메뉴 건너뛰기




Volumn 40, Issue 2, 2010, Pages 529-539

Adaptive inferential sensors based on evolving fuzzy models

Author keywords

Concept shift in data streams; Evolving fuzzy systems; Fuzzy rule aging; Inferential sensors; Learning and adaptation; Takagi Sugeno (TS) fuzzy models

Indexed keywords

CONCEPT SHIFT IN DATA STREAMS; DATA STREAM; INFERENTIAL SENSORS; LEARNING AND ADAPTATION; TAKAGI-SUGENO FUZZY MODELS;

EID: 77949774043     PISSN: 10834419     EISSN: None     Source Type: Journal    
DOI: 10.1109/TSMCB.2009.2028315     Document Type: Article
Times cited : (51)

References (31)
  • 3
    • 0037114379 scopus 로고    scopus 로고
    • Neural virtual sensor for the inferential prediction of product quality from process variables
    • Dec.
    • R. Rallo, J. Ferre-Gine, A. Arenas, and F. Giralt, "Neural virtual sensor for the inferential prediction of product quality from process variables," Comput. Chem. Eng., vol.26, no.12, pp. 1735-1754, Dec. 2002.
    • (2002) Comput. Chem. Eng. , vol.26 , Issue.12 , pp. 1735-1754
    • Rallo, R.1    Ferre-Gine, J.2    Arenas, A.3    Giralt, F.4
  • 4
    • 0141804082 scopus 로고    scopus 로고
    • Detection concept drift with support vector machines
    • R. Klinkenberg and T. Joachims, "Detection concept drift with support vector machines," in Proc. 7th ICML, 2000, pp. 487-494.
    • (2000) Proc. 7th ICML , pp. 487-494
    • Klinkenberg, R.1    Joachims, T.2
  • 5
    • 0142223469 scopus 로고    scopus 로고
    • Soft sensor development using genetic programming
    • San Francisco, CA
    • A. Kordon and G. Smits, "Soft sensor development using genetic programming," in Proc. GECCO, San Francisco, CA, 2001, pp. 1346-1351.
    • (2001) Proc. GECCO , pp. 1346-1351
    • Kordon, A.1    Smits, G.2
  • 6
    • 0033646167 scopus 로고    scopus 로고
    • Obtaining interpretable fuzzy models from fuzzy clustering and fuzzy regression
    • Brighton, U.K.
    • F. Hopner and F. Klawonn, "Obtaining interpretable fuzzy models from fuzzy clustering and fuzzy regression," in Proc. 4th Int. Conf. Knowl.- Based Intell. Eng. Syst., Brighton, U.K., 2000, pp. 162-165.
    • (2000) Proc. 4th Int. Conf. Knowl.- Based Intell. Eng. Syst. , pp. 162-165
    • Hopner, F.1    Klawonn, F.2
  • 8
    • 0030126609 scopus 로고    scopus 로고
    • Learning in the presence of concept drift and hidden contexts
    • Apr.
    • G. Widmer and M. Kubat, "Learning in the presence of concept drift and hidden contexts," Mach. Learn., vol.23, no.1, pp. 69-101, Apr. 1996.
    • (1996) Mach. Learn. , vol.23 , Issue.1 , pp. 69-101
    • Widmer, G.1    Kubat, M.2
  • 9
    • 0742272554 scopus 로고    scopus 로고
    • An approach to on-line identification of evolving Takagi-Sugeno models
    • Feb.
    • P. Angelov and D. Filev, "An approach to on-line identification of evolving Takagi-Sugeno models," IEEE Trans. Syst., Man, Cybern. B, Cybern., vol.34, no.1, pp. 484-498, Feb. 2004.
    • (2004) IEEE Trans. Syst., Man, Cybern. B, Cybern. , vol.34 , Issue.1 , pp. 484-498
    • Angelov, P.1    Filev, D.2
  • 10
    • 34247532567 scopus 로고    scopus 로고
    • Evolving fuzzy systems from data streams in real-time
    • Ambleside, U.K., Sep. 7-9
    • P. Angelov and X. Zhou, "Evolving fuzzy systems from data streams in real-time," in Proc. Int. Symp. Evolving Fuzzy Syst., Ambleside, U.K., Sep. 7-9, 2006, pp. 29-35.
    • (2006) Proc. Int. Symp. Evolving Fuzzy Syst. , pp. 29-35
    • Angelov, P.1    Zhou, X.2
  • 11
    • 58149515840 scopus 로고    scopus 로고
    • Predicting quality of the crude oil distillation using evolving Takagi-Sugeno fuzzy models
    • Ambleside,U.K.,Sep. 7-9
    • J. Macias, P. Angelov, and X. Zhou, "Predicting quality of the crude oil distillation using evolving Takagi-Sugeno fuzzy models," in Proc. Int. Symp.EvolvingFuzzy Syst., Ambleside,U.K.,Sep. 7-9, 2006, pp. 201-207.
    • (2006) Proc. Int. Symp.EvolvingFuzzy Syst. , pp. 201-207
    • MacIas, J.1    Angelov, P.2    Zhou, X.3
  • 13
    • 77956785130 scopus 로고    scopus 로고
    • Robust soft sensor development using GP
    • R. Leardi, Ed. Amsterdam, The Netherlands: Elsevier
    • A. Kordon, G. Smits, A. Kalos, and E. Jordaan, "Robust soft sensor development using GP," in Nature-Inspired Methods in Chemometrics, R. Leardi, Ed. Amsterdam, The Netherlands: Elsevier, 2003, pp. 69-108.
    • (2003) Nature-Inspired Methods in Chemometrics , pp. 69-108
    • Kordon, A.1    Smits, G.2    Kalos, A.3    Jordaan, E.4
  • 14
    • 0036802284 scopus 로고    scopus 로고
    • Identification of evolving rule-based models
    • Oct.
    • P. Angelov and R. Buswell, "Identification of evolving rule-based models," IEEE Trans. Fuzzy Syst., vol.10, no.5, pp. 667-677, Oct. 2002.
    • (2002) IEEE Trans. Fuzzy Syst. , vol.10 , Issue.5 , pp. 667-677
    • Angelov, P.1    Buswell, R.2
  • 16
    • 0021892282 scopus 로고
    • Fuzzy identification of systems and its application to modeling and control
    • Jan./Feb.
    • T. Takagi and M. Sugeno, "Fuzzy identification of systems and its application to modeling and control," IEEE Trans. Syst., Man, Cybern., vol.SMC-15, no.1, pp. 116-132, Jan./Feb. 1985.
    • (1985) IEEE Trans. Syst., Man, Cybern. , vol.SMC-15 , Issue.1 , pp. 116-132
    • Takagi, T.1    Sugeno, M.2
  • 17
    • 0026994365 scopus 로고
    • Fuzzy systems are universal approximators
    • San Diego, CA
    • L.-X. Wang, "Fuzzy systems are universal approximators," in Proc. FUZZ-IEEE, San Diego, CA, 1992, pp. 1163-1170.
    • (1992) Proc. FUZZ-IEEE , pp. 1163-1170
    • Wang, L.-X.1
  • 19
    • 23944495345 scopus 로고    scopus 로고
    • Simpl eTS: A simplified method for learning evolving Takagi-Sugeno fuzzy models
    • Reno, NV, May 22-25
    • P. Angelov and D. Filev, "Simpl eTS: A simplified method for learning evolving Takagi-Sugeno fuzzy models," in Proc. IEEE Int. Conf. Fuzzy Syst., Reno, NV, May 22-25, 2005, pp. 1068-1073.
    • (2005) Proc. IEEE Int. Conf. Fuzzy Syst. , pp. 1068-1073
    • Angelov, P.1    Filev, D.2
  • 20
    • 34548732961 scopus 로고    scopus 로고
    • Catching up with the data: Research issues in mining data streams
    • Discov., Santa Barbara, CA
    • P. Domingos and G. Hulten, "Catching up with the data: Research issues in mining data streams," in Proc. Workshop Res. Issues Data Mining Knowl. Discov., Santa Barbara, CA, 2001.
    • (2001) Proc. Workshop Res. Issues Data Mining Knowl.
    • Domingos, P.1    Hulten, G.2
  • 21
    • 79960737630 scopus 로고    scopus 로고
    • Soft sensor based on fuzzy model identification
    • Prague, Czech Republic
    • E. Y. Nagai and L. V. R. Arruda, "Soft sensor based on fuzzy model identification," inProc. 16th IFACWorld Congr., Prague, Czech Republic, 2005.
    • (2005) Proc. 16th IFACWorld Congr.
    • Nagai, E.Y.1    Arruda, L.V.R.2
  • 22
    • 2342567014 scopus 로고    scopus 로고
    • Soft sensing modeling based on support vector machine and Bayesian model selection
    • Jul.
    • W. Yan, H. Shao, and X. Wang, "Soft sensing modeling based on support vector machine and Bayesian model selection," Comput. Chem. Eng., vol.28, no.8, pp. 1489-1498, Jul. 2004.
    • (2004) Comput. Chem. Eng. , vol.28 , Issue.8 , pp. 1489-1498
    • Yan, W.1    Shao, H.2    Wang, X.3
  • 23
    • 79960730209 scopus 로고    scopus 로고
    • On-line soft sensor for polyethylene process with multiple production grades
    • Prague, Czech Republic
    • J. Liu, "On-line soft sensor for polyethylene process with multiple production grades," in Proc. 16th IFAC World Congr., Prague, Czech Republic, 2005.
    • (2005) Proc. 16th IFAC World Congr.
    • Liu, J.1
  • 25
    • 34548793665 scopus 로고    scopus 로고
    • An approach to autonomous self-localization of a mobile robot in completely unknown environment using evolving fuzzy rule-based classifier
    • Honolulu, HI, Apr. 1-5
    • X. Zhou and P. Angelov, "An approach to autonomous self-localization of a mobile robot in completely unknown environment using evolving fuzzy rule-based classifier," in Proc. 1st IEEE Int. Conf. Comput. Intell. Appl. Defense Security, Honolulu, HI, Apr. 1-5, 2007, pp. 131-138.
    • (2007) Proc. 1st IEEE Int. Conf. Comput. Intell. Appl. Defense Security , pp. 131-138
    • Zhou, X.1    Angelov, P.2
  • 26
    • 39649119442 scopus 로고    scopus 로고
    • A new on-line self-constructing neural fuzzy network
    • Dec. 13-15
    • A. Ferreyra and J. J. Rubio, "A new on-line self-constructing neural fuzzy network," in Proc. 45th IEEE Conf. Decision Control, Dec. 13-15, 2006, pp. 3003-3009.
    • (2006) Proc. 45th IEEE Conf. Decision Control , pp. 3003-3009
    • Ferreyra, A.1    Rubio, J.J.2
  • 27
    • 10444241066 scopus 로고    scopus 로고
    • A fuzzy sensor for measuring the mixed air temperature in air handling units
    • Jan.
    • P. S. Lee and A. L. Dexter, "A fuzzy sensor for measuring the mixed air temperature in air handling units," Measurement, vol.37, no.1, pp. 83-93, Jan. 2005.
    • (2005) Measurement , vol.37 , Issue.1 , pp. 83-93
    • Lee, P.S.1    Dexter, A.L.2
  • 29
    • 0032923221 scopus 로고    scopus 로고
    • Catastrophic forgetting in connectionist networks
    • Apr.
    • R. M. French, "Catastrophic forgetting in connectionist networks," Trends Cogn. Sci., vol.3, no.4, pp. 128-135, Apr. 1999.
    • (1999) Trends Cogn. Sci. , vol.3 , Issue.4 , pp. 128-135
    • French, R.M.1
  • 30
    • 77953290010 scopus 로고    scopus 로고
    • A self-learning fuzzy classifier with feature selection for intelligent interrogation of mid-IR spectroscopy data derived from different categories of exfoliative cervical cytology
    • Dec. invited paper
    • J. Kelly, P. Angelov, M. J. Walsh, H. M. Pollock, M. A. Pitt, P. L. Martin-Hirsch, and F. Martin, "A self-learning fuzzy classifier with feature selection for intelligent interrogation of mid-IR spectroscopy data derived from different categories of exfoliative cervical cytology," Int. J. Comput. Intell. Res.-Special Issue on the Future of Fuzzy Systems Research, vol.4, no.4, pp. 392-401, Dec. 2008, invited paper.
    • (2008) Int. J. Comput. Intell. Res.-Special Issue on the Future of Fuzzy Systems Research , vol.4 , Issue.4 , pp. 392-401
    • Kelly, J.1    Angelov, P.2    Walsh, M.J.3    Pollock, H.M.4    Pitt, M.A.5    Martin-Hirsch, P.L.6    Martin, F.7
  • 31
    • 0036530967 scopus 로고    scopus 로고
    • DENFIS: Dynamic evolving neural-fuzzy inference system and its application for time-series prediction
    • Apr.
    • N. K. Kasabov and Q. Song, "DENFIS: Dynamic evolving neural-fuzzy inference system and its application for time-series prediction," IEEE Trans. Fuzzy Syst., vol.10, no.2, pp. 144-154, Apr. 2002.
    • (2002) IEEE Trans. Fuzzy Syst. , vol.10 , Issue.2 , pp. 144-154
    • Kasabov, N.K.1    Song, Q.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.