메뉴 건너뛰기




Volumn 53, Issue 7, 2013, Pages 1595-1601

Comparison of confirmed inactive and randomly selected compounds as negative training examples in support vector machine-based virtual screening

Author keywords

[No Author keywords available]

Indexed keywords

BENCHMARKING; DATABASE SYSTEMS; E-LEARNING;

EID: 84880544842     PISSN: 15499596     EISSN: 1549960X     Source Type: Journal    
DOI: 10.1021/ci4002712     Document Type: Article
Times cited : (35)

References (28)
  • 1
    • 77649220192 scopus 로고    scopus 로고
    • Current trends in ligand-based virtual screening: Molecular representations, data mining methods, new application areas, and performance evaluation
    • Geppert, H.; Vogt, M.; Bajorath, J. Current trends in ligand-based virtual screening: Molecular representations, data mining methods, new application areas, and performance evaluation J. Chem. Inf. Model. 2010, 50, 205-216
    • (2010) J. Chem. Inf. Model. , vol.50 , pp. 205-216
    • Geppert, H.1    Vogt, M.2    Bajorath, J.3
  • 4
    • 1842690601 scopus 로고    scopus 로고
    • Molecular similarity searching using atom environments, information-based feature selection, and a naïve Bayesian classifier
    • Bender, A.; Mussa, H. Y.; Glen, R. C.; Reiling, S. Molecular similarity searching using atom environments, information-based feature selection, and a naïve Bayesian classifier J. Chem. Inf. Comput. Sci. 2004, 44, 170-178
    • (2004) J. Chem. Inf. Comput. Sci. , vol.44 , pp. 170-178
    • Bender, A.1    Mussa, H.Y.2    Glen, R.C.3    Reiling, S.4
  • 5
    • 33745391215 scopus 로고    scopus 로고
    • Prediction of biological targets for compounds using multiple-category bayesian models trained on chemogenomics databases
    • Nidhi; Glick, M.; Davies, J. W.; Jenkins, J. L. Prediction of biological targets for compounds using multiple-category bayesian models trained on chemogenomics databases J. Chem. Inf. Model. 2006, 46, 1124-1133
    • (2006) J. Chem. Inf. Model. , vol.46 , pp. 1124-1133
    • Nidhi1    Glick, M.2    Davies, J.W.3    Jenkins, J.L.4
  • 6
    • 39449088858 scopus 로고    scopus 로고
    • Naive Bayes classification using 2D pharmacophore feature triplet vectors
    • Watson, P. Naive Bayes classification using 2D pharmacophore feature triplet vectors J. Chem. Inf. Model. 2008, 48, 166-178
    • (2008) J. Chem. Inf. Model. , vol.48 , pp. 166-178
    • Watson, P.1
  • 8
    • 27144489164 scopus 로고    scopus 로고
    • A tutorial on support vector machines for pattern recognition
    • Burges, C. J. C. A tutorial on support vector machines for pattern recognition Data Min. Knowl. Discovery 1998, 2, 121-167
    • (1998) Data Min. Knowl. Discovery , vol.2 , pp. 121-167
    • Burges, C.J.C.1
  • 9
    • 0034740222 scopus 로고    scopus 로고
    • Drug design by machine learning: Support vector machines for pharmaceutical data analysis
    • Burbidge, R.; Trotter, M.; Buxton, B.; Holden, S. Drug design by machine learning: Support vector machines for pharmaceutical data analysis Comput. Chem. 2001, 26, 5-14
    • (2001) Comput. Chem. , vol.26 , pp. 5-14
    • Burbidge, R.1    Trotter, M.2    Buxton, B.3    Holden, S.4
  • 11
    • 20444410410 scopus 로고    scopus 로고
    • Virtual screening of molecular databases using a support vector machine
    • Jorissen, R. N.; Gilson, M. K. Virtual screening of molecular databases using a support vector machine J. Chem. Inf. Model. 2005, 45, 549-561
    • (2005) J. Chem. Inf. Model. , vol.45 , pp. 549-561
    • Jorissen, R.N.1    Gilson, M.K.2
  • 13
    • 33846108633 scopus 로고    scopus 로고
    • BindingDB: A Web-accessible database of experimentally determined protein-ligand binding affinities
    • Liu, T.; Lin, Y.; Wen, X.; Jorisson, R. N.; Gilson, M. K. BindingDB: A Web-accessible database of experimentally determined protein-ligand binding affinities Nucleic Acids Res. 2007, 35, D198-D201
    • (2007) Nucleic Acids Res. , vol.35
    • Liu, T.1    Lin, Y.2    Wen, X.3    Jorisson, R.N.4    Gilson, M.K.5
  • 14
    • 43049157546 scopus 로고    scopus 로고
    • A support vector machines approach for virtual screening of active compounds of single and multiple mechanisms from large libraries at an improved hit-rate and enrichment factor
    • Han, L. Y.; Ma, X. H.; Lin, H. H.; Jia, J.; Zhu, F.; Xue, Y.; Li, Z. R.; Cao, Z. W.; Ji, Z. L.; Chen, Y. Z. A support vector machines approach for virtual screening of active compounds of single and multiple mechanisms from large libraries at an improved hit-rate and enrichment factor J. Mol. Graph. Model. 2008, 26, 1276-1286
    • (2008) J. Mol. Graph. Model. , vol.26 , pp. 1276-1286
    • Han, L.Y.1    Ma, X.H.2    Lin, H.H.3    Jia, J.4    Zhu, F.5    Xue, Y.6    Li, Z.R.7    Cao, Z.W.8    Ji, Z.L.9    Chen, Y.Z.10
  • 15
    • 33745420796 scopus 로고    scopus 로고
    • Assessing different classification methods for virtual screening
    • Plewczynski, D.; Spieser, S. A. H.; Koch, U. Assessing different classification methods for virtual screening J. Chem. Inf. Model. 2006, 46, 1098-1106
    • (2006) J. Chem. Inf. Model. , vol.46 , pp. 1098-1106
    • Plewczynski, D.1    Spieser, S.A.H.2    Koch, U.3
  • 16
    • 0032015361 scopus 로고    scopus 로고
    • Identification of biological activity profiles using substructural analysis and genetic algorithms
    • Gillet, V. J.; Willett, P.; Bradshaw, J. Identification of biological activity profiles using substructural analysis and genetic algorithms J. Chem. Inf. Comput. Sci. 1998, 38, 165-179
    • (1998) J. Chem. Inf. Comput. Sci. , vol.38 , pp. 165-179
    • Gillet, V.J.1    Willett, P.2    Bradshaw, J.3
  • 17
    • 84877347625 scopus 로고    scopus 로고
    • The influence of the inactives subset generation on the performance of machine learning methods
    • 10.1186/1758-2946-5-17
    • Smusz, S.; Kurczab, R.; Bojarski, A. J. The influence of the inactives subset generation on the performance of machine learning methods J. Cheminf. 2013, 5, 17 10.1186/1758-2946-5-17
    • (2013) J. Cheminf. , vol.5 , pp. 17
    • Smusz, S.1    Kurczab, R.2    Bojarski, A.J.3
  • 19
    • 33645664689 scopus 로고    scopus 로고
    • Accelrys, Inc. San Diego, CA. (accessed June 28, 2013)
    • Molecular Drug Data Report (MDDR); Accelrys, Inc., San Diego, CA. http://www.accelrys.com (accessed June 28, 2013).
    • Molecular Drug Data Report (MDDR)
  • 20
    • 33750991346 scopus 로고    scopus 로고
    • Benchmarking sets for molecular docking
    • Huang, N.; Shoichet, B. K.; Irwin, J. J. Benchmarking sets for molecular docking J. Med. Chem. 2006, 49, 6789-6801
    • (2006) J. Med. Chem. , vol.49 , pp. 6789-6801
    • Huang, N.1    Shoichet, B.K.2    Irwin, J.J.3
  • 23
    • 77952772341 scopus 로고    scopus 로고
    • Extended-connectivity fingerprints
    • Rogers, D.; Hahn, M. Extended-connectivity fingerprints J. Chem. Inf. Model. 2010, 50, 742-754
    • (2010) J. Chem. Inf. Model. , vol.50 , pp. 742-754
    • Rogers, D.1    Hahn, M.2
  • 24
  • 25
    • 84855757480 scopus 로고    scopus 로고
    • Chemical Computing Group, Inc. Montreal, Quebec, Canada
    • Molecular Operating Environment (MOE); Chemical Computing Group, Inc., Montreal, Quebec, Canada.
    • Molecular Operating Environment (MOE)
  • 28
    • 0002714543 scopus 로고    scopus 로고
    • Making Large-Scale SVM Learning Practical
    • Schölkopf, B. Burges, C. J. C. Smola, A. J. MIT-Press: Cambridge, MA
    • Joachims, T. Making Large-Scale SVM Learning Practical. In Advances in Kernel Methods-Support Vector Learning; Schölkopf, B.; Burges, C. J. C.; Smola, A. J., Eds.; MIT-Press: Cambridge, MA, 1999; pp 169-184.
    • (1999) Advances in Kernel Methods - Support Vector Learning , pp. 169-184
    • Joachims, T.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.