메뉴 건너뛰기




Volumn 22, Issue 12 PART 1, 2011, Pages 1928-1940

SaFIN: A self-adaptive fuzzy inference network

Author keywords

Categorical learning induced partitioning; fuzzy neural networks; hybrid intelligent systems; self organizing

Indexed keywords

CATEGORICAL LEARNING-INDUCED PARTITIONING; CLUSTERING TECHNIQUES; EXCELLENT PERFORMANCE; FUZZY-NEURAL; HUMAN EXPERT; HYBRID INTELLIGENT SYSTEM; INFERENCE NETWORK; INPUT-OUTPUT; ITS EFFICIENCIES; LEARNING PROCESS; NEURAL FUZZY SYSTEMS; NUMBER OF CLUSTERS; ONE-PASS; PRIOR KNOWLEDGE; RULE BASE; RULE FORMATION; SELF ORGANIZING; SELF-ADAPTIVE; TRAINING DATA;

EID: 83855161643     PISSN: 10459227     EISSN: None     Source Type: Journal    
DOI: 10.1109/TNN.2011.2167720     Document Type: Article
Times cited : (54)

References (44)
  • 2
    • 0035360372 scopus 로고    scopus 로고
    • Designing fuzzy inference systems from data: An interpretability-oriented review
    • Jun.
    • S. Guillaume, "Designing fuzzy inference systems from data: An interpretability-oriented review," IEEE Trans. Fuzzy Syst., vol. 9, no. 3, pp. 426-442, Jun. 2001.
    • (2001) IEEE Trans. Fuzzy Syst. , vol.9 , Issue.3 , pp. 426-442
    • Guillaume, S.1
  • 3
    • 0027601884 scopus 로고
    • ANFIS: Adaptive-network-based fuzzy inference systems
    • May-Jun.
    • J. S. R. Jang, "ANFIS: Adaptive-network-based fuzzy inference systems," IEEE Trans. Syst. Man Cybern., vol. 23, no. 3, pp. 665-685, May-Jun. 1993.
    • (1993) IEEE Trans. Syst. Man Cybern. , vol.23 , Issue.3 , pp. 665-685
    • Jang, J.S.R.1
  • 4
    • 0026923465 scopus 로고
    • Learning and tuning fuzzy logic controllers through reinforcements
    • DOI 10.1109/72.159061
    • H. R. Berenji and P. Khedkar, "Learning and tuning fuzzy logic controllers through reinforcements," IEEE Trans. Neural Netw., vol. 3, no. 5, pp. 724-740, Sep. 1992. (Pubitemid 23555780)
    • (1992) IEEE Transactions on Neural Networks , vol.3 , Issue.5 , pp. 724-740
    • Berenji Hamid, R.1    Khedkar Pratap2
  • 6
    • 0026366218 scopus 로고
    • Neural-network-based fuzzy logic control and decision system
    • Dec.
    • C. T. Lin and C. S. G. Lee, "Neural-network-based fuzzy logic control and decision system," IEEE Trans. Compt., vol. 40, no. 12, pp. 1320-1336, Dec. 1991.
    • (1991) IEEE Trans. Compt. , vol.40 , Issue.12 , pp. 1320-1336
    • Lin, C.T.1    Lee, C.S.G.2
  • 7
    • 0030481344 scopus 로고    scopus 로고
    • POPFNN: A pseudo outer-product based fuzzy neural network
    • DOI 10.1016/S0893-6080(96)00027-5, PII S0893608096000275
    • C. Quek and R. W. Zhou, "POPFNN: A pseudo outer-product based fuzzy neural network," Neural Netw., vol. 9, no. 9, pp. 1569-1581, Dec. 1996. (Pubitemid 27055275)
    • (1996) Neural Networks , vol.9 , Issue.9 , pp. 1569-1581
    • Zhou, R.W.1    Quek, C.2
  • 8
    • 0031268065 scopus 로고    scopus 로고
    • An ART-based fuzzy adaptive learning control network
    • Nov.
    • C. J. Lin and C. T. Lin, "An ART-based fuzzy adaptive learning control network," IEEE Trans. Fuzzy Syst., vol. 5, no. 4, pp. 477-496, Nov. 1997.
    • (1997) IEEE Trans. Fuzzy Syst. , vol.5 , Issue.4 , pp. 477-496
    • Lin, C.J.1    Lin, C.T.2
  • 9
    • 0031999146 scopus 로고    scopus 로고
    • An online self-constructing neural fuzzy inference network and its applications
    • Feb.
    • C. F. Juang and C. T. Lin, "An online self-constructing neural fuzzy inference network and its applications," IEEE Trans. Fuzzy Syst., vol. 6, no. 1, pp. 12-32, Feb. 1998.
    • (1998) IEEE Trans. Fuzzy Syst. , vol.6 , Issue.1 , pp. 12-32
    • Juang, C.F.1    Lin, C.T.2
  • 10
    • 0032845493 scopus 로고    scopus 로고
    • HyFIS: Adaptive neuro-fuzzy inference systems and their application to nonlinear dynamical systems
    • DOI 10.1016/S0893-6080(99)00067-2, PII S0893608099000672
    • J. Kim and N. Kasabov, "HyFIS: Adaptive neuro-fuzzy inference systems and their application to nonlinear dynamical systems," Neural Netw., vol. 12, no. 9, pp. 1301-1319, Nov. 1999. (Pubitemid 29475159)
    • (1999) Neural Networks , vol.12 , Issue.9 , pp. 1301-1319
    • Kim, J.1    Kasabov, N.2
  • 11
    • 0035670764 scopus 로고    scopus 로고
    • Evolving fuzzy neural networks for supervised/unsupervised online knowledge-based learning
    • DOI 10.1109/3477.969494, PII S1083441901086411
    • N. Kasabov, "Evolving fuzzy neural networks for super-vised/ unsupervised online knowledge-based learning," IEEE Trans. Syst. Man Cybern. B, vol. 31, no. 6, pp. 902-918, Dec. 2001. (Pubitemid 34035554)
    • (2001) IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics , vol.31 , Issue.6 , pp. 902-918
    • Kasabov, N.1
  • 12
    • 0036737109 scopus 로고    scopus 로고
    • GenSoFNN: A generic self-organizing fuzzy neural network
    • Sep.
    • W. L. Tung and C. Quek, "GenSoFNN: A generic self-organizing fuzzy neural network," IEEE Trans. Neural Netw., vol. 13, no. 5, pp. 1075-1086, Sep. 2002.
    • (2002) IEEE Trans. Neural Netw. , vol.13 , Issue.5 , pp. 1075-1086
    • Tung, W.L.1    Quek, C.2
  • 13
    • 0036530967 scopus 로고    scopus 로고
    • DENFIS: Dynamic evolving neural-fuzzy inference system and its application for time-series prediction
    • DOI 10.1109/91.995117, PII S106367060202965X
    • N. Kasabov and Q. Song, "DENFIS: Dynamic evolving neural-fuzzy inference system and its application for time-series prediction," IEEE Trans. Fuzzy Syst., vol. 10, no. 2, pp. 144-154, Apr. 2002. (Pubitemid 34554860)
    • (2002) IEEE Transactions on Fuzzy Systems , vol.10 , Issue.2 , pp. 144-154
    • Kasabov, N.K.1    Song, Q.2
  • 14
    • 0742272554 scopus 로고    scopus 로고
    • An approach to online identification of Takagi-Sugeno fuzzy models
    • Feb.
    • P. P. Angelov and D. P. Filev, "An approach to online identification of Takagi-Sugeno fuzzy models," IEEE Trans. Syst. Man Cybern., vol. 34, no. 1, pp. 484-498, Feb. 2004.
    • (2004) IEEE Trans. Syst. Man Cybern. , vol.34 , Issue.1 , pp. 484-498
    • Angelov, P.P.1    Filev, D.P.2
  • 15
    • 33645070541 scopus 로고    scopus 로고
    • Sequential adaptive fuzzy inference system (SAFIS) for nonlinear system identification and prediction
    • May
    • H. J. Rong, N. Sundararajan, G. B. Huang, and P. Saratchandra, "Sequential adaptive fuzzy inference system (SAFIS) for nonlinear system identification and prediction," Fuzzy Sets Syst., vol. 157, no. 9, pp. 1260-1275, May 2006.
    • (2006) Fuzzy Sets Syst. , vol.157 , Issue.9 , pp. 1260-1275
    • Rong, H.J.1    Sundararajan, N.2    Huang, G.B.3    Saratchandra, P.4
  • 16
    • 73949115619 scopus 로고    scopus 로고
    • EFSM-A novel online neural-fuzzy semantic memory model
    • Jan.
    • W. L. Tung and C. Quek, "eFSM-A novel online neural-fuzzy semantic memory model," IEEE Trans. Neural Netw., vol. 21, no. 1, pp. 136-157, Jan. 2010.
    • (2010) IEEE Trans. Neural Netw. , vol.21 , Issue.1 , pp. 136-157
    • Tung, W.L.1    Quek, C.2
  • 17
    • 77953109417 scopus 로고    scopus 로고
    • A BCM theory of meta-plasticity for online self-reorganizing fuzzy-associative leaning
    • Jun.
    • J. Tan and C. Quek, "A BCM theory of meta-plasticity for online self-reorganizing fuzzy-associative leaning," IEEE Trans. Neural Netw., vol. 21, no. 6, pp. 985-1003, Jun. 2010.
    • (2010) IEEE Trans. Neural Netw. , vol.21 , Issue.6 , pp. 985-1003
    • Tan, J.1    Quek, C.2
  • 18
    • 0026973258 scopus 로고
    • Fuzzy Kohonen clustering networks
    • San Diego, CA, Mar.
    • J. C. Bezdek, E. C.-K. Tsao, and N. R. Pal, "Fuzzy Kohonen clustering networks," in Proc. IEEE Conf. Fuzzy Syst., San Diego, CA, Mar. 1992, pp. 1035-1043.
    • (1992) Proc.IEEE Conf. Fuzzy Syst , pp. 1035-1043
    • Bezdek, J.C.1    Tsao, E.C.-K.2    Pal, N.R.3
  • 20
    • 0020068152 scopus 로고
    • Self-organized formation of topologically correct feature maps
    • DOI 10.1007/BF00337288
    • T. Kohonen, "Self-organized formation of topologically correct feature maps," Biol. Cybern., vol. 43, no. 1, pp. 59-69, 1982. (Pubitemid 12139984)
    • (1982) Biological Cybernetics , vol.43 , Issue.1 , pp. 59-69
    • Kohonen, T.1
  • 21
    • 0026943536 scopus 로고
    • Generating fuzzy rules by learning from examples
    • Nov.-Dec.
    • L. X. Wang and J. M. Mendel, "Generating fuzzy rules by learning from examples," IEEE Trans. Syst. Man Cybern., vol. 22, no. 1, pp. 1414-1427, Nov.-Dec. 1992.
    • (1992) IEEE Trans. Syst. Man Cybern. , vol.22 , Issue.1 , pp. 1414-1427
    • Wang, L.X.1    Mendel, J.M.2
  • 22
    • 70649103872 scopus 로고    scopus 로고
    • Clustering: A neural network approach
    • Jan.
    • K.-L. Du, "Clustering: A neural network approach," Neural Netw., vol. 23, no. 1, pp. 89-107, Jan. 2010.
    • (2010) Neural Netw. , vol.23 , Issue.1 , pp. 89-107
    • Du, K.-L.1
  • 24
    • 0000501237 scopus 로고
    • The cradle of categorization: Is the basic level basic?
    • J. M. Mandler and P. J. Bauer, "The cradle of categorization: Is the basic level basic?," Cognitive Develop., vol. 3, no. 3, pp. 247-264, 1988.
    • (1988) Cognitive Develop. , vol.3 , Issue.3 , pp. 247-264
    • Mandler, J.M.1    Bauer, P.J.2
  • 25
    • 0000613196 scopus 로고
    • Separating the sheep from the goats: Differentiating global categories
    • Apr.
    • J. M. Mandler, P. J. Bauer, and L. McDonough, "Separating the sheep from the goats: Differentiating global categories," Cognitive Psychology, vol. 23, no. 2, pp. 263-298, Apr. 1991.
    • (1991) Cognitive Psychology , vol.23 , Issue.2 , pp. 263-298
    • Mandler, J.M.1    Bauer, P.J.2    McDonough, L.3
  • 26
    • 0011765352 scopus 로고
    • Concept formation in infancy
    • Jul.-Sep.
    • J. M. Mandler and L. McDonough, "Concept formation in infancy," Cognitive Develop., vol. 8, no. 3, pp. 291-318, Jul.-Sep. 1993.
    • (1993) Cognitive Develop. , vol.8 , Issue.3 , pp. 291-318
    • Mandler, J.M.1    McDonough, L.2
  • 27
    • 0032199351 scopus 로고    scopus 로고
    • On developing a knowledge base in infancy
    • J. M. Mandler and L. McDonough, "On developing a knowledge base in infancy," Develop. Psychology, vol. 34, no. 6, pp. 1274-1288, 1998.
    • (1998) Develop. Psychology , vol.34 , Issue.6 , pp. 1274-1288
    • Mandler, J.M.1    McDonough, L.2
  • 28
    • 0032186405 scopus 로고    scopus 로고
    • Studies in Inductive Inference in Infancy
    • J. M. Mandler and L. McDonough, "Studies in inductive inference in infancy," Cognitive Psychology, vol. 37, no. 1, pp. 60-96, Oct. 1998. (Pubitemid 128428614)
    • (1998) Cognitive Psychology , vol.37 , Issue.1 , pp. 60-96
    • Mandler, J.M.1    McDonough, L.2
  • 29
    • 42649119134 scopus 로고    scopus 로고
    • On the birth and growth of concepts
    • Apr.
    • J. M. Mandler, "On the birth and growth of concepts," Philosophical Psychology, vol. 21, no. 2, pp. 207-230, Apr. 2008.
    • (2008) Philosophical Psychology , vol.21 , Issue.2 , pp. 207-230
    • Mandler, J.M.1
  • 30
    • 0017703889 scopus 로고
    • Application of fuzzy logic to approximate reasoning using linguistic systems
    • Dec.
    • E. H. Mamdani, "Application of fuzzy logic to approximate reasoning using linguistic systems," IEEE Trans. Comp., vol. 26, no. 12, pp. 1182-1191, Dec. 1977.
    • (1977) IEEE Trans. Comp. , vol.26 , Issue.12 , pp. 1182-1191
    • Mamdani, E.H.1
  • 33
    • 83855164487 scopus 로고    scopus 로고
    • ET2FIS: An evolving type-2 neural fuzzy inference system
    • submitted
    • S. W. Tung, C. Quek, and C. Guan, "eT2FIS: An evolving type-2 neural fuzzy inference system," Inform. Sci., submitted.
    • Inform. Sci
    • Tung, S.W.1    Quek, C.2    Guan, C.3
  • 34
    • 0027648849 scopus 로고
    • A review and comparison of six reasoning methods
    • Aug.
    • H. Nakanishi, I. Turksen, and M. Sugeno, "A review and comparison of six reasoning methods," Fuzzy Sets Syst., vol. 57, no. 3, pp. 257-294, Aug. 1993.
    • (1993) Fuzzy Sets Syst. , vol.57 , Issue.3 , pp. 257-294
    • Nakanishi, H.1    Turksen, I.2    Sugeno, M.3
  • 35
    • 0027544110 scopus 로고
    • A fuzzy-logic-based approach to qualitative modeling
    • Feb.
    • M. Sugeno and T. Yasukawa, "A fuzzy-logic-based approach to qualitative modeling," IEEE Trans. Fuzzy Syst., vol. 1, no. 1, pp. 7-31, Feb. 1993.
    • (1993) IEEE Trans. Fuzzy Syst. , vol.1 , Issue.1 , pp. 7-31
    • Sugeno, M.1    Yasukawa, T.2
  • 36
    • 0010442977 scopus 로고    scopus 로고
    • Feasibility of predicting congestion states with neural network models
    • M.S. thesis Nanyang Technological Univ., Singapore
    • G. K. Tan, "Feasibility of predicting congestion states with neural network models," M.S. thesis, School Civil Structural Engineering, Nanyang Technological Univ., Singapore, 1997.
    • (1997) School Civil Structural Engineering
    • Tan, G.K.1
  • 38
    • 34249723182 scopus 로고    scopus 로고
    • A novel generic hebbian ordering-based fuzzy rule base reduction approach to Mamdani neuro-fuzzy system
    • Apr.
    • F. Liu, C. Quek, and G. S. Ng, "A novel generic hebbian ordering-based fuzzy rule base reduction approach to Mamdani neuro-fuzzy system," Neural Comput., vol. 19, no. 6, pp. 1656-1680, Apr. 2007.
    • (2007) Neural Comput. , vol.19 , Issue.6 , pp. 1656-1680
    • Liu, F.1    Quek, C.2    Ng, G.S.3
  • 39
    • 14544280631 scopus 로고    scopus 로고
    • RSPOP: Rough Set-Based Pseudo Outer-Product Fuzzy Rule Identification Algorithm
    • DOI 10.1162/0899766052530857
    • K. K. Ang and C. Quek, "RSPOP: Rough set-based pseudo outer-product fuzzy rule identification algorithm," Neural Comput., vol. 17, no. 1, pp. 205-243, Jan. 2005. (Pubitemid 40305888)
    • (2005) Neural Computation , vol.17 , Issue.1 , pp. 205-243
    • Ang, K.K.1    Quek, C.2
  • 40
    • 0021892282 scopus 로고
    • Fuzzy identification of systems and its applications to modeling and control
    • Feb.
    • T. Takagi and M. Sugeno, "Fuzzy identification of systems and its applications to modeling and control," IEEE Trans. Syst. Man Cybern., vol. 15, no. 1, pp. 116-132, Feb. 1985.
    • (1985) IEEE Trans. Syst. Man Cybern. , vol.15 , Issue.1 , pp. 116-132
    • Takagi, T.1    Sugeno, M.2
  • 41
    • 31744432525 scopus 로고    scopus 로고
    • FITSK: Online local learning with generic fuzzy input Takagi-Sugeno-Kang fuzzy framework for nonlinear system estimation
    • DOI 10.1109/TSMCB.2005.856715
    • K. H. Quah and C. Quek, "FITSK: Online local learning with generic fuzzy input Takagi-Sugeno-Kang fuzzy framework for nonlinear system estimation," IEEE Trans. Syst. Man Cybern. B, vol. 36, no. 1, pp. 166-178, Feb. 2006. (Pubitemid 43174150)
    • (2006) IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics , vol.36 , Issue.1 , pp. 166-178
    • Quah, K.H.1    Quek, C.2
  • 42
    • 84926662675 scopus 로고
    • Nearest pattern classification
    • Jan.
    • T. M. Cover and P. E. Hart, "Nearest pattern classification," IEEE Trans. Inform. Theory, vol. 13, no. 1, pp. 21-27, Jan. 1967.
    • (1967) IEEE Trans. Inform. Theory , vol.13 , Issue.1 , pp. 21-27
    • Cover, T.M.1    Hart, P.E.2
  • 43
    • 0026927202 scopus 로고
    • Fuzzy min-max neural networks-Part I: Classification
    • Sep.
    • P. K. Simpson, "Fuzzy min-max neural networks-Part I: Classification," IEEE Trans. Neural Netw., vol. 3, no. 5, pp. 776-786, Sep. 1992.
    • (1992) IEEE Trans. Neural Netw. , vol.3 , Issue.5 , pp. 776-786
    • Simpson, P.K.1
  • 44
    • 0034187078 scopus 로고    scopus 로고
    • General fuzzy min-max neural network for clustering and classification
    • May
    • B. Gabrys and A. Bargiela, "General fuzzy min-max neural network for clustering and classification," IEEE Trans. Neural Netw., vol. 11, no. 3, pp. 769-783, May 2000.
    • (2000) IEEE Trans. Neural Netw. , vol.11 , Issue.3 , pp. 769-783
    • Gabrys, B.1    Bargiela, A.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.