메뉴 건너뛰기




Volumn 14, Issue PART B, 2014, Pages 289-304

Evolving intelligent system for the modelling of nonlinear systems with dead-zone input

Author keywords

Evolving systems; Fuzzy systems; Neural networks; Nonlinear systems with dead zone input; Uniform stability

Indexed keywords

DEAD-ZONE INPUTS; EVOLVING INTELLIGENT SYSTEMS; EVOLVING SYSTEMS; MODELLING ERROR; UNIFORM STABILITY;

EID: 84888303803     PISSN: 15684946     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.asoc.2013.03.018     Document Type: Article
Times cited : (34)

References (59)
  • 1
    • 33846821480 scopus 로고    scopus 로고
    • Adaptive tracking of nonlinear systems with non-symmetric dead-zone input
    • DOI 10.1016/j.automatica.2006.09.022, PII S0005109806004341
    • S. Abrir, W.F. Xie, and C.Y. Su Adaptive tracking of nonlinear systems with non-symmetric dea (Pubitemid 46209058)
    • (2007) Automatica , vol.43 , Issue.3 , pp. 522-530
    • Ibrir, S.1    Xie, W.F.2    Su, C.-Y.3
  • 2
    • 80052682188 scopus 로고    scopus 로고
    • Takaji-Sugeno fuzzy Hopdield neural networks for H nonlinear system identification
    • C.K. Ahn Takaji-Sugeno fuzzy Hopdield neural networks for H nonlinear system identification Neural Processing Letters 34 1 2011 59 70
    • (2011) Neural Processing Letters , vol.34 , Issue.1 , pp. 59-70
    • Ahn, C.K.1
  • 3
    • 84865616192 scopus 로고    scopus 로고
    • Exponential Hw stable learning method for Takaji-Sugeno fuzzy delayed networks
    • C.K. Ahn Exponential Hw stable learning method for Takaji-Sugeno fuzzy delayed networks Computers & Mathematics with Applications 63 5 2011 887 895
    • (2011) Computers & Mathematics with Applications , vol.63 , Issue.5 , pp. 887-895
    • Ahn, C.K.1
  • 4
    • 53149134642 scopus 로고    scopus 로고
    • Evolving fuzzy classifiers using different model architectures
    • P. Angelov, E. Lughofer, and X. Zou Evolving fuzzy classifiers using different model architectures Fuzzy Sets and Systems 159 23 2008 3160 3182
    • (2008) Fuzzy Sets and Systems , vol.159 , Issue.23 , pp. 3160-3182
    • Angelov, P.1    Lughofer, E.2    Zou, X.3
  • 7
    • 80053576557 scopus 로고    scopus 로고
    • A hybrid ensemble approach for the Steiner tree problem in large graphs: A geographical application
    • A. Bouchachia, and M. Prossegger A hybrid ensemble approach for the Steiner tree problem in large graphs: a geographical application Applied Soft Computing 11 8 2011 5745 5754
    • (2011) Applied Soft Computing , vol.11 , Issue.8 , pp. 5745-5754
    • Bouchachia, A.1    Prossegger, M.2
  • 8
    • 79956011493 scopus 로고    scopus 로고
    • Incremental learning with multi-level adaptation
    • A. Bouchachia Incremental learning with multi-level adaptation Neurocomputing 74 11 2011 1785 1799
    • (2011) Neurocomputing , vol.74 , Issue.11 , pp. 1785-1799
    • Bouchachia, A.1
  • 9
    • 79957515933 scopus 로고    scopus 로고
    • Distributed adaptive tracking control for synchronization of unknown networked Lagrangian systems
    • G. Chen, and F.L. Lewis Distributed adaptive tracking control for synchronization of unknown networked Lagrangian systems IEEE Transactions on Systems, Man and Cybernetics-Part B: Cybernetics 41 3 2011 805 816
    • (2011) IEEE Transactions on Systems, Man and Cybernetics-Part B: Cybernetics , vol.41 , Issue.3 , pp. 805-816
    • Chen, G.1    Lewis, F.L.2
  • 10
    • 79952714043 scopus 로고    scopus 로고
    • Recursive clustering based on a Gustafson Kessel algorithm
    • D. Dovzan, and I. Skrjanc Recursive clustering based on a Gustafson Kessel algorithm Evolving Systems 2 2011 15 24
    • (2011) Evolving Systems , vol.2 , pp. 15-24
    • Dovzan, D.1    Skrjanc, I.2
  • 11
    • 79952448247 scopus 로고    scopus 로고
    • Recursive fuzzy c-means clustering for recursive fuzzy identification of time-varying processes
    • D. Dovzan, and I. Skrjanc Recursive fuzzy c-means clustering for recursive fuzzy identification of time-varying processes ISA Transactions 50 2 2011 159 169
    • (2011) ISA Transactions , vol.50 , Issue.2 , pp. 159-169
    • Dovzan, D.1    Skrjanc, I.2
  • 14
    • 79952317715 scopus 로고    scopus 로고
    • A semi-supervised dynamic version of Fuzzy K-Nearest Neighbours to monitor evolving systems
    • L. Hartert, M.S. Mouchaweh, and P. Billaudel A semi-supervised dynamic version of Fuzzy K-Nearest Neighbours to monitor evolving systems Evolving Systems 1 2010 3 15
    • (2010) Evolving Systems , vol.1 , pp. 3-15
    • Hartert, L.1    Mouchaweh, M.S.2    Billaudel, P.3
  • 18
    • 80051493000 scopus 로고    scopus 로고
    • Speedup of implementing fuzzy neural networks with high-dimensional inputs through parallel processing on graphic processing units
    • C.F. Juang, T.C. Chen, and W.Y. Cheng Speedup of implementing fuzzy neural networks with high-dimensional inputs through parallel processing on graphic processing units IEEE Transactions on Fuzzy Systems 19 4 2011 717 728
    • (2011) IEEE Transactions on Fuzzy Systems , vol.19 , Issue.4 , pp. 717-728
    • Juang, C.F.1    Chen, T.C.2    Cheng, W.Y.3
  • 20
    • 84860424873 scopus 로고    scopus 로고
    • Evolving fuzzy granular modeling from nonstationary fuzzy data streams
    • D. Leite, R. Ballini, P. Costa, and F. Gomide Evolving fuzzy granular modeling from nonstationary fuzzy data streams Evolving Systems 3 2 2012 65 79
    • (2012) Evolving Systems , vol.3 , Issue.2 , pp. 65-79
    • Leite, D.1    Ballini, R.2    Costa, P.3    Gomide, F.4
  • 22
    • 79551685808 scopus 로고    scopus 로고
    • Reinforcement learning for partially observable dynamic processes: Adaptive dynamic programming using measured output data
    • F.L. Lewis, and K.G. Vamvoudakis Reinforcement learning for partially observable dynamic processes: adaptive dynamic programming using measured output data IEEE Transactions on Systems, Man and Cybernetics-Part B: Cybernetics 41 1 2011 14 25
    • (2011) IEEE Transactions on Systems, Man and Cybernetics-Part B: Cybernetics , vol.41 , Issue.1 , pp. 14-25
    • Lewis, F.L.1    Vamvoudakis, K.G.2
  • 23
    • 77957896876 scopus 로고    scopus 로고
    • Observer-based adaptive fuzzy-neural control for a class of uncertain nonlinear systems with unknown dead-zone input
    • Y.J. Liu, and N. Zhou Observer-based adaptive fuzzy-neural control for a class of uncertain nonlinear systems with unknown dead-zone input ISA Transactions 49 2010 462 469
    • (2010) ISA Transactions , vol.49 , pp. 462-469
    • Liu, Y.J.1    Zhou, N.2
  • 24
    • 78751630981 scopus 로고    scopus 로고
    • Handling drifts and shifts in online data streams with evolving fuzzy systems
    • E. Lughofer, and P. Angelov Handling drifts and shifts in online data streams with evolving fuzzy systems Applied Soft Computing 11 2 2011 2057 2068
    • (2011) Applied Soft Computing , vol.11 , Issue.2 , pp. 2057-2068
    • Lughofer, E.1    Angelov, P.2
  • 25
    • 84869138360 scopus 로고    scopus 로고
    • Sigle pass active learning with conflict and ignorance
    • E. Lughofer Sigle pass active learning with conflict and ignorance Evolving Systems 3 2012 251 271
    • (2012) Evolving Systems , vol.3 , pp. 251-271
    • Lughofer, E.1
  • 26
    • 84865752987 scopus 로고    scopus 로고
    • A dynamic split-and-merge approach for evolving cluster models
    • E. Lughofer A dynamic split-and-merge approach for evolving cluster models Evolving Systems 3 2012 135 151
    • (2012) Evolving Systems , vol.3 , pp. 135-151
    • Lughofer, E.1
  • 27
    • 84857869648 scopus 로고    scopus 로고
    • Evolving fuzzy systems for pricing fixed income options
    • L. Maciel, A. Lemos, F. Gomide, and R. Ballini Evolving fuzzy systems for pricing fixed income options Evolving Systems 3 2012 5 18
    • (2012) Evolving Systems , vol.3 , pp. 5-18
    • Maciel, L.1    Lemos, A.2    Gomide, F.3    Ballini, R.4
  • 28
    • 0025399567 scopus 로고
    • Identification and control of dynamical systems using neural networks
    • DOI 10.1109/72.80202
    • K.S. Narendra, and K. Parthasarathy Identification and control of dynamic systems using neural networks IEEE Transactions on Neural Networks 1 1 1990 4 27 (Pubitemid 20689507)
    • (1990) IEEE Transactions on Neural Networks , vol.1 , Issue.1 , pp. 4-27
    • Narendra Kumpati, S.1    Parthasarathy Kannan2
  • 29
    • 84861189820 scopus 로고    scopus 로고
    • An optimization of allocation of information granularity in the interpretation of data structures: Toward granular fuzzy clustering
    • W. Pedrycz, and A. Bargiela An optimization of allocation of information granularity in the interpretation of data structures: toward granular fuzzy clustering IEEE Transactions on Systems, Man and Cybernetics-Part B: Cybernetics 42 3 2012 582 590
    • (2012) IEEE Transactions on Systems, Man and Cybernetics-Part B: Cybernetics , vol.42 , Issue.3 , pp. 582-590
    • Pedrycz, W.1    Bargiela, A.2
  • 31
    • 84872783620 scopus 로고    scopus 로고
    • Tracking control based on recurrent neural networks for nonlinear systems with multiple inputs and unknown deadzone
    • J.H. Pérez-Cruz, J.J. Rubio, E. Ruiz-Velázquez, and G. Solís-Perales Tracking control based on recurrent neural networks for nonlinear systems with multiple inputs and unknown deadzone Abstract and Applied Analysis 2012 2012 1 18
    • (2012) Abstract and Applied Analysis , vol.2012 , pp. 1-18
    • Pérez-Cruz, J.H.1    Rubio, J.J.2    Ruiz-Velázquez, E.3    Solís-Perales, G.4
  • 32
    • 80051548719 scopus 로고    scopus 로고
    • Identification of extended Hammerstein systems using dynamic self-optimizing neural networks
    • X. Ren, and X. Lv Identification of extended Hammerstein systems using dynamic self-optimizing neural networks IEEE Transactions on Neural Networks 22 8 2011 1169 1179
    • (2011) IEEE Transactions on Neural Networks , vol.22 , Issue.8 , pp. 1169-1179
    • Ren, X.1    Lv, X.2
  • 33
    • 33645070541 scopus 로고    scopus 로고
    • Sequential Adaptive Fuzzy Inference System (SAFIS) for nonlinear system identification and prediction
    • H.J. Rong, N. Sundararajan, G.B. Huang, and P. Saratchandran Sequential Adaptive Fuzzy Inference System (SAFIS) for nonlinear system identification and prediction Fuzzy Sets and Systems 157 9 2006 1260 1275
    • (2006) Fuzzy Sets and Systems , vol.157 , Issue.9 , pp. 1260-1275
    • Rong, H.J.1    Sundararajan, N.2    Huang, G.B.3    Saratchandran, P.4
  • 34
    • 79955737401 scopus 로고    scopus 로고
    • Extended sequential adaptive fuzzy inference system for classification problems
    • H.J. Rong, N. Sundararajan, G.B. Huang, and G.S. Zhao Extended sequential adaptive fuzzy inference system for classification problems Evolving Systems 2 2 2011 71 82
    • (2011) Evolving Systems , vol.2 , Issue.2 , pp. 71-82
    • Rong, H.J.1    Sundararajan, N.2    Huang, G.B.3    Zhao, G.S.4
  • 35
    • 33947583893 scopus 로고    scopus 로고
    • Stability analysis of nonlinear system identification via delayed neural networks
    • DOI 10.1109/TCSII.2006.886464
    • J.J. Rubio, and W. Yu Stability analysis of nonlinear systems identification via delayed neural networks IEEE Transactions on Circuits and Systems, Part II 54 2 2007 161 165 (Pubitemid 46477682)
    • (2007) IEEE Transactions on Circuits and Systems II: Express Briefs , vol.54 , Issue.2 , pp. 161-165
    • De Jesus Rubio, J.1    Yu, W.2
  • 36
    • 34249668888 scopus 로고    scopus 로고
    • Nonlinear system identification with recurrent neural networks and dead-zone Kalman filter algorithm
    • DOI 10.1016/j.neucom.2006.09.004, PII S0925231206003134, Selected papers from the 3rd International Conference on Development and Learning (ICDL 2004)
    • J.J. Rubio, and W. Yu Nonlinear system identification with recurrent neural networks and dead-zone Kalman filter algorithm Neurocomputing 70 13 2007 2460 2466 (Pubitemid 46825358)
    • (2007) Neurocomputing , vol.70 , Issue.13-15 , pp. 2460-2466
    • De Jesus Rubio, J.1    Yu, W.2
  • 37
    • 79951897393 scopus 로고    scopus 로고
    • Stability analysis for an online evolving neuro-fuzzy recurrent network
    • P. Angelov, D. Filev, N. Kasabov, John Wiley & Sons New York
    • J.J. Rubio Stability analysis for an online evolving neuro-fuzzy recurrent network P. Angelov, D. Filev, N. Kasabov, Evolving Intelligent Systems: Methodology and Applications 2010 John Wiley & Sons New York 173 200
    • (2010) Evolving Intelligent Systems: Methodology and Applications , pp. 173-200
    • Rubio, J.J.1
  • 38
    • 79952360960 scopus 로고    scopus 로고
    • Backpropagation to train an evolving radial basis function neural network
    • J.J. Rubio, D.M. Vazquez, and J. Pacheco Backpropagation to train an evolving radial basis function neural network Evolving Systems 1 3 2010 173 180
    • (2010) Evolving Systems , vol.1 , Issue.3 , pp. 173-180
    • Rubio, J.J.1    Vazquez, D.M.2    Pacheco, J.3
  • 39
    • 79952195647 scopus 로고    scopus 로고
    • An uniformly stable backpropagation algorithm to train a feedforward neural network
    • J.J. Rubio, P. Angelov, and J. Pacheco An uniformly stable backpropagation algorithm to train a feedforward neural network IEEE Transactions on Neural Networks 22 3 2011 356 366
    • (2011) IEEE Transactions on Neural Networks , vol.22 , Issue.3 , pp. 356-366
    • Rubio, J.J.1    Angelov, P.2    Pacheco, J.3
  • 43
    • 84881323547 scopus 로고    scopus 로고
    • Control to stabilize and mitigate disturbances in a rotatory inverted pendulum
    • J.J. Rubio, M. Figueroa, J.H. Pérez Cruz, and J. Rumbo Control to stabilize and mitigate disturbances in a rotatory inverted pendulum Mexican Journal of Physical E 58 2 2012 107 112
    • (2012) Mexican Journal of Physical e , vol.58 , Issue.2 , pp. 107-112
    • Rubio, J.J.1    Figueroa, M.2    Pérez Cruz, J.H.3    Rumbo, J.4
  • 44
    • 84878419271 scopus 로고    scopus 로고
    • Modified optimal control with a backpropagation network for robotic arms
    • J.J. Rubio Modified optimal control with a backpropagation network for robotic arms IET Control Theory and Applications (6) (14) 2012 2216 2225
    • (2012) IET Control Theory and Applications (6) (14) , pp. 2216-2225
    • Rubio, J.J.1
  • 45
    • 79952317714 scopus 로고    scopus 로고
    • Recursive Gath-Geva clustering as a basis for evolving neuro-fuzzy modeling
    • H. Soleimani, C. Lucas, and B.N. Araabi Recursive Gath-Geva clustering as a basis for evolving neuro-fuzzy modeling Evolving Systems 1 1 2010 59 71
    • (2010) Evolving Systems , vol.1 , Issue.1 , pp. 59-71
    • Soleimani, H.1    Lucas, C.2    Araabi, B.N.3
  • 49
    • 1642485103 scopus 로고    scopus 로고
    • Robust adaptive control of a class of nonlinear systems with unknown dead zone
    • X.S. Wang, C.Y. Su, and H. Hong Robust adaptive control of a class of nonlinear systems with unknown dead zone Automatica 40 2004 407 413
    • (2004) Automatica , vol.40 , pp. 407-413
    • Wang, X.S.1    Su, C.Y.2    Hong, H.3
  • 50
    • 46249108691 scopus 로고    scopus 로고
    • Neural adaptive control for a class of nonlinear systems with unknown dead zone
    • Z.H. Wang, Y. Zhang, and H. Fang Neural adaptive control for a class of nonlinear systems with unknown dead zone Neural Computing & Applications 17 2008 339 345
    • (2008) Neural Computing & Applications , vol.17 , pp. 339-345
    • Wang, Z.H.1    Zhang, Y.2    Fang, H.3
  • 51
    • 79953806698 scopus 로고    scopus 로고
    • Convergence study in a extended Kalman filter-based training of recurrent neural networks
    • X. Wang, and Y. Huang Convergence study in a extended Kalman filter-based training of recurrent neural networks IEEE Transactions on Neural Networks 22 4 2011 588 600
    • (2011) IEEE Transactions on Neural Networks , vol.22 , Issue.4 , pp. 588-600
    • Wang, X.1    Huang, Y.2
  • 52
    • 84859001250 scopus 로고    scopus 로고
    • Reinforcement learning controller design for affine nonlinear discrete-time systems using online approximators
    • Q. Yang, and S. Jagannathan Reinforcement learning controller design for affine nonlinear discrete-time systems using online approximators IEEE Transactions on Systems, Man and Cybernetics-Part B: Cybernetics 42 2 2012 377 390
    • (2012) IEEE Transactions on Systems, Man and Cybernetics-Part B: Cybernetics , vol.42 , Issue.2 , pp. 377-390
    • Yang, Q.1    Jagannathan, S.2
  • 53
    • 67649322111 scopus 로고    scopus 로고
    • Recurrent neural network training with stable bounding ellipsoid algorithm
    • W. Yu, and J.J. Rubio Recurrent neural network training with stable bounding ellipsoid algorithm IEEE Transactions on Neural Networks 20 6 2009 983 991
    • (2009) IEEE Transactions on Neural Networks , vol.20 , Issue.6 , pp. 983-991
    • Yu, W.1    Rubio, J.J.2
  • 54
    • 45849090294 scopus 로고    scopus 로고
    • Adaptive dynamic surface control of nonlinear systems with unknown dead zone in pure feedback form
    • T. Zhang, and S.S. Ge Adaptive dynamic surface control of nonlinear systems with unknown dead zone in pure feedback form Automatica 44 2008 1895 1903
    • (2008) Automatica , vol.44 , pp. 1895-1903
    • Zhang, T.1    Ge, S.S.2
  • 55
    • 63049119237 scopus 로고    scopus 로고
    • Adaptive neural network tracking control of MIMO nonlinear systems with unknown dead zones and control directions
    • T. Zhang, and S.S. Ge Adaptive neural network tracking control of MIMO nonlinear systems with unknown dead zones and control directions IEEE Transactions on Neural Networks 20 3 2009 483 497
    • (2009) IEEE Transactions on Neural Networks , vol.20 , Issue.3 , pp. 483-497
    • Zhang, T.1    Ge, S.S.2
  • 56
    • 84860249350 scopus 로고    scopus 로고
    • Boundedness and convergence of bath backpropagation algorithm with penalty with feedforward neural networks
    • W. Zhang, W. Wu, and M. Yao Boundedness and convergence of bath backpropagation algorithm with penalty with feedforward neural networks Neurocomputing 89 2012 141 146
    • (2012) Neurocomputing , vol.89 , pp. 141-146
    • Zhang, W.1    Wu, W.2    Yao, M.3
  • 58
    • 33846207789 scopus 로고    scopus 로고
    • Robust adaptive control of nonlinear uncertain plants with unknown dead-zone
    • DOI 10.1049/iet-cta:20050240
    • J. Zhou, and X.Z. Shen Robust adaptive control of nonlinear uncertain plants with unknown dead-zone IET-Control Theory and Applications 1 2007 25 32 (Pubitemid 46104203)
    • (2007) IET Control Theory and Applications , vol.1 , Issue.1 , pp. 25-32
    • Zhou, J.1    Shen, X.Z.2
  • 59
    • 79952005979 scopus 로고    scopus 로고
    • Adaptive fuzzy output feedback control of uncertain nonlinear systems with nonsymmetric dead-zone input
    • N. Zhou, Y.J. Liu, and S.C. Tong Adaptive fuzzy output feedback control of uncertain nonlinear systems with nonsymmetric dead-zone input Nonlinear Dynamics 63 2011 771 778
    • (2011) Nonlinear Dynamics , vol.63 , pp. 771-778
    • Zhou, N.1    Liu, Y.J.2    Tong, S.C.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.