메뉴 건너뛰기




Volumn 24, Issue 8-9, 2013, Pages 627-642

DNA asymmetry and cell fate regulation in stem cells

Author keywords

Asymmetric; Epigenetic regulation; Immortal DNA; Mitosis; Non random DNA segregation; Template DNA strand cosegregation

Indexed keywords

BROXURIDINE; THYMIDINE; TRANSCRIPTION FACTOR PAX7;

EID: 84887615107     PISSN: 10849521     EISSN: 10963634     Source Type: Journal    
DOI: 10.1016/j.semcdb.2013.05.008     Document Type: Review
Times cited : (20)

References (129)
  • 2
    • 0016692602 scopus 로고
    • Mutation selection and the natural history of cancer
    • Cairns J. Mutation selection and the natural history of cancer. Nature 1975, 255:197-200.
    • (1975) Nature , vol.255 , pp. 197-200
    • Cairns, J.1
  • 4
    • 34250728609 scopus 로고    scopus 로고
    • Immortal strands? Give me a break
    • Lansdorp P.M. Immortal strands? Give me a break. Cell 2007, 129:1244-1247.
    • (2007) Cell , vol.129 , pp. 1244-1247
    • Lansdorp, P.M.1
  • 5
    • 34250740943 scopus 로고    scopus 로고
    • The immortal strand hypothesis: segregation and reconstruction
    • Rando T.A. The immortal strand hypothesis: segregation and reconstruction. Cell 2007, 129:1239-1243.
    • (2007) Cell , vol.129 , pp. 1239-1243
    • Rando, T.A.1
  • 6
    • 56949087427 scopus 로고    scopus 로고
    • Stem cell identity and template DNA strand segregation
    • Tajbakhsh S. Stem cell identity and template DNA strand segregation. Current Opinion in Cell Biology 2008, 20:716-722.
    • (2008) Current Opinion in Cell Biology , vol.20 , pp. 716-722
    • Tajbakhsh, S.1
  • 7
    • 70350454870 scopus 로고    scopus 로고
    • Biased segregation of DNA and centrosomes: moving together or drifting apart?
    • Tajbakhsh S., Gonzalez C. Biased segregation of DNA and centrosomes: moving together or drifting apart?. Nature Reviews: Molecular Cell Biology 2009, 10:804-810.
    • (2009) Nature Reviews: Molecular Cell Biology , vol.10 , pp. 804-810
    • Tajbakhsh, S.1    Gonzalez, C.2
  • 8
    • 0036591968 scopus 로고    scopus 로고
    • Intestinal stem cells protect their genome by selective segregation of template DNA strands
    • Potten C.S., Owen G., Booth D. Intestinal stem cells protect their genome by selective segregation of template DNA strands. Journal of Cell Science 2002, 115:2381-2388.
    • (2002) Journal of Cell Science , vol.115 , pp. 2381-2388
    • Potten, C.S.1    Owen, G.2    Booth, D.3
  • 9
    • 77953121698 scopus 로고    scopus 로고
    • Bcl-2 and accelerated DNA repair mediates resistance of hair follicle bulge stem cells to DNA-damage-induced cell death
    • Sotiropoulou P.A., et al. Bcl-2 and accelerated DNA repair mediates resistance of hair follicle bulge stem cells to DNA-damage-induced cell death. Nature Cell Biology 2010, 12(6):572-582.
    • (2010) Nature Cell Biology , vol.12 , Issue.6 , pp. 572-582
    • Sotiropoulou, P.A.1
  • 10
    • 34250007142 scopus 로고    scopus 로고
    • Deficiencies in DNA damage repair limit the function of haematopoietic stem cells with age
    • Rossi D.J., et al. Deficiencies in DNA damage repair limit the function of haematopoietic stem cells with age. Nature 2007, 447(7145):725-729.
    • (2007) Nature , vol.447 , Issue.7145 , pp. 725-729
    • Rossi, D.J.1
  • 11
    • 77956251480 scopus 로고    scopus 로고
    • Hematopoietic stem cell quiescence promotes error-prone DNA repair and mutagenesis
    • Mohrin M., et al. Hematopoietic stem cell quiescence promotes error-prone DNA repair and mutagenesis. Cell Stem Cell 2010, 7(2):174-185.
    • (2010) Cell Stem Cell , vol.7 , Issue.2 , pp. 174-185
    • Mohrin, M.1
  • 12
    • 0014004452 scopus 로고
    • Segregation of sister chromatids in mammalian cells
    • Lark K.G., Consigli R.A., Minocha H.C. Segregation of sister chromatids in mammalian cells. Science 1966, 154(3753):1202-1205.
    • (1966) Science , vol.154 , Issue.3753 , pp. 1202-1205
    • Lark, K.G.1    Consigli, R.A.2    Minocha, H.C.3
  • 13
    • 80052424582 scopus 로고    scopus 로고
    • Space and time in the nucleus: developmental control of replication timing and chromosome architecture
    • Gilbert D.M., et al. Space and time in the nucleus: developmental control of replication timing and chromosome architecture. Cold Spring Harbor Symposia on Quantitative Biology 2010, 75:143-153.
    • (2010) Cold Spring Harbor Symposia on Quantitative Biology , vol.75 , pp. 143-153
    • Gilbert, D.M.1
  • 14
    • 35548974423 scopus 로고    scopus 로고
    • Identification of stem cells in small intestine and colon by marker gene Lgr5
    • Barker N., et al. Identification of stem cells in small intestine and colon by marker gene Lgr5. Nature 2007, 449(7165):1003-1007.
    • (2007) Nature , vol.449 , Issue.7165 , pp. 1003-1007
    • Barker, N.1
  • 15
    • 77957223906 scopus 로고    scopus 로고
    • Intestinal crypt homeostasis results from neutral competition between symmetrically dividing Lgr5 stem cells
    • Snippert H.J., et al. Intestinal crypt homeostasis results from neutral competition between symmetrically dividing Lgr5 stem cells. Cell 2010, 143(1):134-144.
    • (2010) Cell , vol.143 , Issue.1 , pp. 134-144
    • Snippert, H.J.1
  • 16
    • 44949106318 scopus 로고    scopus 로고
    • Estimating cell depth from somatic mutations
    • Wasserstrom A., et al. Estimating cell depth from somatic mutations. PLoS Computational Biology 2008, 4:1939.
    • (2008) PLoS Computational Biology , vol.4 , pp. 1939
    • Wasserstrom, A.1
  • 17
    • 1642458489 scopus 로고    scopus 로고
    • Cortical neurons arise in symmetric and asymmetric division zones and migrate through specific phases
    • Noctor S.C., et al. Cortical neurons arise in symmetric and asymmetric division zones and migrate through specific phases. Nature Neuroscience 2004, 7:136-144.
    • (2004) Nature Neuroscience , vol.7 , pp. 136-144
    • Noctor, S.C.1
  • 18
    • 0028130684 scopus 로고
    • A model for specification of the left-right axis in vertebrates
    • Klar A.J. A model for specification of the left-right axis in vertebrates. Trends in Genetics 1994, 10(11):392-396.
    • (1994) Trends in Genetics , vol.10 , Issue.11 , pp. 392-396
    • Klar, A.J.1
  • 19
    • 27144458125 scopus 로고    scopus 로고
    • Is mitotic chromatid segregation random?
    • Bell C.D. Is mitotic chromatid segregation random?. Histology and Histopathology 2005, 20(4):1313-1320.
    • (2005) Histology and Histopathology , vol.20 , Issue.4 , pp. 1313-1320
    • Bell, C.D.1
  • 20
    • 0025237555 scopus 로고
    • The developmental fate of fission yeast cells is determined by the pattern of inheritance of parental and grandparental DNA strands
    • Klar A.J. The developmental fate of fission yeast cells is determined by the pattern of inheritance of parental and grandparental DNA strands. The EMBO Journal 1990, 9:1407-1415.
    • (1990) The EMBO Journal , vol.9 , pp. 1407-1415
    • Klar, A.J.1
  • 22
    • 0036338128 scopus 로고    scopus 로고
    • Efficient Cre-loxP-induced mitotic recombination in mouse embryonic stem cells
    • Liu P., Jenkins N.A., Copeland N.G. Efficient Cre-loxP-induced mitotic recombination in mouse embryonic stem cells. Nature Genetics 2002, 30:66-72.
    • (2002) Nature Genetics , vol.30 , pp. 66-72
    • Liu, P.1    Jenkins, N.A.2    Copeland, N.G.3
  • 23
    • 33644558424 scopus 로고    scopus 로고
    • Cell type regulates selective segregation of mouse chromosome 7 DNA strands in mitosis
    • Armakolas A., Klar A.J.S. Cell type regulates selective segregation of mouse chromosome 7 DNA strands in mitosis. Science 2006, 311:1146-1149.
    • (2006) Science , vol.311 , pp. 1146-1149
    • Armakolas, A.1    Klar, A.J.S.2
  • 24
    • 33846691148 scopus 로고    scopus 로고
    • Left-right dynein motor implicated in selective chromatid segregation in mouse cells
    • Armakolas A., Klar A.J.S. Left-right dynein motor implicated in selective chromatid segregation in mouse cells. Science 2007, 315:100-101.
    • (2007) Science , vol.315 , pp. 100-101
    • Armakolas, A.1    Klar, A.J.S.2
  • 25
    • 84869096434 scopus 로고    scopus 로고
    • DNA template strand sequencing of single-cells maps genomic rearrangements at high resolution
    • Falconer E., et al. DNA template strand sequencing of single-cells maps genomic rearrangements at high resolution. Nature Methods 2012, 9:1107-1112.
    • (2012) Nature Methods , vol.9 , pp. 1107-1112
    • Falconer, E.1
  • 26
    • 84878653947 scopus 로고    scopus 로고
    • A CO-FISH assay to assess sister chromatid segregation patterns in mitosis of mouse embryonic stem cells
    • Sauer S., Burket S.S., Lewandoski M., Klar A.J.S. A CO-FISH assay to assess sister chromatid segregation patterns in mitosis of mouse embryonic stem cells. Chromosome Research 2013, 21:311-328.
    • (2013) Chromosome Research , vol.21 , pp. 311-328
    • Sauer, S.1    Burket, S.S.2    Lewandoski, M.3    Klar, A.J.S.4
  • 27
    • 73849129204 scopus 로고    scopus 로고
    • Identification of sister chromatids by DNA template strand sequences
    • Falconer E., et al. Identification of sister chromatids by DNA template strand sequences. Nature 2010, 463:93-97.
    • (2010) Nature , vol.463 , pp. 93-97
    • Falconer, E.1
  • 28
    • 33745762804 scopus 로고    scopus 로고
    • Asymmetric division and cosegregation of template DNA strands in adult muscle satellite cells
    • Shinin V., et al. Asymmetric division and cosegregation of template DNA strands in adult muscle satellite cells. Nature Cell Biology 2006, 8:677-687.
    • (2006) Nature Cell Biology , vol.8 , pp. 677-687
    • Shinin, V.1
  • 29
    • 34249056493 scopus 로고    scopus 로고
    • High incidence of non-random template strand segregation and asymmetric fate determination in dividing stem cells and their progeny
    • Conboy M.J., Karasov A.O., Rando T.a. High incidence of non-random template strand segregation and asymmetric fate determination in dividing stem cells and their progeny. PLoS Biology 2007, 5:e102.
    • (2007) PLoS Biology , vol.5
    • Conboy, M.J.1    Karasov, A.O.2    Rando, T.3
  • 30
    • 84856096903 scopus 로고    scopus 로고
    • A subpopulation of adult skeletal muscle stem cells retains all template DNA strands after cell division
    • Rocheteau P., et al. A subpopulation of adult skeletal muscle stem cells retains all template DNA strands after cell division. Cell 2012, 148:112-125.
    • (2012) Cell , vol.148 , pp. 112-125
    • Rocheteau, P.1
  • 31
    • 24144490682 scopus 로고    scopus 로고
    • Support for the immortal strand hypothesis: neural stem cells partition DNA asymmetrically in vitro
    • Karpowicz P., et al. Support for the immortal strand hypothesis: neural stem cells partition DNA asymmetrically in vitro. The Journal of Cell Biology 2005, 170:721-732.
    • (2005) The Journal of Cell Biology , vol.170 , pp. 721-732
    • Karpowicz, P.1
  • 32
    • 0018034237 scopus 로고
    • The segregation of DNA in epithelial stem cells
    • Potten C.S., et al. The segregation of DNA in epithelial stem cells. Cell 1978, 15(3):899-906.
    • (1978) Cell , vol.15 , Issue.3 , pp. 899-906
    • Potten, C.S.1
  • 33
    • 75349094518 scopus 로고    scopus 로고
    • Spindle orientation bias in gut epithelial stem cell compartments is lost in precancerous tissue
    • Quyn A.J., et al. Spindle orientation bias in gut epithelial stem cell compartments is lost in precancerous tissue. Cell Stem Cell 2010, 6:175-181.
    • (2010) Cell Stem Cell , vol.6 , pp. 175-181
    • Quyn, A.J.1
  • 34
    • 84866531699 scopus 로고    scopus 로고
    • Tracking chromatid segregation to identify human cardiac stem cells that regenerate extensively the infarcted myocardium
    • Kajstura J., et al. Tracking chromatid segregation to identify human cardiac stem cells that regenerate extensively the infarcted myocardium. Circulation Research 2012, 111(7):894-906.
    • (2012) Circulation Research , vol.111 , Issue.7 , pp. 894-906
    • Kajstura, J.1
  • 35
    • 79953250332 scopus 로고    scopus 로고
    • Intestinal epithelial stem cells do not protect their genome by asymmetric chromosome segregation
    • Escobar M., et al. Intestinal epithelial stem cells do not protect their genome by asymmetric chromosome segregation. Nature Communications 2011, 2:258.
    • (2011) Nature Communications , vol.2 , pp. 258
    • Escobar, M.1
  • 36
    • 79952751557 scopus 로고    scopus 로고
    • Lgr5 intestinal stem cells have high telomerase activity and randomly segregate their chromosomes
    • Schepers A.G., et al. Lgr5 intestinal stem cells have high telomerase activity and randomly segregate their chromosomes. The EMBO Journal 2011, 30:1104-1109.
    • (2011) The EMBO Journal , vol.30 , pp. 1104-1109
    • Schepers, A.G.1
  • 37
    • 84856138380 scopus 로고    scopus 로고
    • Multi-isotope imaging mass spectrometry quantifies stem cell division and metabolism
    • Steinhauser M.L., et al. Multi-isotope imaging mass spectrometry quantifies stem cell division and metabolism. Nature 2012, 481:516-519.
    • (2012) Nature , vol.481 , pp. 516-519
    • Steinhauser, M.L.1
  • 38
    • 56249107718 scopus 로고    scopus 로고
    • The majority of multipotent epidermal stem cells do not protect their genome by asymmetrical chromosome segregation
    • Sotiropoulou P.a., Candi A., Blanpain C. The majority of multipotent epidermal stem cells do not protect their genome by asymmetrical chromosome segregation. Stem Cells 2008, 26:2964-2973.
    • (2008) Stem Cells , vol.26 , pp. 2964-2973
    • Sotiropoulou, P.1    Candi, A.2    Blanpain, C.3
  • 39
    • 43249083269 scopus 로고    scopus 로고
    • Quantitative proliferation dynamics and random chromosome segregation of hair follicle stem cells
    • Waghmare S.K., et al. Quantitative proliferation dynamics and random chromosome segregation of hair follicle stem cells. The EMBO Journal 2008, 27:1309-1320.
    • (2008) The EMBO Journal , vol.27 , pp. 1309-1320
    • Waghmare, S.K.1
  • 40
    • 34548601610 scopus 로고    scopus 로고
    • Haematopoietic stem cells do not asymmetrically segregate chromosomes or retain BrdU
    • Kiel M.J., et al. Haematopoietic stem cells do not asymmetrically segregate chromosomes or retain BrdU. Nature 2007, 449:238-242.
    • (2007) Nature , vol.449 , pp. 238-242
    • Kiel, M.J.1
  • 41
    • 1642603951 scopus 로고    scopus 로고
    • Socializing with the neighbors: stem cells and their niche
    • Fuchs E., Tumbar T., Guasch G. Socializing with the neighbors: stem cells and their niche. Cell 2004, 116(6):769-778.
    • (2004) Cell , vol.116 , Issue.6 , pp. 769-778
    • Fuchs, E.1    Tumbar, T.2    Guasch, G.3
  • 42
    • 75749146169 scopus 로고    scopus 로고
    • Coexistence of quiescent and active adult stem cells in mammals
    • Li L., Clevers H. Coexistence of quiescent and active adult stem cells in mammals. Science (New York, NY) 2010, 327:542-545.
    • (2010) Science (New York, NY) , vol.327 , pp. 542-545
    • Li, L.1    Clevers, H.2
  • 43
    • 0014710155 scopus 로고
    • Inhibition of myoblast fusion after one round of DNA synthesis in 5-bromodeoxyuridine
    • Bischoff R., Holtzer H. Inhibition of myoblast fusion after one round of DNA synthesis in 5-bromodeoxyuridine. Journal of Cell Biology 1970, 44(1):134-150.
    • (1970) Journal of Cell Biology , vol.44 , Issue.1 , pp. 134-150
    • Bischoff, R.1    Holtzer, H.2
  • 44
    • 0036951744 scopus 로고    scopus 로고
    • The human MYOD1 transgene is suppressed by 5-bromodeoxyuridine in mouse myoblasts
    • Ogino H., et al. The human MYOD1 transgene is suppressed by 5-bromodeoxyuridine in mouse myoblasts. Journal of Biochemistry 2002, 132(6):953-959.
    • (2002) Journal of Biochemistry , vol.132 , Issue.6 , pp. 953-959
    • Ogino, H.1
  • 45
    • 84863190684 scopus 로고    scopus 로고
    • Neural stem cells exposed to BrdU lose their global DNA methylation and undergo astrocytic differentiation
    • Schneider L., d'Adda di Fagagna F. Neural stem cells exposed to BrdU lose their global DNA methylation and undergo astrocytic differentiation. Nucleic Acids Research 2012, 40:5332-5342.
    • (2012) Nucleic Acids Research , vol.40 , pp. 5332-5342
    • Schneider, L.1    d'Adda di Fagagna, F.2
  • 46
    • 0019753219 scopus 로고
    • Sister chromatid exchange formation
    • Latt S.A. Sister chromatid exchange formation. Annual Review of Genetics 1981, 15:11-55.
    • (1981) Annual Review of Genetics , vol.15 , pp. 11-55
    • Latt, S.A.1
  • 47
    • 33746192015 scopus 로고    scopus 로고
    • High-resolution quantitative imaging of mammalian and bacterial cells using stable isotope mass spectrometry
    • Lechene C., et al. High-resolution quantitative imaging of mammalian and bacterial cells using stable isotope mass spectrometry. Journal of Biology 2006, 5(6):20.
    • (2006) Journal of Biology , vol.5 , Issue.6 , pp. 20
    • Lechene, C.1
  • 48
    • 84878979469 scopus 로고    scopus 로고
    • Chromosome-specific nonrandom sister chromatid segregation during stem-cell division
    • May 5
    • Yadlapalli S., Yamashita Y.M. Chromosome-specific nonrandom sister chromatid segregation during stem-cell division. Nature 2013, May 5.
    • (2013) Nature
    • Yadlapalli, S.1    Yamashita, Y.M.2
  • 49
    • 0028709336 scopus 로고
    • In situ hybridization using synthetic oligomers as probes for centromere and telomere repeats
    • Meyne J., Moyzis R.K. In situ hybridization using synthetic oligomers as probes for centromere and telomere repeats. Methods in Molecular Biology 1994, 33:63-74.
    • (1994) Methods in Molecular Biology , vol.33 , pp. 63-74
    • Meyne, J.1    Moyzis, R.K.2
  • 50
    • 4344605708 scopus 로고    scopus 로고
    • Strand-specific fluorescence in situ hybridization: the CO-FISH family
    • Bailey S.M., Goodwin E.H., Cornforth M.N. Strand-specific fluorescence in situ hybridization: the CO-FISH family. Cytogenetic and Genome Research 2004, 107(1-2):14-17.
    • (2004) Cytogenetic and Genome Research , vol.107 , Issue.1-2 , pp. 14-17
    • Bailey, S.M.1    Goodwin, E.H.2    Cornforth, M.N.3
  • 51
    • 80053410661 scopus 로고    scopus 로고
    • Isolation of live label-retaining cells and cells undergoing asymmetric cell division via nonrandom chromosomal cosegregation from human cancers
    • Hari D., et al. Isolation of live label-retaining cells and cells undergoing asymmetric cell division via nonrandom chromosomal cosegregation from human cancers. Stem Cells and Development 2011, 20:1649-1658.
    • (2011) Stem Cells and Development , vol.20 , pp. 1649-1658
    • Hari, D.1
  • 52
    • 84859486115 scopus 로고    scopus 로고
    • Tumor-initiating label-retaining cancer cells in human gastrointestinal cancers undergo asymmetric cell division
    • Xin H.W., et al. Tumor-initiating label-retaining cancer cells in human gastrointestinal cancers undergo asymmetric cell division. Stem Cells 2012, 30(4):591-598.
    • (2012) Stem Cells , vol.30 , Issue.4 , pp. 591-598
    • Xin, H.W.1
  • 53
    • 84874730918 scopus 로고    scopus 로고
    • Intestinal label-retaining cells are secretory precursors expressing Lgr5
    • Buczacki S.J., et al. Intestinal label-retaining cells are secretory precursors expressing Lgr5. Nature 2013, 495(7439):65-69.
    • (2013) Nature , vol.495 , Issue.7439 , pp. 65-69
    • Buczacki, S.J.1
  • 54
    • 83255193921 scopus 로고    scopus 로고
    • Interconversion between intestinal stem cell populations in distinct niches
    • Takeda N., et al. Interconversion between intestinal stem cell populations in distinct niches. Science 2011, 334(6061):1420-1424.
    • (2011) Science , vol.334 , Issue.6061 , pp. 1420-1424
    • Takeda, N.1
  • 55
    • 80054041585 scopus 로고    scopus 로고
    • A reserve stem cell population in small intestine renders Lgr5-positive cells dispensable
    • Tian H., et al. A reserve stem cell population in small intestine renders Lgr5-positive cells dispensable. Nature 2011, 478:255-259.
    • (2011) Nature , vol.478 , pp. 255-259
    • Tian, H.1
  • 57
    • 0016325705 scopus 로고
    • Origin, differentiation and renewal of the four main epithelial cell types in the mouse small intestine. V. Unitarian Theory of the origin of the four epithelial cell types
    • Cheng H., Leblond C.P. Origin, differentiation and renewal of the four main epithelial cell types in the mouse small intestine. V. Unitarian Theory of the origin of the four epithelial cell types. American Journal of Anatomy 1974, 141(4):537-561.
    • (1974) American Journal of Anatomy , vol.141 , Issue.4 , pp. 537-561
    • Cheng, H.1    Leblond, C.P.2
  • 58
    • 75749146169 scopus 로고    scopus 로고
    • Coexistence of quiescent and active adult stem cells in mammals
    • Li L., Clevers H. Coexistence of quiescent and active adult stem cells in mammals. Science 2010, 327(5965):542-545.
    • (2010) Science , vol.327 , Issue.5965 , pp. 542-545
    • Li, L.1    Clevers, H.2
  • 59
    • 79551591946 scopus 로고    scopus 로고
    • Tracking adult stem cells
    • Snippert H.J., Clevers H. Tracking adult stem cells. EMBO Reports 2011, 12(2):113-122.
    • (2011) EMBO Reports , vol.12 , Issue.2 , pp. 113-122
    • Snippert, H.J.1    Clevers, H.2
  • 60
    • 38549123928 scopus 로고    scopus 로고
    • Cre activity causes widespread apoptosis and lethal anemia during embryonic development
    • Naiche L.A., Papaioannou V.E. Cre activity causes widespread apoptosis and lethal anemia during embryonic development. Genesis 2007, 45(12):768-775.
    • (2007) Genesis , vol.45 , Issue.12 , pp. 768-775
    • Naiche, L.A.1    Papaioannou, V.E.2
  • 61
    • 84875219386 scopus 로고    scopus 로고
    • Apoptosis differently affects lineage tracing of lgr5 and bmi1 intestinal stem cell populations
    • Zhu Y., et al. Apoptosis differently affects lineage tracing of lgr5 and bmi1 intestinal stem cell populations. Cell Stem Cell 2013, 12(3):298-303.
    • (2013) Cell Stem Cell , vol.12 , Issue.3 , pp. 298-303
    • Zhu, Y.1
  • 62
    • 70349215657 scopus 로고    scopus 로고
    • Skeletal muscle stem cells in developmental versus regenerative myogenesis
    • Tajbakhsh S. Skeletal muscle stem cells in developmental versus regenerative myogenesis. Journal of Internal Medicine 2009, 266:372-389.
    • (2009) Journal of Internal Medicine , vol.266 , pp. 372-389
    • Tajbakhsh, S.1
  • 63
    • 34047261093 scopus 로고    scopus 로고
    • Intrinsic phenotypic diversity of embryonic and fetal myoblasts is revealed by genome-wide gene expression analysis on purified cells
    • Biressi S., et al. Intrinsic phenotypic diversity of embryonic and fetal myoblasts is revealed by genome-wide gene expression analysis on purified cells. Developmental Biology 2007, 304(2):633-651.
    • (2007) Developmental Biology , vol.304 , Issue.2 , pp. 633-651
    • Biressi, S.1
  • 64
    • 34249108083 scopus 로고    scopus 로고
    • Asymmetric self-renewal and commitment of satellite stem cells in muscle
    • Kuang S., et al. Asymmetric self-renewal and commitment of satellite stem cells in muscle. Cell 2007, 129:999-1010.
    • (2007) Cell , vol.129 , pp. 999-1010
    • Kuang, S.1
  • 65
    • 37549054341 scopus 로고    scopus 로고
    • The emerging biology of satellite cells and their therapeutic potential
    • Kuang S., Rudnicki M.A. The emerging biology of satellite cells and their therapeutic potential. Trends in Molecular Medicine 2008, 14(2):82-91.
    • (2008) Trends in Molecular Medicine , vol.14 , Issue.2 , pp. 82-91
    • Kuang, S.1    Rudnicki, M.A.2
  • 66
    • 33744518925 scopus 로고    scopus 로고
    • Pax7 and myogenic progression in skeletal muscle satellite cells
    • Zammit P.S., et al. Pax7 and myogenic progression in skeletal muscle satellite cells. Journal of Cell Science 2006, 119(Pt 9):1824-1832.
    • (2006) Journal of Cell Science , vol.119 , Issue.PART 9 , pp. 1824-1832
    • Zammit, P.S.1
  • 67
    • 84866565150 scopus 로고    scopus 로고
    • Biased DNA segregation and cardiac stem cell therapies
    • Harvey R.P., Tajbakhsh S. Biased DNA segregation and cardiac stem cell therapies. Circulation Research 2012, 111(7):827-830.
    • (2012) Circulation Research , vol.111 , Issue.7 , pp. 827-830
    • Harvey, R.P.1    Tajbakhsh, S.2
  • 68
    • 72549092813 scopus 로고    scopus 로고
    • Dividing cellular asymmetry: asymmetric cell division and its implications for stem cells and cancer
    • Neumüller R.a., Knoblich J.a. Dividing cellular asymmetry: asymmetric cell division and its implications for stem cells and cancer. Genes & Development 2009, 23:2675-2699.
    • (2009) Genes & Development , vol.23 , pp. 2675-2699
    • Neumüller, R.1    Knoblich, J.2
  • 70
    • 33745600820 scopus 로고    scopus 로고
    • Asymmetric and symmetric stem-cell divisions in development and cancer
    • Morrison S.J., Kimble J. Asymmetric and symmetric stem-cell divisions in development and cancer. Nature 2006, 441:1068-1074.
    • (2006) Nature , vol.441 , pp. 1068-1074
    • Morrison, S.J.1    Kimble, J.2
  • 71
    • 38749152406 scopus 로고    scopus 로고
    • Asymmetric centrosome behavior and the mechanisms of stem cell division
    • Yamashita Y.M., Fuller M.T. Asymmetric centrosome behavior and the mechanisms of stem cell division. The Journal of Cell Biology 2008, 180:261-266.
    • (2008) The Journal of Cell Biology , vol.180 , pp. 261-266
    • Yamashita, Y.M.1    Fuller, M.T.2
  • 73
    • 33846607211 scopus 로고    scopus 로고
    • Asymmetric inheritance of mother versus daughter centrosome in stem cell division
    • Yamashita Y.M., et al. Asymmetric inheritance of mother versus daughter centrosome in stem cell division. Science 2007, 315(5811):518-521.
    • (2007) Science , vol.315 , Issue.5811 , pp. 518-521
    • Yamashita, Y.M.1
  • 74
    • 34247163546 scopus 로고    scopus 로고
    • A role for a novel centrosome cycle in asymmetric cell division
    • Rusan N.M., Peifer M. A role for a novel centrosome cycle in asymmetric cell division. Journal of Cell Biology 2007, 177(1):13-20.
    • (2007) Journal of Cell Biology , vol.177 , Issue.1 , pp. 13-20
    • Rusan, N.M.1    Peifer, M.2
  • 75
    • 33847337505 scopus 로고    scopus 로고
    • Functionally unequal centrosomes drive spindle orientation in asymmetrically dividing Drosophila neural stem cells
    • Rebollo E., et al. Functionally unequal centrosomes drive spindle orientation in asymmetrically dividing Drosophila neural stem cells. Developmental Cell 2007, 12(3):467-474.
    • (2007) Developmental Cell , vol.12 , Issue.3 , pp. 467-474
    • Rebollo, E.1
  • 76
    • 79952721669 scopus 로고    scopus 로고
    • Drosophila neuroblasts retain the daughter centrosome
    • Januschke J., et al. Drosophila neuroblasts retain the daughter centrosome. Nature Communications 2011, 2:243.
    • (2011) Nature Communications , vol.2 , pp. 243
    • Januschke, J.1
  • 77
    • 79955455586 scopus 로고    scopus 로고
    • A new subtype of progenitor cell in the mouse embryonic neocortex
    • Wang X., et al. A new subtype of progenitor cell in the mouse embryonic neocortex. Nature Neuroscience 2011, 14(5):555-561.
    • (2011) Nature Neuroscience , vol.14 , Issue.5 , pp. 555-561
    • Wang, X.1
  • 78
    • 78650501049 scopus 로고    scopus 로고
    • Cnn dynamics drive centrosome size asymmetry to ensure daughter centriole retention in Drosophila neuroblasts
    • Conduit P.T., Raff J.W. Cnn dynamics drive centrosome size asymmetry to ensure daughter centriole retention in Drosophila neuroblasts. Current Biology 2010, 20(24):2187-2192.
    • (2010) Current Biology , vol.20 , Issue.24 , pp. 2187-2192
    • Conduit, P.T.1    Raff, J.W.2
  • 79
    • 84878660608 scopus 로고    scopus 로고
    • Sorting DNA with asymmetry: a new player in gene regulation?
    • Evano E., Tajbakhsh S. Sorting DNA with asymmetry: a new player in gene regulation?. Chromosome Research 2013, 21:225-242.
    • (2013) Chromosome Research , vol.21 , pp. 225-242
    • Evano, E.1    Tajbakhsh, S.2
  • 80
    • 7244250309 scopus 로고    scopus 로고
    • Regulation of oxidative stress by ATM is required for self-renewal of haematopoietic stem cells
    • Ito K., et al. Regulation of oxidative stress by ATM is required for self-renewal of haematopoietic stem cells. Nature 2004, 431(7011):997-1002.
    • (2004) Nature , vol.431 , Issue.7011 , pp. 997-1002
    • Ito, K.1
  • 81
    • 78649653362 scopus 로고    scopus 로고
    • Artefactual effects of oxygen on cell culture models of cellular senescence and stem cell biology
    • Toussaint O., et al. Artefactual effects of oxygen on cell culture models of cellular senescence and stem cell biology. Journal of Cellular Physiology 2011, 226(2):315-321.
    • (2011) Journal of Cellular Physiology , vol.226 , Issue.2 , pp. 315-321
    • Toussaint, O.1
  • 83
    • 33645730667 scopus 로고    scopus 로고
    • Reactive oxygen species act through p38 MAPK to limit the lifespan of hematopoietic stem cells
    • Ito K., et al. Reactive oxygen species act through p38 MAPK to limit the lifespan of hematopoietic stem cells. Nature Medicine 2006, 12(4):446-451.
    • (2006) Nature Medicine , vol.12 , Issue.4 , pp. 446-451
    • Ito, K.1
  • 84
    • 69249118662 scopus 로고    scopus 로고
    • Low oxygen enhances primitive and definitive neural stem cell colony formation by inhibiting distinct cell death pathways
    • Clarke L., van der Kooy D. Low oxygen enhances primitive and definitive neural stem cell colony formation by inhibiting distinct cell death pathways. Stem Cells 2009, 27(8):1879-1886.
    • (2009) Stem Cells , vol.27 , Issue.8 , pp. 1879-1886
    • Clarke, L.1    van der Kooy, D.2
  • 85
    • 77950860807 scopus 로고    scopus 로고
    • Hypoxia mediates low cell-cycle activity and increases the proportion of long-term-reconstituting hematopoietic stem cells during in vitro culture
    • e2
    • Eliasson P., et al. Hypoxia mediates low cell-cycle activity and increases the proportion of long-term-reconstituting hematopoietic stem cells during in vitro culture. Experimental Hematology 2010, 38(4):301-310. e2.
    • (2010) Experimental Hematology , vol.38 , Issue.4 , pp. 301-310
    • Eliasson, P.1
  • 86
    • 67649890140 scopus 로고    scopus 로고
    • Impact of oxygen environment on mesenchymal stem cell expansion and chondrogenic differentiation
    • Krinner A., et al. Impact of oxygen environment on mesenchymal stem cell expansion and chondrogenic differentiation. Cell Proliferation 2009, 42(4):471-484.
    • (2009) Cell Proliferation , vol.42 , Issue.4 , pp. 471-484
    • Krinner, A.1
  • 87
    • 84865294857 scopus 로고    scopus 로고
    • Atmospheric oxygen tension slows myoblast proliferation via mitochondrial activation
    • Duguez S., et al. Atmospheric oxygen tension slows myoblast proliferation via mitochondrial activation. PLoS ONE 2012, 7(8):e43853.
    • (2012) PLoS ONE , vol.7 , Issue.8
    • Duguez, S.1
  • 88
    • 84864308291 scopus 로고    scopus 로고
    • Hypoxia promotes satellite cell self-renewal and enhances the efficiency of myoblast transplantation
    • Liu W., et al. Hypoxia promotes satellite cell self-renewal and enhances the efficiency of myoblast transplantation. Development (Cambridge, England) 2012, 139:2857-2865.
    • (2012) Development (Cambridge, England) , vol.139 , pp. 2857-2865
    • Liu, W.1
  • 89
    • 27644561755 scopus 로고    scopus 로고
    • Hypoxia requires notch signaling to maintain the undifferentiated cell state
    • Gustafsson M.V., et al. Hypoxia requires notch signaling to maintain the undifferentiated cell state. Developmental Cell 2005, 9(5):617-628.
    • (2005) Developmental Cell , vol.9 , Issue.5 , pp. 617-628
    • Gustafsson, M.V.1
  • 90
    • 84872268888 scopus 로고    scopus 로고
    • Nucleic acid modifications with epigenetic significance
    • Fu Y., He C. Nucleic acid modifications with epigenetic significance. Current Opinion in Chemical Biology 2012, 16(5-6):516-524.
    • (2012) Current Opinion in Chemical Biology , vol.16 , Issue.5-6 , pp. 516-524
    • Fu, Y.1    He, C.2
  • 91
    • 84867009687 scopus 로고    scopus 로고
    • Asymmetrically modified nucleosomes
    • Voigt P., et al. Asymmetrically modified nucleosomes. Cell 2012, 151(1):181-193.
    • (2012) Cell , vol.151 , Issue.1 , pp. 181-193
    • Voigt, P.1
  • 92
    • 41149111587 scopus 로고    scopus 로고
    • The immortal strand hypothesis: how could it work?
    • Lew D.J., Burke D.J., Dutta A. The immortal strand hypothesis: how could it work?. Cell 2008, 133(1):21-23.
    • (2008) Cell , vol.133 , Issue.1 , pp. 21-23
    • Lew, D.J.1    Burke, D.J.2    Dutta, A.3
  • 93
    • 84868246832 scopus 로고    scopus 로고
    • Asymmetric division of Drosophila male germline stem cell shows asymmetric histone distribution
    • Tran V., et al. Asymmetric division of Drosophila male germline stem cell shows asymmetric histone distribution. Science 2012, 338:679-682.
    • (2012) Science , vol.338 , pp. 679-682
    • Tran, V.1
  • 95
    • 27144473914 scopus 로고    scopus 로고
    • The extracellular matrix guides the orientation of the cell division axis
    • Théry M., et al. The extracellular matrix guides the orientation of the cell division axis. Nature Cell Biology 2005, 7:947-953.
    • (2005) Nature Cell Biology , vol.7 , pp. 947-953
    • Théry, M.1
  • 96
    • 84866147372 scopus 로고    scopus 로고
    • Distinct contribution of stem and progenitor cells to epidermal maintenance
    • Mascré G., et al. Distinct contribution of stem and progenitor cells to epidermal maintenance. Nature 2012, 489:257-262.
    • (2012) Nature , vol.489 , pp. 257-262
    • Mascré, G.1
  • 97
    • 78649439321 scopus 로고    scopus 로고
    • Asymmetric cell division: recent developments and their implications for tumour biology
    • Knoblich J.A. Asymmetric cell division: recent developments and their implications for tumour biology. Nature Reviews Molecular Cell Biology 2010, 11(12):849-860.
    • (2010) Nature Reviews Molecular Cell Biology , vol.11 , Issue.12 , pp. 849-860
    • Knoblich, J.A.1
  • 98
    • 39149086121 scopus 로고    scopus 로고
    • Stems cells and the pathways to aging and cancer
    • Rossi D.J., Jamieson C.H., Weissman I.L. Stems cells and the pathways to aging and cancer. Cell 2008, 132(4):681-696.
    • (2008) Cell , vol.132 , Issue.4 , pp. 681-696
    • Rossi, D.J.1    Jamieson, C.H.2    Weissman, I.L.3
  • 99
    • 33646045010 scopus 로고    scopus 로고
    • Stem cells and cancer: two faces of eve
    • Clarke M.F., Fuller M. Stem cells and cancer: two faces of eve. Cell 2006, 124(6):1111-1115.
    • (2006) Cell , vol.124 , Issue.6 , pp. 1111-1115
    • Clarke, M.F.1    Fuller, M.2
  • 100
    • 51649111430 scopus 로고    scopus 로고
    • Single-cell cloning of colon cancer stem cells reveals a multi-lineage differentiation capacity
    • Vermeulen L., et al. Single-cell cloning of colon cancer stem cells reveals a multi-lineage differentiation capacity. Proceedings of the National Academy of Sciences of the United States of America 2008, 105(36):13427-13432.
    • (2008) Proceedings of the National Academy of Sciences of the United States of America , vol.105 , Issue.36 , pp. 13427-13432
    • Vermeulen, L.1
  • 101
    • 34249724470 scopus 로고    scopus 로고
    • Cellular senescence: ex vivo p53-dependent asymmetric cell kinetics
    • Rambhatla L., et al. Cellular senescence: ex vivo p53-dependent asymmetric cell kinetics. Journal of Biomedicine and Biotechnology 2001, 1(1):28-37.
    • (2001) Journal of Biomedicine and Biotechnology , vol.1 , Issue.1 , pp. 28-37
    • Rambhatla, L.1
  • 102
    • 70349123829 scopus 로고    scopus 로고
    • The tumor suppressor p53 regulates polarity of self-renewing divisions in mammary stem cells
    • Cicalese A., et al. The tumor suppressor p53 regulates polarity of self-renewing divisions in mammary stem cells. Cell 2009, 138(6):1083-1095.
    • (2009) Cell , vol.138 , Issue.6 , pp. 1083-1095
    • Cicalese, A.1
  • 104
    • 0036894521 scopus 로고    scopus 로고
    • Cosegregation of chromosomes containing immortal DNA strands in cells that cycle with asymmetric stem cell kinetics
    • Merok J.R., et al. Cosegregation of chromosomes containing immortal DNA strands in cells that cycle with asymmetric stem cell kinetics. Cancer Research 2002, 62(23):6791-6795.
    • (2002) Cancer Research , vol.62 , Issue.23 , pp. 6791-6795
    • Merok, J.R.1
  • 105
    • 17144373352 scopus 로고    scopus 로고
    • Immortal DNA strand cosegregation requires p53/IMPDH-dependent asymmetric self-renewal associated with adult stem cells
    • Rambhatla L., et al. Immortal DNA strand cosegregation requires p53/IMPDH-dependent asymmetric self-renewal associated with adult stem cells. Cancer Research 2005, 65:3155-3161.
    • (2005) Cancer Research , vol.65 , pp. 3155-3161
    • Rambhatla, L.1
  • 106
    • 84878358981 scopus 로고    scopus 로고
    • Left-right symmetry breaking in mice by left-right dynein may occur via a biased chromatid segregation mechanism, without directly involving the Nodal gene
    • Sauer S., Klar A.J.S. Left-right symmetry breaking in mice by left-right dynein may occur via a biased chromatid segregation mechanism, without directly involving the Nodal gene. Frontiers in Oncology 2012, 2:166.
    • (2012) Frontiers in Oncology , vol.2 , pp. 166
    • Sauer, S.1    Klar, A.J.S.2
  • 109
    • 20444390654 scopus 로고    scopus 로고
    • Chromosome and replisome dynamics in E. coli: loss of sister cohesion triggers global chromosome movement and mediates chromosome segregation
    • Bates D., Kleckner N. Chromosome and replisome dynamics in E. coli: loss of sister cohesion triggers global chromosome movement and mediates chromosome segregation. Cell 2005, 121(6):899-911.
    • (2005) Cell , vol.121 , Issue.6 , pp. 899-911
    • Bates, D.1    Kleckner, N.2
  • 110
    • 25144481661 scopus 로고    scopus 로고
    • Dancing around the divisome: asymmetric chromosome segregation in Escherichia coli
    • Wang X., Possoz C., Sherratt D.J. Dancing around the divisome: asymmetric chromosome segregation in Escherichia coli. Genes and Development 2005, 19(19):2367-2377.
    • (2005) Genes and Development , vol.19 , Issue.19 , pp. 2367-2377
    • Wang, X.1    Possoz, C.2    Sherratt, D.J.3
  • 111
    • 33749177128 scopus 로고    scopus 로고
    • The Escherichia coli chromosome is organized with the left and right chromosome arms in separate cell halves
    • Nielsen H.J., et al. The Escherichia coli chromosome is organized with the left and right chromosome arms in separate cell halves. Molecular Microbiology 2006, 62(2):331-338.
    • (2006) Molecular Microbiology , vol.62 , Issue.2 , pp. 331-338
    • Nielsen, H.J.1
  • 112
    • 55249102934 scopus 로고    scopus 로고
    • Non-random segregation of sister chromosomes in Escherichia coli
    • White M.a., et al. Non-random segregation of sister chromosomes in Escherichia coli. Nature 2008, 455:1248-1250.
    • (2008) Nature , vol.455 , pp. 1248-1250
    • White, M.1
  • 113
    • 0028157225 scopus 로고
    • A Caulobacter DNA methyltransferase that functions only in the predivisional cell
    • Zweiger G., Marczynski G., Shapiro L. A Caulobacter DNA methyltransferase that functions only in the predivisional cell. Journal of Molecular Biology 1994, 235(2):472-485.
    • (1994) Journal of Molecular Biology , vol.235 , Issue.2 , pp. 472-485
    • Zweiger, G.1    Marczynski, G.2    Shapiro, L.3
  • 114
    • 0032963282 scopus 로고    scopus 로고
    • Chromosome methylation and measurement of faithful, once and only once per cell cycle chromosome replication in Caulobacter crescentus
    • Marczynski G.T. Chromosome methylation and measurement of faithful, once and only once per cell cycle chromosome replication in Caulobacter crescentus. Journal of Bacteriology 1999, 181(7):1984-1993.
    • (1999) Journal of Bacteriology , vol.181 , Issue.7 , pp. 1984-1993
    • Marczynski, G.T.1
  • 115
    • 3042548402 scopus 로고    scopus 로고
    • Rapid and sequential movement of individual chromosomal loci to specific subcellular locations during bacterial DNA replication
    • Viollier P.H., et al. Rapid and sequential movement of individual chromosomal loci to specific subcellular locations during bacterial DNA replication. Proceedings of the National Academy of Sciences of the United States of America 2004, 101(25):9257-9262.
    • (2004) Proceedings of the National Academy of Sciences of the United States of America , vol.101 , Issue.25 , pp. 9257-9262
    • Viollier, P.H.1
  • 117
    • 0026027993 scopus 로고
    • Random segregation of chromatids at mitosis in Saccharomyces cerevisiae
    • Neff M.W., Burke D.J. Random segregation of chromatids at mitosis in Saccharomyces cerevisiae. Genetics 1991, 127(3):463-473.
    • (1991) Genetics , vol.127 , Issue.3 , pp. 463-473
    • Neff, M.W.1    Burke, D.J.2
  • 118
    • 84870681017 scopus 로고    scopus 로고
    • Sister chromatids segregate at mitosis without mother-daughter bias in Saccharomyces cerevisiae
    • Keyes B.E., et al. Sister chromatids segregate at mitosis without mother-daughter bias in Saccharomyces cerevisiae. Genetics 2012, 192(4):1553-1557.
    • (2012) Genetics , vol.192 , Issue.4 , pp. 1553-1557
    • Keyes, B.E.1
  • 120
    • 0014348298 scopus 로고
    • Nonrandom sister chromatid segregation and nuclear migration in hyphae of Aspergillus nidulans
    • Rosenberger R.F., Kessel M. Nonrandom sister chromatid segregation and nuclear migration in hyphae of Aspergillus nidulans. Journal of Bacteriology 1968, 96(4):1208-1213.
    • (1968) Journal of Bacteriology , vol.96 , Issue.4 , pp. 1208-1213
    • Rosenberger, R.F.1    Kessel, M.2
  • 121
    • 0023647938 scopus 로고
    • Parental DNA strands segregate randomly during embryonic development of Caenorhabditis elegans
    • Ito K., McGhee J.D. Parental DNA strands segregate randomly during embryonic development of Caenorhabditis elegans. Cell 1987, 49(3):329-336.
    • (1987) Cell , vol.49 , Issue.3 , pp. 329-336
    • Ito, K.1    McGhee, J.D.2
  • 122
    • 67349233095 scopus 로고    scopus 로고
    • The germline stem cells of Drosophila melanogaster partition DNA non-randomly
    • Karpowicz P., et al. The germline stem cells of Drosophila melanogaster partition DNA non-randomly. European Journal of Cell Biology 2009, 88:397-408.
    • (2009) European Journal of Cell Biology , vol.88 , pp. 397-408
    • Karpowicz, P.1
  • 123
    • 79952787133 scopus 로고    scopus 로고
    • Drosophila male germline stem cells do not asymmetrically segregate chromosome strands
    • Yadlapalli S., Cheng J., Yamashita Y.M. Drosophila male germline stem cells do not asymmetrically segregate chromosome strands. Journal of Cell Science 2011, 124(Pt 6):933-939.
    • (2011) Journal of Cell Science , vol.124 , Issue.PART 6 , pp. 933-939
    • Yadlapalli, S.1    Cheng, J.2    Yamashita, Y.M.3
  • 124
    • 37249003828 scopus 로고    scopus 로고
    • Label-retaining cells in the rat submandibular gland
    • Kimoto M., et al. Label-retaining cells in the rat submandibular gland. Journal of Histochemistry and Cytochemistry 2008, 56(1):15-24.
    • (2008) Journal of Histochemistry and Cytochemistry , vol.56 , Issue.1 , pp. 15-24
    • Kimoto, M.1
  • 125
    • 0024058941 scopus 로고
    • Paternal DNA strands segregate to both trophectoderm and inner cell mass of the developing mouse embryo
    • Ito K., McGhee J.D., Schultz G.A. Paternal DNA strands segregate to both trophectoderm and inner cell mass of the developing mouse embryo. Genes and Development 1988, 2(8):929-936.
    • (1988) Genes and Development , vol.2 , Issue.8 , pp. 929-936
    • Ito, K.1    McGhee, J.D.2    Schultz, G.A.3
  • 126
    • 56549128268 scopus 로고    scopus 로고
    • Hematopoietic stem cells reversibly switch from dormancy to self-renewal during homeostasis and repair
    • Wilson A., et al. Hematopoietic stem cells reversibly switch from dormancy to self-renewal during homeostasis and repair. Cell 2008, 135:1118-1129.
    • (2008) Cell , vol.135 , pp. 1118-1129
    • Wilson, A.1
  • 127
    • 14844343185 scopus 로고    scopus 로고
    • Label-retaining epithelial cells in mouse mammary gland divide asymmetrically and retain their template DNA strands
    • Smith G.H. Label-retaining epithelial cells in mouse mammary gland divide asymmetrically and retain their template DNA strands. Development (Cambridge, England) 2005, 132:681-687.
    • (2005) Development (Cambridge, England) , vol.132 , pp. 681-687
    • Smith, G.H.1
  • 128
    • 77958028939 scopus 로고    scopus 로고
    • Immortalized, pre-malignant epithelial cell populations contain long-lived, label-retaining cells that asymmetrically divide and retain their template DNA
    • Bussard K.M., et al. Immortalized, pre-malignant epithelial cell populations contain long-lived, label-retaining cells that asymmetrically divide and retain their template DNA. Breast Cancer Research: BCR 2010, 12:R86.
    • (2010) Breast Cancer Research: BCR , vol.12
    • Bussard, K.M.1
  • 129
    • 69449088307 scopus 로고    scopus 로고
    • Nonselective sister chromatid segregation in mouse embryonic neocortical precursor cells
    • Fei J.F., Huttner W.B. Nonselective sister chromatid segregation in mouse embryonic neocortical precursor cells. Cerebral Cortex 2009, 19(Suppl. 1):i49-i54.
    • (2009) Cerebral Cortex , vol.19 , Issue.SUPPL. 1
    • Fei, J.F.1    Huttner, W.B.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.