-
1
-
-
0036225281
-
Reaching a genetic and molecular understanding of skeletal development
-
Karsenty G, Wagner EF., Reaching a genetic and molecular understanding of skeletal development. Dev Cell. 2002; 2 (4): 389-406.
-
(2002)
Dev Cell.
, vol.2
, Issue.4
, pp. 389-406
-
-
Karsenty, G.1
Wagner, E.F.2
-
2
-
-
34447132814
-
Skeletal remodeling in health and disease
-
Zaidi M., Skeletal remodeling in health and disease. Nat Med. 2007; 13 (7): 791-801.
-
(2007)
Nat Med.
, vol.13
, Issue.7
, pp. 791-801
-
-
Zaidi, M.1
-
3
-
-
0043267732
-
Genetic regulation of osteoclast development and function
-
Teitelbaum SL, Ross FP., Genetic regulation of osteoclast development and function. Nat Rev Genet. 2003; 4 (8): 638-49.
-
(2003)
Nat Rev Genet.
, vol.4
, Issue.8
, pp. 638-649
-
-
Teitelbaum, S.L.1
Ross, F.P.2
-
4
-
-
0037673945
-
Osteoclast differentiation and activation
-
Boyle WJ, Simonet WS, Lacey DL., Osteoclast differentiation and activation. Nature. 2003; 423 (6937): 337-42.
-
(2003)
Nature.
, vol.423
, Issue.6937
, pp. 337-342
-
-
Boyle, W.J.1
Simonet, W.S.2
Lacey, D.L.3
-
5
-
-
33947583822
-
Osteoimmunology: Shared mechanisms and crosstalk between the immune and bone systems
-
Takayanagi H., Osteoimmunology: shared mechanisms and crosstalk between the immune and bone systems. Nat Rev Immunol. 2007; 7 (4): 292-304.
-
(2007)
Nat Rev Immunol.
, vol.7
, Issue.4
, pp. 292-304
-
-
Takayanagi, H.1
-
6
-
-
62049085382
-
Coordination of PGC-1beta and iron uptake in mitochondrial biogenesis and osteoclast activation
-
Ishii KA, Fumoto T, Iwai K, Takeshita S, Ito M, Shimohata N, Aburatani H, Taketani S, Lelliott CJ, Vidal-Puig A, Ikeda K., Coordination of PGC-1beta and iron uptake in mitochondrial biogenesis and osteoclast activation. Nat Med. 2009; 15 (3): 259-66.
-
(2009)
Nat Med.
, vol.15
, Issue.3
, pp. 259-266
-
-
Ishii, K.A.1
Fumoto, T.2
Iwai, K.3
Takeshita, S.4
Ito, M.5
Shimohata, N.6
Aburatani, H.7
Taketani, S.8
Lelliott, C.J.9
Vidal-Puig, A.10
Ikeda, K.11
-
7
-
-
0036732410
-
SHIP-deficient mice are severely osteoporotic due to increased numbers of hyper-resorptive osteoclasts
-
Takeshita S, Namba N, Zhao JJ, Jiang Y, Genant HK, Silva MJ, Brodt MD, Helgason CD, Kalesnikoff J, Rauh MJ, Humphries RK, Krystal G, Teitelbaum SL, Ross FP., SHIP-deficient mice are severely osteoporotic due to increased numbers of hyper-resorptive osteoclasts. Nat Med. 2002; 8 (9): 943-9.
-
(2002)
Nat Med.
, vol.8
, Issue.9
, pp. 943-949
-
-
Takeshita, S.1
Namba, N.2
Zhao, J.J.3
Jiang, Y.4
Genant, H.K.5
Silva, M.J.6
Brodt, M.D.7
Helgason, C.D.8
Kalesnikoff, J.9
Rauh, M.J.10
Humphries, R.K.11
Krystal, G.12
Teitelbaum, S.L.13
Ross, F.P.14
-
8
-
-
84861833364
-
MTORC1 is essential for leukemia propagation but not stem cell self-renewal
-
Hoshii T, Tadokoro Y, Naka K, Ooshio T, Muraguchi T, Sugiyama N, Soga T, Araki K, Yamamura K, Hirao A., mTORC1 is essential for leukemia propagation but not stem cell self-renewal. J Clin Invest. 2012; 122 (6): 2114-29.
-
(2012)
J Clin Invest.
, vol.122
, Issue.6
, pp. 2114-2129
-
-
Hoshii, T.1
Tadokoro, Y.2
Naka, K.3
Ooshio, T.4
Muraguchi, T.5
Sugiyama, N.6
Soga, T.7
Araki, K.8
Yamamura, K.9
Hirao, A.10
-
9
-
-
0033635249
-
In the absence of extrinsic signals, nutrient utilization by lymphocytes is insufficient to maintain either cell size or viability
-
Rathmell JC, Vander Heiden MG, Harris MH, Frauwirth KA, Thompson CB., In the absence of extrinsic signals, nutrient utilization by lymphocytes is insufficient to maintain either cell size or viability. Mol Cell. 2000; 6 (3): 683-92.
-
(2000)
Mol Cell.
, vol.6
, Issue.3
, pp. 683-692
-
-
Rathmell, J.C.1
Vander Heiden, M.G.2
Harris, M.H.3
Frauwirth, K.A.4
Thompson, C.B.5
-
10
-
-
84863552418
-
A mitochondrial pyruvate carrier required for pyruvate uptake in yeast, Drosophila, and humans
-
Bricker DK, Taylor EB, Schell JC, Orsak T, Boutron A, Chen YC, Cox JE, Cardon CM, Van Vranken JG, Dephoure N, Redin C, Boudina S, Gygi SP, Brivet M, Thummel CS, Rutter J., A mitochondrial pyruvate carrier required for pyruvate uptake in yeast, Drosophila, and humans. Science. 2012; 337 (6090): 96-100.
-
(2012)
Science.
, vol.337
, Issue.6090
, pp. 96-100
-
-
Bricker, D.K.1
Taylor, E.B.2
Schell, J.C.3
Orsak, T.4
Boutron, A.5
Chen, Y.C.6
Cox, J.E.7
Cardon, C.M.8
Van Vranken, J.G.9
Dephoure, N.10
Redin, C.11
Boudina, S.12
Gygi, S.P.13
Brivet, M.14
Thummel, C.S.15
Rutter, J.16
-
11
-
-
84863553135
-
Identification and functional expression of the mitochondrial pyruvate carrier
-
Herzig S, Raemy E, Montessuit S, Veuthey JL, Zamboni N, Westermann B, Kunji ER, Martinou JC., Identification and functional expression of the mitochondrial pyruvate carrier. Science. 2012; 337 (6090): 93-6.
-
(2012)
Science.
, vol.337
, Issue.6090
, pp. 93-96
-
-
Herzig, S.1
Raemy, E.2
Montessuit, S.3
Veuthey, J.L.4
Zamboni, N.5
Westermann, B.6
Kunji, E.R.7
Martinou, J.C.8
-
12
-
-
0034907875
-
Modeling pO(2) distributions in the bone marrow hematopoietic compartment. II. Modified Kroghian models
-
Chow DC, Wenning LA, Miller WM, Papoutsakis ET., Modeling pO(2) distributions in the bone marrow hematopoietic compartment. II. Modified Kroghian models. Biophys J. 2001; 81 (2): 685-96.
-
(2001)
Biophys J.
, vol.81
, Issue.2
, pp. 685-696
-
-
Chow, D.C.1
Wenning, L.A.2
Miller, W.M.3
Papoutsakis, E.T.4
-
13
-
-
47049124039
-
Osteoclast size is controlled by Fra-2 through LIF/LIF-receptor signalling and hypoxia
-
Bozec A, Bakiri L, Hoebertz A, Eferl R, Schilling AF, Komnenovic V, Scheuch H, Priemel M, Stewart CL, Amling M, Wagner EF., Osteoclast size is controlled by Fra-2 through LIF/LIF-receptor signalling and hypoxia. Nature. 2008; 454 (7201): 221-5.
-
(2008)
Nature.
, vol.454
, Issue.7201
, pp. 221-225
-
-
Bozec, A.1
Bakiri, L.2
Hoebertz, A.3
Eferl, R.4
Schilling, A.F.5
Komnenovic, V.6
Scheuch, H.7
Priemel, M.8
Stewart, C.L.9
Amling, M.10
Wagner, E.F.11
-
14
-
-
0029888341
-
Cloning and functional characterization of a system ASC-like Na + -dependent neutral amino acid transporter
-
Utsunomiya-Tate N, Endou H, Kanai Y., Cloning and functional characterization of a system ASC-like Na + -dependent neutral amino acid transporter. J Biol Chem. 1996; 271 (25): 14883-90.
-
(1996)
J Biol Chem.
, vol.271
, Issue.25
, pp. 14883-14890
-
-
Utsunomiya-Tate, N.1
Endou, H.2
Kanai, Y.3
-
15
-
-
59049087460
-
Bidirectional transport of amino acids regulates mTOR and autophagy
-
Nicklin P, Bergman P, Zhang B, Triantafellow E, Wang H, Nyfeler B, Yang H, Hild M, Kung C, Wilson C, Myer VE, MacKeigan JP, Porter JA, Wang YK, Cantley LC, Finan PM, Murphy LO., Bidirectional transport of amino acids regulates mTOR and autophagy. Cell. 2009; 136 (3): 521-34.
-
(2009)
Cell.
, vol.136
, Issue.3
, pp. 521-534
-
-
Nicklin, P.1
Bergman, P.2
Zhang, B.3
Triantafellow, E.4
Wang, H.5
Nyfeler, B.6
Yang, H.7
Hild, M.8
Kung, C.9
Wilson, C.10
Myer, V.E.11
Mackeigan, J.P.12
Porter, J.A.13
Wang, Y.K.14
Cantley, L.C.15
Finan, P.M.16
Murphy, L.O.17
-
16
-
-
37449024702
-
The biology of cancer: Metabolic reprogramming fuels cell growth and proliferation
-
DeBerardinis RJ, Lum JJ, Hatzivassiliou G, Thompson CB., The biology of cancer: metabolic reprogramming fuels cell growth and proliferation. Cell Metab. 2008; 7 (1): 11-20.
-
(2008)
Cell Metab.
, vol.7
, Issue.1
, pp. 11-20
-
-
Deberardinis, R.J.1
Lum, J.J.2
Hatzivassiliou, G.3
Thompson, C.B.4
-
17
-
-
78650847770
-
Selective inhibition of BET bromodomains
-
Filippakopoulos P, Qi J, Picaud S, Shen Y, Smith WB, Fedorov O, Morse EM, Keates T, Hickman TT, Felletar I, Philpott M, Munro S, McKeown MR, Wang Y, Christie AL, West N, Cameron MJ, Schwartz B, Heightman TD, La Thangue N, French CA, Wiest O, Kung AL, Knapp S, Bradner JE., Selective inhibition of BET bromodomains. Nature. 2010; 468 (7327): 1067-73.
-
(2010)
Nature.
, vol.468
, Issue.7327
, pp. 1067-1073
-
-
Filippakopoulos, P.1
Qi, J.2
Picaud, S.3
Shen, Y.4
Smith, W.B.5
Fedorov, O.6
Morse, E.M.7
Keates, T.8
Hickman, T.T.9
Felletar, I.10
Philpott, M.11
Munro, S.12
McKeown, M.R.13
Wang, Y.14
Christie, A.L.15
West, N.16
Cameron, M.J.17
Schwartz, B.18
Heightman, T.D.19
La Thangue, N.20
French, C.A.21
Wiest, O.22
Kung, A.L.23
Knapp, S.24
Bradner, J.E.25
more..
-
18
-
-
80052955256
-
BET bromodomain inhibition as a therapeutic strategy to target c-Myc
-
Delmore JE, Issa GC, Lemieux ME, Rahl PB, Shi J, Jacobs HM, Kastritis E, Gilpatrick T, Paranal RM, Qi J, Chesi M, Schinzel AC, McKeown MR, Heffernan TP, Vakoc CR, Bergsagel PL, Ghobrial IM, Richardson PG, Young RA, Hahn WC, Anderson KC, Kung AL, Bradner JE, Mitsiades CS., BET bromodomain inhibition as a therapeutic strategy to target c-Myc. Cell. 2011; 146 (6): 904-17.
-
(2011)
Cell.
, vol.146
, Issue.6
, pp. 904-917
-
-
Delmore, J.E.1
Issa, G.C.2
Lemieux, M.E.3
Rahl, P.B.4
Shi, J.5
Jacobs, H.M.6
Kastritis, E.7
Gilpatrick, T.8
Paranal, R.M.9
Qi, J.10
Chesi, M.11
Schinzel, A.C.12
McKeown, M.R.13
Heffernan, T.P.14
Vakoc, C.R.15
Bergsagel, P.L.16
Ghobrial, I.M.17
Richardson, P.G.18
Young, R.A.19
Hahn, W.C.20
Anderson, K.C.21
Kung, A.L.22
Bradner, J.E.23
Mitsiades, C.S.24
more..
-
19
-
-
64749116346
-
C-Myc suppression of miR-23a/b enhances mitochondrial glutaminase expression and glutamine metabolism
-
Gao P, Tchernyshyov I, Chang TC, Lee YS, Kita K, Ochi T, Zeller KI, De Marzo AM, Van Eyk JE, Mendell JT, Dang CV., c-Myc suppression of miR-23a/b enhances mitochondrial glutaminase expression and glutamine metabolism. Nature. 2009; 458 (7239): 762-5.
-
(2009)
Nature.
, vol.458
, Issue.7239
, pp. 762-765
-
-
Gao, P.1
Tchernyshyov, I.2
Chang, T.C.3
Lee, Y.S.4
Kita, K.5
Ochi, T.6
Zeller, K.I.7
De Marzo, A.M.8
Van Eyk, J.E.9
Mendell, J.T.10
Dang, C.V.11
-
20
-
-
0142057146
-
Low molecular weight inhibitors of Myc-Max interaction and function
-
Yin X, Giap C, Lazo JS, Prochownik EV., Low molecular weight inhibitors of Myc-Max interaction and function. Oncogene. 2003; 22 (40): 6151-9.
-
(2003)
Oncogene.
, vol.22
, Issue.40
, pp. 6151-6159
-
-
Yin, X.1
Giap, C.2
Lazo, J.S.3
Prochownik, E.V.4
-
21
-
-
78650510609
-
MTOR: From growth signal integration to cancer, diabetes and ageing
-
Zoncu R, Efeyan A, Sabatini DM., mTOR: from growth signal integration to cancer, diabetes and ageing. Nat Rev Mol Cell Biol. 2011; 12 (1): 21-35.
-
(2011)
Nat Rev Mol Cell Biol.
, vol.12
, Issue.1
, pp. 21-35
-
-
Zoncu, R.1
Efeyan, A.2
Sabatini, D.M.3
-
22
-
-
80155142474
-
Rapamycin passes the torch: A new generation of mTOR inhibitors
-
Benjamin D, Colombi M, Moroni C, Hall MN., Rapamycin passes the torch: a new generation of mTOR inhibitors. Nat Rev Drug Discov. 2011; 10 (11): 868-80.
-
(2011)
Nat Rev Drug Discov.
, vol.10
, Issue.11
, pp. 868-880
-
-
Benjamin, D.1
Colombi, M.2
Moroni, C.3
Hall, M.N.4
-
23
-
-
48649085816
-
Regulation of TORC1 by Rag GTPases in nutrient response
-
Kim E, Goraksha-Hicks P, Li L, Neufeld TP, Guan KL., Regulation of TORC1 by Rag GTPases in nutrient response. Nat Cell Biol. 2008; 10 (8): 935-45.
-
(2008)
Nat Cell Biol.
, vol.10
, Issue.8
, pp. 935-945
-
-
Kim, E.1
Goraksha-Hicks, P.2
Li, L.3
Neufeld, T.P.4
Guan, K.L.5
-
24
-
-
45849105156
-
The Rag GTPases bind raptor and mediate amino acid signaling to mTORC1
-
Sancak Y, Peterson TR, Shaul YD, Lindquist RA, Thoreen CC, Bar-Peled L, Sabatini DM., The Rag GTPases bind raptor and mediate amino acid signaling to mTORC1. Science. 2008; 320 (5882): 1496-501.
-
(2008)
Science.
, vol.320
, Issue.5882
, pp. 1496-1501
-
-
Sancak, Y.1
Peterson, T.R.2
Shaul, Y.D.3
Lindquist, R.A.4
Thoreen, C.C.5
Bar-Peled, L.6
Sabatini, D.M.7
-
25
-
-
77951768486
-
Ragulator-Rag complex targets mTORC1 to the lysosomal surface and is necessary for its activation by amino acids
-
Sancak Y, Bar-Peled L, Zoncu R, Markhard AL, Nada S, Sabatini DM., Ragulator-Rag complex targets mTORC1 to the lysosomal surface and is necessary for its activation by amino acids. Cell. 2010; 141 (2): 290-303.
-
(2010)
Cell.
, vol.141
, Issue.2
, pp. 290-303
-
-
Sancak, Y.1
Bar-Peled, L.2
Zoncu, R.3
Markhard, A.L.4
Nada, S.5
Sabatini, D.M.6
-
26
-
-
65549145048
-
An ATP-competitive mammalian target of rapamycin inhibitor reveals rapamycin-resistant functions of mTORC1
-
Thoreen CC, Kang SA, Chang JW, Liu Q, Zhang J, Gao Y, Reichling LJ, Sim T, Sabatini DM, Gray NS., An ATP-competitive mammalian target of rapamycin inhibitor reveals rapamycin-resistant functions of mTORC1. J Biol Chem. 2009; 284 (12): 8023-32.
-
(2009)
J Biol Chem.
, vol.284
, Issue.12
, pp. 8023-8032
-
-
Thoreen, C.C.1
Kang, S.A.2
Chang, J.W.3
Liu, Q.4
Zhang, J.5
Gao, Y.6
Reichling, L.J.7
Sim, T.8
Sabatini, D.M.9
Gray, N.S.10
-
28
-
-
0001221508
-
On respiratory impairment in cancer cells
-
Warburg O., On respiratory impairment in cancer cells. Science. 1956; 124 (3215): 269-70.
-
(1956)
Science.
, vol.124
, Issue.3215
, pp. 269-270
-
-
Warburg, O.1
-
29
-
-
34548014737
-
Revving the engine: Signal transduction fuels T cell activation
-
Jones RG, Thompson CB., Revving the engine: signal transduction fuels T cell activation. Immunity. 2007; 27 (2): 173-8.
-
(2007)
Immunity.
, vol.27
, Issue.2
, pp. 173-178
-
-
Jones, R.G.1
Thompson, C.B.2
-
30
-
-
0035499204
-
Hypoxia in cartilage: HIF-1alpha is essential for chondrocyte growth arrest and survival
-
Schipani E, Ryan HE, Didrickson S, Kobayashi T, Knight M, Johnson RS., Hypoxia in cartilage: HIF-1alpha is essential for chondrocyte growth arrest and survival. Genes Dev. 2001; 15 (21): 2865-76.
-
(2001)
Genes Dev.
, vol.15
, Issue.21
, pp. 2865-2876
-
-
Schipani, E.1
Ryan, H.E.2
Didrickson, S.3
Kobayashi, T.4
Knight, M.5
Johnson, R.S.6
-
31
-
-
34249913494
-
The hypoxia-inducible factor alpha pathway couples angiogenesis to osteogenesis during skeletal development
-
Wang Y, Wan C, Deng L, Liu X, Cao X, Gilbert SR, Bouxsein ML, Faugere MC, Guldberg RE, Gerstenfeld LC, Haase VH, Johnson RS, Schipani E, Clemens TL., The hypoxia-inducible factor alpha pathway couples angiogenesis to osteogenesis during skeletal development. J Clin Invest. 2007; 117 (6): 1616-26.
-
(2007)
J Clin Invest.
, vol.117
, Issue.6
, pp. 1616-1626
-
-
Wang, Y.1
Wan, C.2
Deng, L.3
Liu, X.4
Cao, X.5
Gilbert, S.R.6
Bouxsein, M.L.7
Faugere, M.C.8
Guldberg, R.E.9
Gerstenfeld, L.C.10
Haase, V.H.11
Johnson, R.S.12
Schipani, E.13
Clemens, T.L.14
-
32
-
-
0037608771
-
Hypoxia is a major stimulator of osteoclast formation and bone resorption
-
Arnett TR, Gibbons DC, Utting JC, Orriss IR, Hoebertz A, Rosendaal M, Meghji S., Hypoxia is a major stimulator of osteoclast formation and bone resorption. J Cell Physiol. 2003; 196 (1): 2-8.
-
(2003)
J Cell Physiol.
, vol.196
, Issue.1
, pp. 2-8
-
-
Arnett, T.R.1
Gibbons, D.C.2
Utting, J.C.3
Orriss, I.R.4
Hoebertz, A.5
Rosendaal, M.6
Meghji, S.7
-
33
-
-
66849097919
-
Acute hypoxia and osteoclast activity: A balance between enhanced resorption and increased apoptosis
-
Knowles HJ, Athanasou NA., Acute hypoxia and osteoclast activity: a balance between enhanced resorption and increased apoptosis. J Pathol. 2009; 218 (2): 256-64.
-
(2009)
J Pathol.
, vol.218
, Issue.2
, pp. 256-264
-
-
Knowles, H.J.1
Athanasou, N.A.2
-
34
-
-
0031587940
-
Regulation of osteoclastic bone resorption by glucose
-
Williams JP, Blair HC, McDonald JM, McKenna MA, Jordan SE, Williford J, Hardy RW., Regulation of osteoclastic bone resorption by glucose. Biochem Biophys Res Commun. 1997; 235 (3): 646-51.
-
(1997)
Biochem Biophys Res Commun.
, vol.235
, Issue.3
, pp. 646-651
-
-
Williams, J.P.1
Blair, H.C.2
McDonald, J.M.3
McKenna, M.A.4
Jordan, S.E.5
Williford, J.6
Hardy, R.W.7
-
35
-
-
35848940094
-
Osteoclast precursors display dynamic metabolic shifts toward accelerated glucose metabolism at an early stage of RANKL-stimulated osteoclast differentiation
-
Kim JM, Jeong D, Kang HK, Jung SY, Kang SS, Min BM., Osteoclast precursors display dynamic metabolic shifts toward accelerated glucose metabolism at an early stage of RANKL-stimulated osteoclast differentiation. Cell Physiol Biochem. 2007; 20 (6): 935-46.
-
(2007)
Cell Physiol Biochem.
, vol.20
, Issue.6
, pp. 935-946
-
-
Kim, J.M.1
Jeong, D.2
Kang, H.K.3
Jung, S.Y.4
Kang, S.S.5
Min, B.M.6
-
36
-
-
0036233577
-
C-myc is required for osteoclast differentiation
-
Battaglino R, Kim D, Fu J, Vaage B, Fu XY, Stashenko P., c-myc is required for osteoclast differentiation. J Bone Miner Res. 2002; 17 (5): 763-73.
-
(2002)
J Bone Miner Res.
, vol.17
, Issue.5
, pp. 763-773
-
-
Battaglino, R.1
Kim, D.2
Fu, J.3
Vaage, B.4
Fu, X.Y.5
Stashenko, P.6
-
37
-
-
0036708160
-
Transcription from the tartrate-resistant acid phosphatase promoter is negatively regulated by the Myc oncoprotein
-
Daumer KM, Taparowsky EJ, Hall DJ, Steinbeck MJ., Transcription from the tartrate-resistant acid phosphatase promoter is negatively regulated by the Myc oncoprotein. J Bone Miner Res. 2002; 17 (9): 1701-9.
-
(2002)
J Bone Miner Res.
, vol.17
, Issue.9
, pp. 1701-1709
-
-
Daumer, K.M.1
Taparowsky, E.J.2
Hall, D.J.3
Steinbeck, M.J.4
-
38
-
-
13544249982
-
Akt1/Akt2 and mammalian target of rapamycin/Bim play critical roles in osteoclast differentiation and survival, respectively, whereas Akt is dispensable for cell survival in isolated osteoclast precursors
-
Sugatani T, Hruska KA., Akt1/Akt2 and mammalian target of rapamycin/Bim play critical roles in osteoclast differentiation and survival, respectively, whereas Akt is dispensable for cell survival in isolated osteoclast precursors. J Biol Chem. 2005; 280 (5): 3583-9.
-
(2005)
J Biol Chem.
, vol.280
, Issue.5
, pp. 3583-3589
-
-
Sugatani, T.1
Hruska, K.A.2
-
39
-
-
0141893375
-
M-CSF, TNFalpha and RANK ligand promote osteoclast survival by signaling through mTOR/S6 kinase
-
Glantschnig H, Fisher JE, Wesolowski G, Rodan GA, Reszka AA., M-CSF, TNFalpha and RANK ligand promote osteoclast survival by signaling through mTOR/S6 kinase. Cell Death Differ. 2003; 10 (10): 1165-77.
-
(2003)
Cell Death Differ.
, vol.10
, Issue.10
, pp. 1165-1177
-
-
Glantschnig, H.1
Fisher, J.E.2
Wesolowski, G.3
Rodan, G.A.4
Reszka, A.A.5
-
40
-
-
77951255954
-
Rapamycin and the transcription factor C/EBPbeta as a switch in osteoclast differentiation: Implications for lytic bone diseases
-
Smink JJ, Leutz A., Rapamycin and the transcription factor C/EBPbeta as a switch in osteoclast differentiation: implications for lytic bone diseases. J Mol Med (Berl). 2010; 88 (3): 227-33.
-
(2010)
J Mol Med (Berl).
, vol.88
, Issue.3
, pp. 227-233
-
-
Smink, J.J.1
Leutz, A.2
-
41
-
-
8444225722
-
Everolimus suppresses cancellous bone loss, bone resorption, and cathepsin K expression by osteoclasts
-
Kneissel M, Luong-Nguyen NH, Baptist M, Cortesi R, Zumstein-Mecker S, Kossida S, O'Reilly T, Lane H, Susa M., Everolimus suppresses cancellous bone loss, bone resorption, and cathepsin K expression by osteoclasts. Bone. 2004; 35 (5): 1144-56.
-
(2004)
Bone.
, vol.35
, Issue.5
, pp. 1144-1156
-
-
Kneissel, M.1
Luong-Nguyen, N.H.2
Baptist, M.3
Cortesi, R.4
Zumstein-Mecker, S.5
Kossida, S.6
O'Reilly, T.7
Lane, H.8
Susa, M.9
-
42
-
-
77955351696
-
Mammalian target of rapamycin signaling is crucial for joint destruction in experimental arthritis and is activated in osteoclasts from patients with rheumatoid arthritis
-
Cejka D, Hayer S, Niederreiter B, Sieghart W, Fuereder T, Zwerina J, Schett G., Mammalian target of rapamycin signaling is crucial for joint destruction in experimental arthritis and is activated in osteoclasts from patients with rheumatoid arthritis. Arthritis Rheum. 2010; 62 (8): 2294-302.
-
(2010)
Arthritis Rheum.
, vol.62
, Issue.8
, pp. 2294-2302
-
-
Cejka, D.1
Hayer, S.2
Niederreiter, B.3
Sieghart, W.4
Fuereder, T.5
Zwerina, J.6
Schett, G.7
|