메뉴 건너뛰기




Volumn 1, Issue 3, 2010, Pages 173-180

Backpropagation to train an evolving radial basis function neural network

Author keywords

Backpropagation; Clustering; Evolving systems; Fuzzy neural networks; Stability

Indexed keywords

BACKPROPAGATION TRAINING; CLUSTERING; EVOLVING SYSTEMS; FUZZY-NEURAL; LEARNING RATES; ONLINE-CLUSTERING; RADIAL BASIS FUNCTION NEURAL NETWORKS; STRUCTURE-LEARNING; TIME VARYING;

EID: 79952360960     PISSN: 18686478     EISSN: 18686486     Source Type: Journal    
DOI: 10.1007/s12530-010-9015-9     Document Type: Article
Times cited : (29)

References (23)
  • 1
    • 0742272554 scopus 로고    scopus 로고
    • A approach to online identification of Takagi-Sugeno fuzzy models
    • Angelov PP, Filev DP (2004a) A approach to online identification of Takagi-Sugeno fuzzy models. IEEE Trans Syst Man Cybern 32(1):484-498
    • (2004) IEEE Trans Syst Man Cybern , vol.32 , Issue.1 , pp. 484-498
    • Angelov, P.P.1    Filev, D.P.2
  • 2
    • 1842477778 scopus 로고    scopus 로고
    • Flexible models with evolving structure
    • Angelov PP, Filev DP (2004b) Flexible models with evolving structure. Int J Intell Syst 19(4):327-340
    • (2004) Int J Intell Syst , vol.19 , Issue.4 , pp. 327-340
    • Angelov, P.P.1    Filev, D.P.2
  • 3
    • 23944495345 scopus 로고    scopus 로고
    • Simpl_eTS: a simplified method for learning evolving Takagi-Sugeno fuzzy models
    • Angelov PP, Filev DP (2005) Simpl_eTS: a simplified method for learning evolving Takagi-Sugeno fuzzy models. In: The international conference on fuzzy systems, pp 1068-1072
    • (2005) The international conference on fuzzy systems , pp. 1068-1072
    • Angelov, P.P.1    Filev, D.P.2
  • 5
    • 78549284766 scopus 로고    scopus 로고
    • Autonomous novelty detection and object tracking in video streams using evolving clustering and Takagi-Sugeno type neuro-fuzzy system
    • Angelov P, Ramezany R, Zhou X (2008) Autonomous novelty detection and object tracking in video streams using evolving clustering and Takagi-Sugeno type neuro-fuzzy system. In: IEEE World Congress on computational intelligence, pp 1457-1464
    • (2008) IEEE World Congress on computational intelligence , pp. 1457-1464
    • Angelov, P.1    Ramezany, R.2    Zhou, X.3
  • 7
    • 84974743850 scopus 로고
    • Fuzzy Model Identification based on cluster estimation
    • Chiu SL (1994) Fuzzy Model Identification based on cluster estimation. J Intell Fuzzy Syst 2(3):267-278
    • (1994) J Intell Fuzzy Syst , vol.2 , Issue.3 , pp. 267-278
    • Chiu, S.L.1
  • 8
    • 0001234705 scopus 로고
    • Second order derivatives for network pruning
    • Morgan Kaufmann, Los Altos
    • Hassibi D, Stork DG (1993) Second order derivatives for network pruning. In: Advances in neural information processing, vol 5. Morgan Kaufmann, Los Altos, pp 164-171
    • (1993) Advances in neural information processing , vol.5 , pp. 164-171
    • Hassibi, D.1    Stork, D.G.2
  • 10
  • 12
    • 0031999146 scopus 로고    scopus 로고
    • An on-line self constructing nural fuzzy inference network and its applications
    • Juang CF, Lin CT (1998) An on-line self constructing nural fuzzy inference network and its applications. IEEE Trans Fuzzy Syst 6(1):12-32
    • (1998) IEEE Trans Fuzzy Syst , vol.6 , Issue.1 , pp. 12-32
    • Juang, C.F.1    Lin, C.T.2
  • 13
    • 0032681147 scopus 로고    scopus 로고
    • A recurrent self-organizing fuzzy inference network
    • Juang CF, Lin CT (1999) A recurrent self-organizing fuzzy inference network. IEEE Trans Neural Netw 10(4):828-845
    • (1999) IEEE Trans Neural Netw , vol.10 , Issue.4 , pp. 828-845
    • Juang, C.F.1    Lin, C.T.2
  • 14
    • 0035670764 scopus 로고    scopus 로고
    • Evolving fuzzy nural networks for supervised/unsupervised online knowledge-based learning
    • Kasabov N (2001) Evolving fuzzy nural networks for supervised/unsupervised online knowledge-based learning. IEEE Trans Syst Man Cybern 31(6):902-918
    • (2001) IEEE Trans Syst Man Cybern , vol.31 , Issue.6 , pp. 902-918
    • Kasabov, N.1
  • 15
    • 11244351634 scopus 로고    scopus 로고
    • An approach for online extraction of fuzzy rules using a self-organising fuzzy neural network
    • Leng G, McGinnity TM, Prasad G (2005) An approach for online extraction of fuzzy rules using a self-organising fuzzy neural network. Fuzzy Sets Syst 150:211-243
    • (2005) Fuzzy Sets Syst , vol.150 , pp. 211-243
    • Leng, G.1    McGinnity, T.M.2    Prasad, G.3
  • 17
    • 79951871855 scopus 로고    scopus 로고
    • Detecting and reacting on drifts and shifts in on-line data streams with evolving fuzzy systems
    • Lughofer E, Angelov P (2009) Detecting and reacting on drifts and shifts in on-line data streams with evolving fuzzy systems. In: International Fuzzy Systems Association World Congress, pp 931-937
    • (2009) International Fuzzy Systems Association World Congress , pp. 931-937
    • Lughofer, E.1    Angelov, P.2
  • 18
    • 0034187785 scopus 로고    scopus 로고
    • Neuro-fuzzy rule generation: survey in soft computing framework
    • Mitra S, Hayashi Y (2000) Neuro-fuzzy rule generation: survey in soft computing framework. IEEE Trans Neural Netw 11(3): 748-769
    • (2000) IEEE Trans Neural Netw , vol.11 , Issue.3 , pp. 748-769
    • Mitra, S.1    Hayashi, Y.2
  • 19
    • 0042525842 scopus 로고    scopus 로고
    • Neural network construction and selection in non linear modelling
    • Rivals I, Personnaz L (2003) Neural network construction and selection in non linear modelling. IEEE Trans Neural Netw 14(4):804-820
    • (2003) IEEE Trans Neural Netw , vol.14 , Issue.4 , pp. 804-820
    • Rivals, I.1    Personnaz, L.2
  • 20
    • 33645070541 scopus 로고    scopus 로고
    • Sequential adaptive fuzzy inference system (SAFIS) for nonlinear system identification and prediction
    • Rong HJ, Sundararajan N, Huang GB, Saratchandran P (2006) Sequential adaptive fuzzy inference system (SAFIS) for nonlinear system identification and prediction. Fuzzy Sets Syst 157(9): 1260-1275
    • (2006) Fuzzy Sets Syst , vol.157 , Issue.9 , pp. 1260-1275
    • Rong, H.J.1    Sundararajan, N.2    Huang, G.B.3    Saratchandran, P.4
  • 21
    • 79952317714 scopus 로고    scopus 로고
    • Recursive Gath-Geva clustering as a basis for evolving neuro-fuzzy modeling
    • Soleimani H, Lucas C, Araabi BN (2010) Recursive Gath-Geva clustering as a basis for evolving neuro-fuzzy modeling. Evol Syst 1:59-71
    • (2010) Evol Syst , vol.1 , pp. 59-71
    • Soleimani, H.1    Lucas, C.2    Araabi, B.N.3
  • 22
    • 0035481231 scopus 로고    scopus 로고
    • On-line neuro-fuzzy ART-based structure and parameter learning TSK model
    • Tzafestas SG, Zikidis KC (2001) On-line neuro-fuzzy ART-based structure and parameter learning TSK model. IEEE Trans Syst Man Cybern 31(5):797-803
    • (2001) IEEE Trans Syst Man Cybern , vol.31 , Issue.5 , pp. 797-803
    • Tzafestas, S.G.1    Zikidis, K.C.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.