. A.; Bolton, E.; Gindulyte, A.; Bryant, S. H. PubChem's bioassay database Nucleic Acids Res. 2012, 40, D400-D412
-
(2012)
Nucleic Acids Res.
, vol.40
-
-
Wang, Y.1
Xiao, J.2
Suzek, T.O.3
Zhang, J.4
Wang, J.5
Zhou, Z.6
Han, L.7
Karapetyan, K.8
Dracheva, S.9
Shoemaker, B.A.10
Bolton, E.11
Gindulyte, A.12
Bryant, S.H.13
-
22
-
-
0026966646
-
A Training Algorithm for Optimal Margin Classifiers
-
Pittsburgh, PA, 1992; ACM: New York
-
Boser, B. E.; Guyon, I. M.; Vapnik, V. N. A Training Algorithm for Optimal Margin Classifiers. In Proceedings of the 5th Annual Workshop on Computational Learning Theory; Pittsburgh, PA, 1992; ACM: New York, 1992; pp 144-152.
-
(1992)
Proceedings of the 5th Annual Workshop on Computational Learning Theory
, pp. 144-152
-
-
Boser, B.E.1
Guyon, I.M.2
Vapnik, V.N.3
-
23
-
-
77952772341
-
Extended-connectivity fingerprints
-
Rogers, D.; Hahn, M. Extended-connectivity fingerprints J. Chem. Inf. Model. 2010, 50, 742-754
-
(2010)
J. Chem. Inf. Model.
, vol.50
, pp. 742-754
-
-
Rogers, D.1
Hahn, M.2
-
24
-
-
84880519466
-
-
Accelrys, San Diego, CA
-
MACCS Structural Keys; Accelrys, San Diego, CA.
-
MACCS Structural Keys
-
-
-
25
-
-
84855757480
-
-
Chemical Computing Group, Inc. Montreal, Quebec, Canada
-
Molecular Operating Environment (MOE); Chemical Computing Group, Inc., Montreal, Quebec, Canada.
-
Molecular Operating Environment (MOE)
-
-
-
26
-
-
23844480138
-
Graph kernels for chemical informatics
-
Ralaivola, L.; Swamidass, S. J.; Saigo, H.; Baldi, P. Graph kernels for chemical informatics Neural Networks 2005, 18, 1093-1110
-
(2005)
Neural Networks
, vol.18
, pp. 1093-1110
-
-
Ralaivola, L.1
Swamidass, S.J.2
Saigo, H.3
Baldi, P.4
-
28
-
-
0002714543
-
Making Large-Scale SVM Learning Practical
-
Schölkopf, B. Burges, C. J. C. Smola, A. J. MIT-Press: Cambridge, MA
-
Joachims, T. Making Large-Scale SVM Learning Practical. In Advances in Kernel Methods-Support Vector Learning; Schölkopf, B.; Burges, C. J. C.; Smola, A. J., Eds.; MIT-Press: Cambridge, MA, 1999; pp 169-184.
-
(1999)
Advances in Kernel Methods - Support Vector Learning
, pp. 169-184
-
-
Joachims, T.1
|