-
1
-
-
0036225281
-
Reaching a genetic and molecular understanding of skeletal development
-
Karsenty, G. & Wagner, E.F. Reaching a genetic and molecular understanding of skeletal development. Dev. Cell 2, 389-406 (2002).
-
(2002)
Dev. Cell
, vol.2
, pp. 389-406
-
-
Karsenty, G.1
Wagner, E.F.2
-
2
-
-
0043267732
-
Genetic regulation of osteoclast development and function
-
Teitelbaum, S.L. & Ross, F.P. Genetic regulation of osteoclast development and function. Nat. Rev. Genet. 4, 638-649 (2003).
-
(2003)
Nat. Rev. Genet
, vol.4
, pp. 638-649
-
-
Teitelbaum, S.L.1
Ross, F.P.2
-
3
-
-
34447132814
-
Skeletal remodeling in health and disease
-
Zaidi, M. Skeletal remodeling in health and disease. Nat. Med. 13, 791-801 (2007).
-
(2007)
Nat. Med
, vol.13
, pp. 791-801
-
-
Zaidi, M.1
-
4
-
-
0037673945
-
Osteoclast differentiation and activation
-
Boyle, W.J., Simonet, W.S. & Lacey, D.L. Osteoclast differentiation and activation. Nature 423, 337-342 (2003).
-
(2003)
Nature
, vol.423
, pp. 337-342
-
-
Boyle, W.J.1
Simonet, W.S.2
Lacey, D.L.3
-
5
-
-
33947583822
-
Osteoimmunology: Shared mechanisms and crosstalk between the immune and bone systems
-
Takayanagi, H. Osteoimmunology: shared mechanisms and crosstalk between the immune and bone systems. Nat. Rev. Immunol. 7, 292-304 (2007).
-
(2007)
Nat. Rev. Immunol
, vol.7
, pp. 292-304
-
-
Takayanagi, H.1
-
6
-
-
33845539490
-
Regulation of osteoclast differentiation and function by the CaMK-CREB pathway
-
Sato, K. et al. Regulation of osteoclast differentiation and function by the CaMK-CREB pathway. Nat. Med. 12, 1410-1416 (2006).
-
(2006)
Nat. Med
, vol.12
, pp. 1410-1416
-
-
Sato, K.1
-
7
-
-
0030294128
-
Mitochondria-rich, proton-secreting epithelial cells
-
Brown, D. & Breton, S. Mitochondria-rich, proton-secreting epithelial cells. J. Exp. Biol. 199, 2345-2358 (1996).
-
(1996)
J. Exp. Biol
, vol.199
, pp. 2345-2358
-
-
Brown, D.1
Breton, S.2
-
8
-
-
0037127204
-
Peroxisome proliferator-activated receptor γ coactivator 1β (PGC-1β), a novel PGC-1-related transcription coactivator associated with host cell factor
-
Lin, J., Puigserver, P., Donovan, J., Tarr, P. & Spiegelman, B.M. Peroxisome proliferator-activated receptor γ coactivator 1β (PGC-1β), a novel PGC-1-related transcription coactivator associated with host cell factor. J. Biol. Chem. 277, 1645-1648 (2002).
-
(2002)
J. Biol. Chem
, vol.277
, pp. 1645-1648
-
-
Lin, J.1
Puigserver, P.2
Donovan, J.3
Tarr, P.4
Spiegelman, B.M.5
-
9
-
-
24144463983
-
Metabolic control through the PGC-1 family of transcription coactivators
-
Lin, J., Handschin, C. & Spiegelman, B.M. Metabolic control through the PGC-1 family of transcription coactivators. Cell Metab. 1, 361-370 (2005).
-
(2005)
Cell Metab
, vol.1
, pp. 361-370
-
-
Lin, J.1
Handschin, C.2
Spiegelman, B.M.3
-
10
-
-
33749999530
-
Suppression of reactive oxygen species and neurodegeneration by the PGC-1 transcriptional coactivators
-
St-Pierre, J. et al. Suppression of reactive oxygen species and neurodegeneration by the PGC-1 transcriptional coactivators. Cell 127, 397-408 (2006).
-
(2006)
Cell
, vol.127
, pp. 397-408
-
-
St-Pierre, J.1
-
11
-
-
0031883280
-
A dominant-negative inhibitor of CREB reveals that it is a general mediator of stimulus-dependent transcription of c-fos
-
Ahn, S. et al. A dominant-negative inhibitor of CREB reveals that it is a general mediator of stimulus-dependent transcription of c-fos. Mol. Cell. Biol. 18, 967-977 (1998).
-
(1998)
Mol. Cell. Biol
, vol.18
, pp. 967-977
-
-
Ahn, S.1
-
12
-
-
33751022208
-
Ablation of PGC-1β results in defective mitochondrial activity, thermogenesis, hepatic function, and cardiac performance
-
Lelliott, C.J. et al. Ablation of PGC-1β results in defective mitochondrial activity, thermogenesis, hepatic function, and cardiac performance. PLoS Biol. 4, e369 (2006).
-
(2006)
PLoS Biol
, vol.4
-
-
Lelliott, C.J.1
-
13
-
-
33846691564
-
Iron uptake and metabolism in the new millennium
-
Dunn, L.L., Rahmanto, Y.S. & Richardson, D.R. Iron uptake and metabolism in the new millennium. Trends Cell Biol. 17, 93-100 (2007).
-
(2007)
Trends Cell Biol
, vol.17
, pp. 93-100
-
-
Dunn, L.L.1
Rahmanto, Y.S.2
Richardson, D.R.3
-
14
-
-
0034572933
-
Iron homeostasis: Insights from genetics and animal models
-
Andrews, N.C. Iron homeostasis: insights from genetics and animal models. Nat. Rev. Genet. 1, 208-217 (2000).
-
(2000)
Nat. Rev. Genet
, vol.1
, pp. 208-217
-
-
Andrews, N.C.1
-
15
-
-
0032549811
-
A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis
-
Puigserver, P. et al. A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis. Cell 92, 829-839 (1998).
-
(1998)
Cell
, vol.92
, pp. 829-839
-
-
Puigserver, P.1
-
16
-
-
33751400561
-
Hypomorphic mutation of PGC-1β causes mitochondrial dysfunction and liver insulin resistance
-
Vianna, C.R. et al. Hypomorphic mutation of PGC-1β causes mitochondrial dysfunction and liver insulin resistance. Cell Metab. 4, 453-464 (2006).
-
(2006)
Cell Metab
, vol.4
, pp. 453-464
-
-
Vianna, C.R.1
-
17
-
-
34247590356
-
PGC-1β controls mitochondrial metabolism to modulate circadian activity, adaptive thermogenesis, and hepatic steatosis
-
Sonoda, J., Mehl, I.R., Chong, L.W., Nofsinger, R.R. & Evans, R.M. PGC-1β controls mitochondrial metabolism to modulate circadian activity, adaptive thermogenesis, and hepatic steatosis. Proc. Natl. Acad. Sci. USA 104, 5223-5228 (2007).
-
(2007)
Proc. Natl. Acad. Sci. USA
, vol.104
, pp. 5223-5228
-
-
Sonoda, J.1
Mehl, I.R.2
Chong, L.W.3
Nofsinger, R.R.4
Evans, R.M.5
-
18
-
-
33845674997
-
The transcriptional coactivator PGC-1β drives the formation of oxidative type IIX fibers in skeletal muscle
-
Arany, Z. et al. The transcriptional coactivator PGC-1β drives the formation of oxidative type IIX fibers in skeletal muscle. Cell Metab. 5, 35-46 (2007).
-
(2007)
Cell Metab
, vol.5
, pp. 35-46
-
-
Arany, Z.1
-
19
-
-
22144457305
-
A crucial role for reactive oxygen species in RANKL-induced osteoclast differentiation
-
Lee, N.K. et al. A crucial role for reactive oxygen species in RANKL-induced osteoclast differentiation. Blood 106, 852-859 (2005).
-
(2005)
Blood
, vol.106
, pp. 852-859
-
-
Lee, N.K.1
-
20
-
-
0025236484
-
Oxygen-derived free radicals stimulate osteoclastic bone resorption in rodent bone in vitro and in vivo
-
Garrett, I.R. et al. Oxygen-derived free radicals stimulate osteoclastic bone resorption in rodent bone in vitro and in vivo. J. Clin. Invest. 85, 632-639 (1990).
-
(1990)
J. Clin. Invest
, vol.85
, pp. 632-639
-
-
Garrett, I.R.1
-
21
-
-
0026637817
-
Stimulation of osteoclastic bone resorption by hydrogen peroxide
-
Bax, B.E. et al. Stimulation of osteoclastic bone resorption by hydrogen peroxide. Biochem. Biophys. Res. Commun. 183, 1153-1158 (1992).
-
(1992)
Biochem. Biophys. Res. Commun
, vol.183
, pp. 1153-1158
-
-
Bax, B.E.1
-
22
-
-
85177147087
-
-
Steinbeck, M.J., Appel, W.H. Jr., Verhoeven, A.J. & , Karnovsky M.J. NADPH-oxidase expression and in situ production of superoxide by osteoclasts actively resorbing bone. J. Cell Biol. 126, 765-772 (1994).
-
Steinbeck, M.J., Appel, W.H. Jr., Verhoeven, A.J. & , Karnovsky M.J. NADPH-oxidase expression and in situ production of superoxide by osteoclasts actively resorbing bone. J. Cell Biol. 126, 765-772 (1994).
-
-
-
-
23
-
-
0142186681
-
A crucial role for thiol antioxidants in estrogen-deficiency bone loss
-
Lean, J.M. et al. A crucial role for thiol antioxidants in estrogen-deficiency bone loss. J. Clin. Invest. 112, 915-923 (2003).
-
(2003)
J. Clin. Invest
, vol.112
, pp. 915-923
-
-
Lean, J.M.1
-
24
-
-
36849034568
-
PPAR-γ regulates osteoclastogenesis in mice
-
Wan, Y., Chong, L.W. & Evans, R.M. PPAR-γ regulates osteoclastogenesis in mice. Nat. Med. 13, 1496-1503 (2007).
-
(2007)
Nat. Med
, vol.13
, pp. 1496-1503
-
-
Wan, Y.1
Chong, L.W.2
Evans, R.M.3
-
25
-
-
11144354330
-
Costimulatory signals mediated by the ITAM motif cooperate with RANKL for bone homeostasis
-
Koga, T. et al. Costimulatory signals mediated by the ITAM motif cooperate with RANKL for bone homeostasis. Nature 428, 758-763 (2004).
-
(2004)
Nature
, vol.428
, pp. 758-763
-
-
Koga, T.1
-
26
-
-
0042386014
-
The IkB function of NF-κB2 p100 controls stimulated osteoclastogenesis
-
Novack, D.V. et al. The IkB function of NF-κB2 p100 controls stimulated osteoclastogenesis. J. Exp. Med. 198, 771-781 (2003).
-
(2003)
J. Exp. Med
, vol.198
, pp. 771-781
-
-
Novack, D.V.1
-
27
-
-
33748786241
-
-
Borgna-Pignatti, C. Thalassemia. A few new tiles in a large mosaic. Haematologica 91, 1159-1161 (2006).
-
Borgna-Pignatti, C. Thalassemia. A few new tiles in a large mosaic. Haematologica 91, 1159-1161 (2006).
-
-
-
-
28
-
-
5644257032
-
New insights into the pathophysiology and management of osteoporosis in patients with beta thalassaemia
-
Voskaridou, E. & Terpos, E. New insights into the pathophysiology and management of osteoporosis in patients with beta thalassaemia. Br. J. Haematol. 127, 127-139 (2004).
-
(2004)
Br. J. Haematol
, vol.127
, pp. 127-139
-
-
Voskaridou, E.1
Terpos, E.2
-
29
-
-
3242795997
-
Osteoprotegerin and RANKL in the pathogenesis of thalassemia-induced osteoporosis: New pieces of the puzzle
-
Morabito, N. et al. Osteoprotegerin and RANKL in the pathogenesis of thalassemia-induced osteoporosis: new pieces of the puzzle. J. Bone Miner. Res. 19, 722-727 (2004).
-
(2004)
J. Bone Miner. Res
, vol.19
, pp. 722-727
-
-
Morabito, N.1
-
30
-
-
0028925088
-
Bone marrow, cytokines, and bone remodeling. Emerging insights into the pathophysiology of osteoporosis
-
Manolagas, S.C. & Jilka, R.L. Bone marrow, cytokines, and bone remodeling. Emerging insights into the pathophysiology of osteoporosis. N. Engl. J. Med. 332, 305-311 (1995).
-
(1995)
N. Engl. J. Med
, vol.332
, pp. 305-311
-
-
Manolagas, S.C.1
Jilka, R.L.2
-
31
-
-
0036732410
-
SHIP-deficient mice are severely osteoporotic due to increased numbers of hyper-resorptive osteoclasts
-
Takeshita, S. et al. SHIP-deficient mice are severely osteoporotic due to increased numbers of hyper-resorptive osteoclasts. Nat. Med. 8, 943-949 (2002).
-
(2002)
Nat. Med
, vol.8
, pp. 943-949
-
-
Takeshita, S.1
-
32
-
-
0036723649
-
Novel translational control through an iron-responsive element by interaction of multifunctional protein YB-1 and IRP2
-
Ashizuka, M. et al. Novel translational control through an iron-responsive element by interaction of multifunctional protein YB-1 and IRP2. Mol. Cell. Biol. 22, 6375-6383 (2002).
-
(2002)
Mol. Cell. Biol
, vol.22
, pp. 6375-6383
-
-
Ashizuka, M.1
-
33
-
-
4644340208
-
Mechanism of the generation of autonomous activity of Ca2+/ calmodulin-dependent protein kinase IV
-
Tokumitsu, H. et al. Mechanism of the generation of autonomous activity of Ca2+/ calmodulin-dependent protein kinase IV. J. Biol. Chem. 279, 40296-40302 (2004).
-
(2004)
J. Biol. Chem
, vol.279
, pp. 40296-40302
-
-
Tokumitsu, H.1
-
34
-
-
0023790708
-
Osteoblastic cells are involved in osteoclast formation
-
Takahashi, N. et al. Osteoblastic cells are involved in osteoclast formation. Endocrinology 123, 2600-2602 (1988).
-
(1988)
Endocrinology
, vol.123
, pp. 2600-2602
-
-
Takahashi, N.1
-
35
-
-
34547103543
-
c-Fms tyrosine 559 is a major mediator of M-CSF-induced proliferation of primary macrophages
-
Takeshita, S. et al. c-Fms tyrosine 559 is a major mediator of M-CSF-induced proliferation of primary macrophages. J. Biol. Chem. 282, 18980-18990 (2007).
-
(2007)
J. Biol. Chem
, vol.282
, pp. 18980-18990
-
-
Takeshita, S.1
-
36
-
-
0033543569
-
Clinical severity and thermodynamic effects of iron-responsive element mutations in hereditary hyperferritinemia-cataract syndrome
-
Allerson, C.R., Cazzola, M. & Rouault, T.A. Clinical severity and thermodynamic effects of iron-responsive element mutations in hereditary hyperferritinemia-cataract syndrome. J. Biol. Chem. 274, 26439-26447 (1999).
-
(1999)
J. Biol. Chem
, vol.274
, pp. 26439-26447
-
-
Allerson, C.R.1
Cazzola, M.2
Rouault, T.A.3
-
37
-
-
0017367091
-
Induction of aminolevulinate synthase and porphyrins in cultured liver cells maintained in chemically defined medium. Permissive effects of hormones on induction process
-
Sassa, S. & Kappas, A. Induction of aminolevulinate synthase and porphyrins in cultured liver cells maintained in chemically defined medium. Permissive effects of hormones on induction process. J. Biol. Chem. 252, 2428-2436 (1977).
-
(1977)
J. Biol. Chem
, vol.252
, pp. 2428-2436
-
-
Sassa, S.1
Kappas, A.2
-
38
-
-
25444529444
-
Multi-detector row CT imaging of vertebral microstructure for evaluation of fracture risk
-
Ito, M. et al. Multi-detector row CT imaging of vertebral microstructure for evaluation of fracture risk. J. Bone Miner. Res. 20, 1828-1836 (2005).
-
(2005)
J. Bone Miner. Res
, vol.20
, pp. 1828-1836
-
-
Ito, M.1
-
39
-
-
34249657953
-
Targeted ablation of osteocytes induces osteoporosis with defective mechanotransduction
-
Tatsumi, S. et al. Targeted ablation of osteocytes induces osteoporosis with defective mechanotransduction. Cell Metab. 5, 464-475 (2007).
-
(2007)
Cell Metab
, vol.5
, pp. 464-475
-
-
Tatsumi, S.1
|