메뉴 건너뛰기




Volumn 29, Issue 6, 2013, Pages 588-596

Autophagy at the crossroads of metabolism and cellular defense

Author keywords

Autophagy; bacteria; inflammatory bowel disease; metabolism; mTOR

Indexed keywords

CELL PROTEIN; MEMBRANE PROTEIN; REGULATOR PROTEIN; TRANSCRIPTION FACTOR;

EID: 84886092297     PISSN: 02671379     EISSN: 15317056     Source Type: Journal    
DOI: 10.1097/MOG.0b013e328365d34d     Document Type: Review
Times cited : (9)

References (77)
  • 1
    • 75749122303 scopus 로고    scopus 로고
    • Methods in mammalian autophagy research
    • Mizushima N, Yoshimori T, Levine B. Methods in mammalian autophagy research. Cell 2010; 140:313-326.
    • (2010) Cell , vol.140 , pp. 313-326
    • Mizushima, N.1    Yoshimori, T.2    Levine, B.3
  • 2
    • 84893675756 scopus 로고    scopus 로고
    • Autophagy: A critical regulator of cellular metabolism and homeostasis
    • Ryter SW, Cloonan SM, Choi AMK. Autophagy: a critical regulator of cellular metabolism and homeostasis. Mol Cell 2013; 36:7-16.
    • (2013) Mol Cell , vol.36 , pp. 7-16
    • Ryter, S.W.1    Cloonan, S.M.2    Choi, A.M.K.3
  • 3
    • 84859778293 scopus 로고    scopus 로고
    • MTOR signaling in growth control and disease
    • Laplante M, Sabatini DM. mTOR signaling in growth control and disease. Cell 2012; 149:274-293.
    • (2012) Cell , vol.149 , pp. 274-293
    • Laplante, M.1    Sabatini, D.M.2
  • 5
    • 77951768486 scopus 로고    scopus 로고
    • Ragulator-Rag complex targets mTORC1 to the lysosomal surface and is necessary for its activation by amino acids
    • Sancak Y, Bar-Peled L, Zoncu R, et al. Ragulator-Rag complex targets mTORC1 to the lysosomal surface and is necessary for its activation by amino acids. Cell 2010; 141:290-303.
    • (2010) Cell , vol.141 , pp. 290-303
    • Sancak, Y.1    Bar-Peled, L.2    Zoncu, R.3
  • 6
    • 84866431363 scopus 로고    scopus 로고
    • Ragulator is a GEF for the Rag GTPases that signal amino acid levels to mTORC1
    • Bar-Peled L, Schweitzer LD, Zoncu R, Sabatini DM. Ragulator is a GEF for the Rag GTPases that signal amino acid levels to mTORC1. Cell 2012; 150:1196-1208.
    • (2012) Cell , vol.150 , pp. 1196-1208
    • Bar-Peled, L.1    Schweitzer, L.D.2    Zoncu, R.3    Sabatini, D.M.4
  • 8
    • 84878357685 scopus 로고    scopus 로고
    • A tumor suppressor complex with GAP activity for the Rag GTPases that signal amino acid sufficiency to mTORC1
    • Bar-Peled L, Chantranupong L, Cherniack AD, et al. A tumor suppressor complex with GAP activity for the Rag GTPases that signal amino acid sufficiency to mTORC1. Science 2013; 340:1100-1106.
    • (2013) Science , vol.340 , pp. 1100-1106
    • Bar-Peled, L.1    Chantranupong, L.2    Cherniack, A.D.3
  • 9
    • 84862777407 scopus 로고    scopus 로고
    • Leucyl-tRNA synthetase is an intracellular leucine sensor for the mTORC1-signaling pathway
    • Han JM, Jeong SJ, Park MC, et al. Leucyl-tRNA synthetase is an intracellular leucine sensor for the mTORC1-signaling pathway. Cell 2012; 149:410-424.
    • (2012) Cell , vol.149 , pp. 410-424
    • Han, J.M.1    Jeong, S.J.2    Park, M.C.3
  • 10
    • 84873665112 scopus 로고    scopus 로고
    • Regulation of mTORC1 by the Rag && GTPases is necessary for neonatal autophagy and survival
    • Efeyan A, Zoncu R, Chang S, et al. Regulation of mTORC1 by the Rag && GTPases is necessary for neonatal autophagy and survival. Nature 2012; 493:679-683.
    • (2012) Nature , vol.493 , pp. 679-683
    • Efeyan, A.1    Zoncu, R.2    Chang, S.3
  • 11
    • 77951237303 scopus 로고    scopus 로고
    • The Beclin1 interactome
    • He C, Levine B. The Beclin1 interactome. Curr Opin CellBiol 2010; 22:140-149.
    • (2010) Curr Opin CellBiol , vol.22 , pp. 140-149
    • He, C.1    Levine, B.2
  • 12
    • 50249084987 scopus 로고    scopus 로고
    • Autophagosome formation from membrane compartments enriched in phosphatidylinositol 3-phosphate and dynamically connected to the endoplasmic reticulum
    • Axe EL, Walker SA, Manifava M, et al. Autophagosome formation from membrane compartments enriched in phosphatidylinositol 3-phosphate and dynamically connected to the endoplasmic reticulum. J Cell Biol 2008; 182:685-701.
    • (2008) J Cell Biol , vol.182 , pp. 685-701
    • Axe, E.L.1    Walker, S.A.2    Manifava, M.3
  • 13
    • 79551598347 scopus 로고    scopus 로고
    • AMPK and mTOR regulate autophagy through direct phosphorylation of ULK1
    • Kim J, Kundu M, Viollet B, Guan K-L. AMPK and mTOR regulate autophagy through direct phosphorylation of ULK1. Nat Cell Biol 2011; 13:132-141.
    • (2011) Nat Cell Biol , vol.13 , pp. 132-141
    • Kim, J.1    Kundu, M.2    Viollet, B.3    Guan, K.-L.4
  • 14
    • 84876488191 scopus 로고    scopus 로고
    • MTOR inhibits autophagy by controlling ULK1 ubiquitylation, self-association and function through AMBRA1 and TRAF6
    • Nazio F, Strappazzon F, Antonioli M, et al. mTOR inhibits autophagy by controlling ULK1 ubiquitylation, self-association and function through AMBRA1 and TRAF6. Nat Cell Biol 2013; 15:406-416.
    • (2013) Nat Cell Biol , vol.15 , pp. 406-416
    • Nazio, F.1    Strappazzon, F.2    Antonioli, M.3
  • 15
    • 81855167585 scopus 로고    scopus 로고
    • DEPTOR, an mTOR Inhibitor, is a physiological substrate of SCF
    • Zhao Y, Xiong X, Sun Y. DEPTOR, an mTOR Inhibitor, is a physiological substrate of SCF. Mol Cell 2011; 44:304-316.
    • (2011) Mol Cell , vol.44 , pp. 304-316
    • Zhao, Y.1    Xiong, X.2    Sun, Y.3
  • 16
    • 81855181738 scopus 로고    scopus 로고
    • MTOR drives its own activation via SCF
    • Gao D, Inuzuka H, Tan M-KM, et al. mTOR drives its own activation via SCF. Mol Cell 2011; 44:290-303.
    • (2011) Mol Cell , vol.44 , pp. 290-303
    • Gao, D.1    Inuzuka, H.2    M-Km, T.3
  • 17
    • 84860172051 scopus 로고    scopus 로고
    • GSK3-TIP60-ULK1 signaling pathway links & growth factor deprivation to autophagy
    • Lin SY, Li TY, Liu Q, et al. GSK3-TIP60-ULK1 signaling pathway links & growth factor deprivation to autophagy. Science 2012; 336:477-481.
    • (2012) Science , vol.336 , pp. 477-481
    • Lin, S.Y.1    Li, T.Y.2    Liu, Q.3
  • 18
    • 84860203624 scopus 로고    scopus 로고
    • Function and molecular mechanism of acetylation in & autophagy regulation
    • Yi C, Ma M, Ran L, et al. Function and molecular mechanism of acetylation in & autophagy regulation. Science 2012; 336:474-477.
    • (2012) Science , vol.336 , pp. 474-477
    • Yi, C.1    Ma, M.2    Ran, L.3
  • 19
    • 65249106104 scopus 로고    scopus 로고
    • Regulation of autophagy by the p300 acetyltransferase
    • Lee IH, Finkel T. Regulation of autophagy by the p300 acetyltransferase. J Biol Chem 2008; 284:6322-6328.
    • (2008) J Biol Chem , vol.284 , pp. 6322-6328
    • Lee, I.H.1    Finkel, T.2
  • 20
    • 79951889242 scopus 로고    scopus 로고
    • Spermidine and resveratrol induce autophagy by distinct pathways converging on the acetylproteome
    • Morselli E, Marino G, Bennetzen MV, et al. Spermidine and resveratrol induce autophagy by distinct pathways converging on the acetylproteome. J Cell Biol 2011; 192:615-629.
    • (2011) J Cell Biol , vol.192 , pp. 615-629
    • Morselli, E.1    Marino, G.2    Bennetzen, M.V.3
  • 21
    • 84880867651 scopus 로고    scopus 로고
    • The emerging role of acetylation in the regulation of autophagy
    • Bánréti A, Sass M, Graba Y. The emerging role of acetylation in the regulation of autophagy. Autophagy 2013; 9:819-829.
    • (2013) Autophagy , vol.9 , pp. 819-829
    • Bánréti, A.1    Sass, M.2    Graba, Y.3
  • 22
    • 77954237882 scopus 로고    scopus 로고
    • Network organization of the human autophagy system
    • Behrends C, Sowa ME, Gygi SP, Harper JW. Network organization of the human autophagy system. Nature 2010; 466:68-76.
    • (2010) Nature , vol.466 , pp. 68-76
    • Behrends, C.1    Sowa, M.E.2    Gygi, S.P.3    Harper, J.W.4
  • 23
    • 84876296881 scopus 로고    scopus 로고
    • Landscape of the PARKIN-dependent ubiquitylome in response to mitochondrial depolarization
    • Sarraf SA, Raman M, Guarani-Pereira V, et al. Landscape of the PARKIN-dependent ubiquitylome in response to mitochondrial depolarization. Nature 2013; 496:372-376.
    • (2013) Nature , vol.496 , pp. 372-376
    • Sarraf, S.A.1    Raman, M.2    Guarani-Pereira, V.3
  • 24
    • 80955177196 scopus 로고    scopus 로고
    • TFEB links autophagy to lysosomal biogenesis
    • Settembre C, Di Malta C, Polito VA, et al. TFEB links autophagy to lysosomal biogenesis. Science 2011; 332:1429-1433.
    • (2011) Science , vol.332 , pp. 1429-1433
    • Settembre, C.1    Di Malta, C.2    Polito, V.A.3
  • 25
    • 84878606239 scopus 로고    scopus 로고
    • TFEB controls cellular lipid metabolism through a starvation-induced autoregulatory loop
    • Settembre C, De Cegli R, Mansueto G, et al. TFEB controls cellular lipid metabolism through a starvation-induced autoregulatory loop. Nat Cell Biol 2013; 15:647-658.
    • (2013) Nat Cell Biol , vol.15 , pp. 647-658
    • Settembre, C.1    De Cegli, R.2    Mansueto, G.3
  • 26
    • 84877601173 scopus 로고    scopus 로고
    • Transcription factor EB (TFEB) is a new therapeutic target for Pompe disease
    • Spampanato C, Feeney E, Li L, et al. Transcription factor EB (TFEB) is a new therapeutic target for Pompe disease. EMBO Mol Med 2013; 5:691-706.
    • (2013) EMBO Mol Med , vol.5 , pp. 691-706
    • Spampanato, C.1    Feeney, E.2    Li, L.3
  • 27
    • 84876090708 scopus 로고    scopus 로고
    • ZKSCAN3 is a master transcrip-tional repressor of atophagy
    • Chauhan S, Goodwin JG, Chauhan S, et al. ZKSCAN3 is a master transcrip-tional repressor of atophagy. Mol Cell 2013; 50:16-28.
    • (2013) Mol Cell , vol.50 , pp. 16-28
    • Chauhan, S.1    Goodwin, J.G.2    Chauhan, S.3
  • 28
    • 81055144784 scopus 로고    scopus 로고
    • Autophagy: Renovation of cells and tissues
    • Mizushima N, Komatsu M. Autophagy: renovation of cells and tissues. Cell 2011; 147:728-741.
    • (2011) Cell , vol.147 , pp. 728-741
    • Mizushima, N.1    Komatsu, M.2
  • 29
    • 56249090667 scopus 로고    scopus 로고
    • Loss of the autophagy protein ATG16L1 enhances endotoxin-induced IL-1b production
    • Saitoh T, Fujita N, Jang MH, et al. Loss of the autophagy protein ATG16L1 enhances endotoxin-induced IL-1b production. Nature 2008; 456:264-268.
    • (2008) Nature , vol.456 , pp. 264-268
    • Saitoh, T.1    Fujita, N.2    Jang, M.H.3
  • 32
    • 84862994618 scopus 로고    scopus 로고
    • MTORC1 in the Paneth cell niche couples intestinal stem-cell function to calorie intake
    • Yilmaz OH, Katajisto P, Lamming DW, et al. mTORC1 in the Paneth cell niche couples intestinal stem-cell function to calorie intake. Nature 2012;486:490-495.
    • (2012) Nature , vol.486 , pp. 490-495
    • Yilmaz, O.H.1    Katajisto, P.2    Lamming, D.W.3
  • 33
    • 84857844643 scopus 로고    scopus 로고
    • Mammalian Atg2 proteins are essential for autophagosome formation and important for regulation of size and distribution of lipid droplets
    • Velikkakath AKG, Nishimura T, Oita E, et al. Mammalian Atg2 proteins are essential for autophagosome formation and important for regulation of size and distribution of lipid droplets. Mol Biol Cell 2012; 23:896-909.
    • (2012) Mol Biol Cell , vol.23 , pp. 896-909
    • Velikkakath, A.K.G.1    Nishimura, T.2    Oita, E.3
  • 34
    • 65949095803 scopus 로고    scopus 로고
    • Autophagy regulates lipid metabolism
    • Singh R, Kaushik S, Wang Y, et al. Autophagy regulates lipid metabolism. Nature 2009; 458:1131-1135.
    • (2009) Nature , vol.458 , pp. 1131-1135
    • Singh, R.1    Kaushik, S.2    Wang, Y.3
  • 35
    • 77956400005 scopus 로고    scopus 로고
    • Defective hepatic autophagy in obesity promotes ER stress and causes insulin resistance
    • Yang L, Li P, Fu S, et al. Defective hepatic autophagy in obesity promotes ER stress and causes insulin resistance. Cell Metab 2010; 11:467-478.
    • (2010) Cell Metab , vol.11 , pp. 467-478
    • Yang, L.1    Li, P.2    Fu, S.3
  • 36
    • 52749093177 scopus 로고    scopus 로고
    • Autophagy is important in islet home-ostasis and compensatory increase of beta cell mass in response to high-fat diet
    • Ebato C, Uchida T, Arakawa M, et al. Autophagy is important in islet home-ostasis and compensatory increase of beta cell mass in response to high-fat diet. Cell Metab 2008; 8:325-332.
    • (2008) Cell Metab , vol.8 , pp. 325-332
    • Ebato, C.1    Uchida, T.2    Arakawa, M.3
  • 37
    • 67349150186 scopus 로고    scopus 로고
    • Autophagy in human type 2 diabetes pancreatic beta cells
    • Masini M, Bugliani M, Lupi R, et al. Autophagy in human type 2 diabetes pancreatic beta cells. Diabetologia 2009; 52:1083-1086.
    • (2009) Diabetologia , vol.52 , pp. 1083-1086
    • Masini, M.1    Bugliani, M.2    Lupi, R.3
  • 38
    • 84876789628 scopus 로고    scopus 로고
    • Loss of acinar cell IKKa triggers spontaneous pancreatitis in mice
    • Li N, Wu X, Holzer RG, et al. Loss of acinar cell IKKa triggers spontaneous pancreatitis in mice. J Clin Invest 2013; 123:2231-2243.
    • (2013) J Clin Invest , vol.123 , pp. 2231-2243
    • Li, N.1    Wu, X.2    Holzer, R.G.3
  • 39
    • 84872057896 scopus 로고    scopus 로고
    • Autophagy deficiency leads to protection from obesity and insulin resistance by inducing Fgf21 as a mitokine
    • Kim KH, Jeong YT, Oh H, et al. Autophagy deficiency leads to protection from obesity and insulin resistance by inducing Fgf21 as a mitokine. Nat Med 2012; 19:83-92.
    • (2012) Nat Med , vol.19 , pp. 83-92
    • Kim, K.H.1    Jeong, Y.T.2    Oh, H.3
  • 40
    • 84863393597 scopus 로고    scopus 로고
    • Exercise-induced BCL2-regulated autop-hagy is required for muscle glucose homeostasis
    • He C, Bassik MC, Moresi V, et al. Exercise-induced BCL2-regulated autop-hagy is required for muscle glucose homeostasis. Nature 2012; 481:511-515.
    • (2012) Nature , vol.481 , pp. 511-515
    • He, C.1    Bassik, M.C.2    Moresi, V.3
  • 41
    • 84871005673 scopus 로고    scopus 로고
    • The pathways of mitophagy for quality control and clearance of mitochondria
    • Ashrafi G, Schwarz TL. The pathways of mitophagy for quality control and clearance of mitochondria. Cell Death Differ 2012; 20:31-42.
    • (2012) Cell Death Differ , vol.20 , pp. 31-42
    • Ashrafi, G.1    Schwarz, T.L.2
  • 42
    • 84861212393 scopus 로고    scopus 로고
    • Mitochondria and cell signalling
    • Tait SWGS, Green DRD. Mitochondria and cell signalling. J Cell Sci 2012; 125:807-815.
    • (2012) J Cell Sci , vol.125 , pp. 807-815
    • Tait, S.W.G.S.1    Green, D.R.D.2
  • 43
    • 84857032953 scopus 로고    scopus 로고
    • Role of PINK1 binding to the TOM complex and alternate intracellular membranes in recruitment and activation of the E3 ligase Parkin
    • Lazarou M, Jin SM, Kane LA, Youle RJ. Role of PINK1 binding to the TOM complex and alternate intracellular membranes in recruitment and activation of the E3 ligase Parkin. Dev Cell 2012; 22:320-333.
    • (2012) Dev Cell , vol.22 , pp. 320-333
    • Lazarou, M.1    Jin, S.M.2    Kane, L.A.3    Youle, R.J.4
  • 44
    • 75949130828 scopus 로고    scopus 로고
    • PINK1/Parkin-mediated mitophagy is dependent on VDAC1 and p62/SQSTM1
    • Geisler S, Holmström KM, Skujat D, et al. PINK1/Parkin-mediated mitophagy is dependent on VDAC1 and p62/SQSTM1. Nat Cell Biol 2010; 12:119-131.
    • (2010) Nat Cell Biol , vol.12 , pp. 119-131
    • Geisler, S.1    Holmström, K.M.2    Skujat, D.3
  • 45
    • 82555187810 scopus 로고    scopus 로고
    • Image-based genome-wide siRNA screen identifies selective autophagy factors
    • Orvedahl A, Sumpter R Jr, Xiao G, et al. Image-based genome-wide siRNA screen identifies selective autophagy factors. Nature 2011; 480: 113-117.
    • (2011) Nature , vol.480 , pp. 113-117
    • Orvedahl, A.1    Sumpter, Jr.R.2    Xiao, G.3
  • 46
    • 84876341593 scopus 로고    scopus 로고
    • A KRAB/KAP1-miRNA cascade regulates erythropoiesis through stage-specific control of mitophagy
    • Barde I, Rauwel B, Marin-Florez RM, et al. A KRAB/KAP1-miRNA cascade regulates erythropoiesis through stage-specific control of mitophagy. Science 2013; 340:350-353.
    • (2013) Science , vol.340 , pp. 350-353
    • Barde, I.1    Rauwel, B.2    Marin-Florez, R.M.3
  • 47
    • 84877578621 scopus 로고    scopus 로고
    • Rheb regulates mitophagy induced by mitochondrial energetic status
    • Melser S, Chatelain EH, Lavie J, et al. Rheb regulates mitophagy induced by mitochondrial energetic status. Cell Metab 2013; 17:719-730.
    • (2013) Cell Metab , vol.17 , pp. 719-730
    • Melser, S.1    Chatelain, E.H.2    Lavie, J.3
  • 48
    • 84862789618 scopus 로고    scopus 로고
    • Mitochondrial outer-membrane protein FUNDC1 mediates hypoxia-induced mitophagy in mammalian cells
    • Liu L, Feng D, Chen G, et al. Mitochondrial outer-membrane protein FUNDC1 mediates hypoxia-induced mitophagy in mammalian cells. Nat Cell Biol 2012; 14:177-185.
    • (2012) Nat Cell Biol , vol.14 , pp. 177-185
    • Liu, L.1    Feng, D.2    Chen, G.3
  • 49
    • 84877628647 scopus 로고    scopus 로고
    • Autophagy in human health and disease
    • Choi AMK, Ryter SW, Levine B. Autophagy in human health and disease. N Engl J Med 2013; 368:651-662.
    • (2013) N Engl J Med , vol.368 , pp. 651-662
    • Choi, A.M.K.1    Ryter, S.W.2    Levine, B.3
  • 50
    • 84859736977 scopus 로고    scopus 로고
    • Aggrephagy: Selective disposal of protein aggregates by macroautophagy
    • Lamark T, Johansen T. Aggrephagy: selective disposal of protein aggregates by macroautophagy. Int J Cell Biol 2012; 2012:1-21.
    • (2012) Int J Cell Biol , vol.2012 , pp. 1-21
    • Lamark, T.1    Johansen, T.2
  • 52
    • 84871006349 scopus 로고    scopus 로고
    • The LRR and RING domain protein LRSAM1 is an E3 ligase crucial for ubiquitin-dependent autophagy of intracellular Salmonella typhimurium
    • Huett A, Heath RJ, Begun J, et al. The LRR and RING domain protein LRSAM1 is an E3 ligase crucial for ubiquitin-dependent autophagy of intracellular Salmonella typhimurium. Cell Host Microbe 2012; 12:778-790.
    • (2012) Cell Host Microbe , vol.12 , pp. 778-790
    • Huett, A.1    Heath, R.J.2    Begun, J.3
  • 53
    • 74049126112 scopus 로고    scopus 로고
    • The adaptor protein p62/SQSTM1 targets invading bacteria to the autophagy pathway
    • Zheng YT, Shahnazari S, Brech A, et al. The adaptor protein p62/SQSTM1 targets invading bacteria to the autophagy pathway. J Immunol 2009; 183:5909-5916.
    • (2009) J Immunol , vol.183 , pp. 5909-5916
    • Zheng, Y.T.1    Shahnazari, S.2    Brech, A.3
  • 54
    • 70350450808 scopus 로고    scopus 로고
    • The TBK1 adaptor and autophagy receptor NDP52 restricts the proliferation of ubiquitin-coated bacteria
    • Thurston TLM, Ryzhakov G, Bloor S, et al. The TBK1 adaptor and autophagy receptor NDP52 restricts the proliferation of ubiquitin-coated bacteria. Nat Immunol 2009; 10:1215-1221.
    • (2009) Nat Immunol , vol.10 , pp. 1215-1221
    • Thurston, T.L.M.1    Ryzhakov, G.2    Bloor, S.3
  • 55
    • 84857071710 scopus 로고    scopus 로고
    • Galectin8 targets damaged vesicles for autophagy to defend cells against bacterial invasion
    • Thurston TLM, Wandel MP, von Muhlinen N, et al. Galectin8 targets damaged vesicles for autophagy to defend cells against bacterial invasion. Nature 2012; 482:414-418.
    • (2012) Nature , vol.482 , pp. 414-418
    • Thurston, T.L.M.1    Wandel, M.P.2    Von Muhlinen, N.3
  • 56
    • 84862301902 scopus 로고    scopus 로고
    • Amino acid starvation induced by invasive bacterial pathogens triggers an innate host defense program
    • Tattoli I, Sorbara MT, Vuckovic D, et al. Amino acid starvation induced by invasive bacterial pathogens triggers an innate host defense program. Cell Host Microbe 2012; 11:563-575.
    • (2012) Cell Host Microbe , vol.11 , pp. 563-575
    • Tattoli, I.1    Sorbara, M.T.2    Vuckovic, D.3
  • 58
    • 84870999066 scopus 로고    scopus 로고
    • Reactive oxygen species-induced autophagic degradation of Helicobacter pylori CagA is specifically sup pressed in cancer stem-like cells
    • Tsugawa H, Suzuki H, Saya H, et al. Reactive oxygen species-induced autophagic degradation of Helicobacter pylori CagA is specifically sup pressed in cancer stem-like cells. Cell Host Microbe 2012; 12:764-777.
    • (2012) Cell Host Microbe , vol.12 , pp. 764-777
    • Tsugawa, H.1    Suzuki, H.2    Saya, H.3
  • 59
    • 65249135604 scopus 로고    scopus 로고
    • Effect of Helicobacter pylori's vacuolating cytotoxin on the autophagy pathway in gastric epithelial cells
    • Terebiznik MR, Raju D, Vazquez CL, et al. Effect of Helicobacter pylori's vacuolating cytotoxin on the autophagy pathway in gastric epithelial cells. Autophagy 2009; 5:370-379.
    • (2009) Autophagy , vol.5 , pp. 370-379
    • Terebiznik, M.R.1    Raju, D.2    Vazquez, C.L.3
  • 60
    • 84866130509 scopus 로고    scopus 로고
    • Low-density lipoprotein receptor-related protein-1 (LRP1) mediates autophagy and apoptosis caused by Helicobacter pylori VacA
    • Yahiro K, Satoh M, Nakano M, et al. Low-density lipoprotein receptor-related protein-1 (LRP1) mediates autophagy and apoptosis caused by Helicobacter pylori VacA. J Biol Chem 2012; 287:31104-31115.
    • (2012) J Biol Chem , vol.287 , pp. 31104-31115
    • Yahiro, K.1    Satoh, M.2    Nakano, M.3
  • 61
    • 84860223287 scopus 로고    scopus 로고
    • Vacuolating cytotoxin and variants in ATG16L1 that disrupt autophagy promote Helicobacter pylori infection in humans
    • Raju D, Hussey S, Ang M, et al. Vacuolating cytotoxin and variants in ATG16L1 that disrupt autophagy promote Helicobacter pylori infection in humans. Gastroenterology 2012; 142:1160-1171.
    • (2012) Gastroenterology , vol.142 , pp. 1160-1171
    • Raju, D.1    Hussey, S.2    Ang, M.3
  • 62
    • 79959216005 scopus 로고    scopus 로고
    • Genetics and pathogenesis of inflammatory bowel disease
    • Khor B, Gardet A, Xavier RJ. Genetics and pathogenesis of inflammatory bowel disease. Nature 2011; 474:307-317.
    • (2011) Nature , vol.474 , pp. 307-317
    • Khor, B.1    Gardet, A.2    Xavier, R.J.3
  • 63
    • 70349627027 scopus 로고    scopus 로고
    • XBP-1 deficiency in the nervous system protects against amyotrophic lateral sclerosis by increasing autophagy
    • Hetz C, Thielen P, Matus S, et al. XBP-1 deficiency in the nervous system protects against amyotrophic lateral sclerosis by increasing autophagy. Genes Dev 2009; 23:2294-2306.
    • (2009) Genes Dev , vol.23 , pp. 2294-2306
    • Hetz, C.1    Thielen, P.2    Matus, S.3
  • 64
    • 84865466615 scopus 로고    scopus 로고
    • Puglielli L SLC33A1/AT-1 protein regulates the induction of autophagy downstream of IRE1/XBP1 pathway
    • Pehar M, Jonas MC, Hare TM, Puglielli L SLC33A1/AT-1 protein regulates the induction of autophagy downstream of IRE1/XBP1 pathway. J Biol Chem 2012; 287:29921-29930.
    • (2012) J Biol Chem , vol.287 , pp. 29921-29930
    • Pehar, M.1    Jonas, M.C.2    Hare, T.M.3
  • 65
    • 50249086073 scopus 로고    scopus 로고
    • XBP1 links ER stress to intestinal inflammation and confers genetic risk for human inflammatory bowel disease
    • Kaser A, Lee A-H, Franke A, et al. XBP1 links ER stress to intestinal inflammation and confers genetic risk for human inflammatory bowel disease. Cell 2008; 134:743-756.
    • (2008) Cell , vol.134 , pp. 743-756
    • Kaser, A.1    Lee, A.-H.2    Franke, A.3
  • 66
    • 56249135538 scopus 로고    scopus 로고
    • A key role for autophagy and the autophagy gene ATG16L1 in mouse and human intestinal Paneth cells
    • Cadwell K, Liu JY, Brown SL, et al. A key role for autophagy and the autophagy gene ATG16L1 in mouse and human intestinal Paneth cells. Nature 2008; 456:259-263.
    • (2008) Nature , vol.456 , pp. 259-263
    • Cadwell, K.1    Liu, J.Y.2    Brown, S.L.3
  • 67
    • 77953904042 scopus 로고    scopus 로고
    • Virus-plus-susceptibility gene interaction determines Crohn's disease gene ATG16L1 phenotypes in intestine
    • Cadwell K, Patel KK, Maloney NS, et al. Virus-plus-susceptibility gene interaction determines Crohn's disease gene ATG16L1 phenotypes in intestine. Cell 2010; 141:1135-1145.
    • (2010) Cell , vol.141 , pp. 1135-1145
    • Cadwell, K.1    Patel, K.K.2    Maloney, N.S.3
  • 68
    • 84861434652 scopus 로고    scopus 로고
    • Autophagy inhibitor Lys05 has single-agent antitumor activity and reproduces the phenotype of a genetic autophagy deficiency
    • McAfee QQ, Zhang ZZ, Samanta AA, et al. Autophagy inhibitor Lys05 has single-agent antitumor activity and reproduces the phenotype of a genetic autophagy deficiency. Proc Natl Acad Sci USA 2012; 109:8253-8258.
    • (2012) Proc Natl Acad Sci USA , vol.109 , pp. 8253-8258
    • McAfee, Q.Q.1    Zhang, Z.Z.2    Samanta, A.A.3
  • 69
    • 77649194674 scopus 로고    scopus 로고
    • Crohn's disease-associated adherent-invasive E. Coli are selectively favoured by impaired autophagy to replicate intracellularly
    • Lapaquette P, Glasser A-L, Huett A, et al. Crohn's disease-associated adherent-invasive E. coli are selectively favoured by impaired autophagy to replicate intracellularly. Cell Microbiol 2010; 12:99-113.
    • (2010) Cell Microbiol , vol.12 , pp. 99-113
    • Lapaquette, P.1    Glasser, A.-L.2    Huett, A.3
  • 70
    • 73849151394 scopus 로고    scopus 로고
    • NOD2 stimulation induces autophagy in dendritic cells influencing bacterial handling and antigen presentation
    • Cooney R, Baker J, Brain O, et al. NOD2 stimulation induces autophagy in dendritic cells influencing bacterial handling and antigen presentation. Nat Med 2009; 16:90-97.
    • (2009) Nat Med , vol.16 , pp. 90-97
    • Cooney, R.1    Baker, J.2    Brain, O.3
  • 71
    • 80051550866 scopus 로고    scopus 로고
    • Crohn's disease-associated ATG16L1 polymorphism modulates pro-inflammatory cytokine responses selectively upon activation of NOD2
    • Plantinga TS, Crisan TO, Oosting M, et al. Crohn's disease-associated ATG16L1 polymorphism modulates pro-inflammatory cytokine responses selectively upon activation of NOD2. Gut 2011; 60:1229-1235.
    • (2011) Gut , vol.60 , pp. 1229-1235
    • Plantinga, T.S.1    Crisan, T.O.2    Oosting, M.3
  • 72
    • 84860136921 scopus 로고    scopus 로고
    • Abnormal activation of autophagy-induced crinophagy in Paneth cells from patients with Crohn's disease
    • Thachil E, Hugot J-P, Arbeille B, et al. Abnormal activation of autophagy-induced crinophagy in Paneth cells from patients with Crohn's disease. Gastroenterology 2012; 142:1097.e4-1099.e4.
    • (2012) Gastroenterology , vol.142
    • Thachil, E.1    Hugot, J.-P.2    Arbeille, B.3
  • 73
    • 54849421128 scopus 로고    scopus 로고
    • Impaired autophagy of an intracellular pathogen induced by a Crohn's disease associated ATG16L1 variant
    • Kuballa P, Huett A, Rioux JD, et al. Impaired autophagy of an intracellular pathogen induced by a Crohn's disease associated ATG16L1 variant. PLoS One 2008; 3:e3391.
    • (2008) PLoS One , vol.3
    • Kuballa, P.1    Huett, A.2    Rioux, J.D.3
  • 74
    • 84875214777 scopus 로고    scopus 로고
    • TMEM59 defines a novel ATG16L1-binding motif that promotes local activation of LC3
    • Boada-Romero E, Letek M, Fleischer A, et al. TMEM59 defines a novel ATG16L1-binding motif that promotes local activation of LC3. EMBO J 2013; 32:566-582.
    • (2013) EMBO J , vol.32 , pp. 566-582
    • Boada-Romero, E.1    Letek, M.2    Fleischer, A.3
  • 75
    • 84891746717 scopus 로고    scopus 로고
    • Genetic susceptibility to increased bacterial translocation influences the response to biological therapy in pa tients with Crohn's disease
    • doi: 10.1136/gutjnl-2012-303557. [Epub ahead of print]
    • Gutierrez A, Scharl M, Sempere L, et al. Genetic susceptibility to increased bacterial translocation influences the response to biological therapy in pa tients with Crohn's disease. Gut 2013; doi: 10.1136/gutjnl-2012-303557. [Epub ahead of print]
    • (2013) Gut
    • Gutierrez, A.1    Scharl, M.2    Sempere, L.3
  • 76
    • 84879107779 scopus 로고    scopus 로고
    • Intestinal epithelial autophagy is essential for host defense against invasive bacteria
    • Benjamin JL, Sumpter R Jr, Levine B, Hooper LV. Intestinal epithelial autophagy is essential for host defense against invasive bacteria. Cell Host Microbe 2013; 13:723-734.
    • (2013) Cell Host Microbe , vol.13 , pp. 723-734
    • Benjamin, J.L.1    Sumpter, Jr.R.2    Levine, B.3    Hooper, L.V.4
  • 77
    • 50649125243 scopus 로고    scopus 로고
    • A multicenter, randomized, double blind trial of everolimus versus azathioprine and placebo to maintain steroid-induced remission in patients with moderate-to-severe active Crohn's disease
    • Reinisch W, Panés J, Lemann M, et al. A multicenter, randomized, double blind trial of everolimus versus azathioprine and placebo to maintain steroid-induced remission in patients with moderate-to-severe active Crohn's disease. Am J Gastroenterol 2008; 103:2284-2292.
    • (2008) Am J Gastroenterol , vol.103 , pp. 2284-2292
    • Reinisch, W.1    Panés, J.2    Lemann, M.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.