메뉴 건너뛰기




Volumn 30, Issue 9, 2013, Pages 365-378

Different response to acetic acid stress in Saccharomyces cerevisiae wild-type and l-ascorbic acid-producing strains

Author keywords

Acetic acid; Cell factory; l ascorbic acid (L AA); Reactive oxygen species (ROS); Robustness; Saccharomyces cerevisiae

Indexed keywords

ACETIC ACID; ASCORBIC ACID; CATALASE; REACTIVE OXYGEN METABOLITE; SUPEROXIDE DISMUTASE;

EID: 84883653075     PISSN: 0749503X     EISSN: 10970061     Source Type: Journal    
DOI: 10.1002/yea.2969     Document Type: Article
Times cited : (27)

References (58)
  • 1
    • 64749093393 scopus 로고    scopus 로고
    • Catalase overexpression reduces lactic acid-induced oxidative stress in Saccharomyces cerevisiae
    • Abbott DA, Suir E, Duong GH, et al. 2009. Catalase overexpression reduces lactic acid-induced oxidative stress in Saccharomyces cerevisiae. Appl Environ Microbiol 75: 2320-2325.
    • (2009) Appl Environ Microbiol , vol.75 , pp. 2320-2325
    • Abbott, D.A.1    Suir, E.2    Duong, G.H.3
  • 2
    • 58849161899 scopus 로고    scopus 로고
    • Antioxidant small molecules confer variable protection against oxidative damage in yeast mutants
    • 11,740-11,751
    • Amari F, Fettouche A, Samra MA, et al. 2008. Antioxidant small molecules confer variable protection against oxidative damage in yeast mutants. J Agric Food Chem 56: 11, 740-11, 751.
    • (2008) J Agric Food Chem , vol.56
    • Amari, F.1    Fettouche, A.2    Samra, M.A.3
  • 3
    • 69549083476 scopus 로고    scopus 로고
    • Genome-wide identification of genes involved in tolerance to various environmental stresses in Saccharomyces cerevisiae
    • Auesukaree C, Damnernsawad A, Kruatrachue M, et al. 2009. Genome-wide identification of genes involved in tolerance to various environmental stresses in Saccharomyces cerevisiae. J Appl Genet 50: 301-310.
    • (2009) J Appl Genet , vol.50 , pp. 301-310
    • Auesukaree, C.1    Damnernsawad, A.2    Kruatrachue, M.3
  • 4
    • 55449104987 scopus 로고    scopus 로고
    • Stress-activated genomic expression changes serve a preparative role for impending stress in yeast
    • Berry DB, Gasch AP. 2008. Stress-activated genomic expression changes serve a preparative role for impending stress in yeast. Mol Biol Cell 19: 4580-4587.
    • (2008) Mol Biol Cell , vol.19 , pp. 4580-4587
    • Berry, D.B.1    Gasch, A.P.2
  • 5
    • 0017184389 scopus 로고
    • A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding
    • Bradford MM. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72: 248-254.
    • (1976) Anal Biochem , vol.72 , pp. 248-254
    • Bradford, M.M.1
  • 6
    • 0032966248 scopus 로고    scopus 로고
    • NADH reoxidation does not control glycolytic flux during exposure of respiring Saccharomyces cerevisiae cultures to glucose excess
    • Brambilla L, Bolzani D, Compagno C, et al. 1999. NADH reoxidation does not control glycolytic flux during exposure of respiring Saccharomyces cerevisiae cultures to glucose excess. FEMS Microbiol Lett 171: 133-140.
    • (1999) FEMS Microbiol Lett , vol.171 , pp. 133-140
    • Brambilla, L.1    Bolzani, D.2    Compagno, C.3
  • 7
    • 38349167527 scopus 로고    scopus 로고
    • Biosynthesis of vitamin C by yeast leads to increased stress resistance
    • Branduardi P, Fossati T, Sauer M, et al. 2007. Biosynthesis of vitamin C by yeast leads to increased stress resistance. PLoS One 2: e1092.
    • (2007) PLoS One , vol.2
    • Branduardi, P.1    Fossati, T.2    Sauer, M.3
  • 8
    • 1842782787 scopus 로고    scopus 로고
    • Oxygen and the copper chaperone CCS regulate posttranslational activation of Cu,Zn superoxide dismutase
    • Brown NM, Torres AS, Doan PE, O'Halloran TV. 2004. Oxygen and the copper chaperone CCS regulate posttranslational activation of Cu, Zn superoxide dismutase. Proc Natl Acad Sci USA 101: 5518-5523.
    • (2004) Proc Natl Acad Sci USA , vol.101 , pp. 5518-5523
    • Brown, N.M.1    Torres, A.S.2    Doan, P.E.3    O'Halloran, T.V.4
  • 9
    • 0035087490 scopus 로고    scopus 로고
    • The in vitro cytotoxicity of ascorbate depends on the culture medium used to perform the assay and involves hydrogen peroxide
    • Clément MV, Ramalingam J, Long LH, Halliwell B. 2001. The in vitro cytotoxicity of ascorbate depends on the culture medium used to perform the assay and involves hydrogen peroxide. Antioxid Redox Signal 3: 157-163.
    • (2001) Antioxid Redox Signal , vol.3 , pp. 157-163
    • Clément, M.V.1    Ramalingam, J.2    Long, L.H.3    Halliwell, B.4
  • 10
    • 78751477572 scopus 로고    scopus 로고
    • The yeast homolog of heme oxygenase-1 affords cellular antioxidant protection via the transcriptional regulation of known antioxidant genes
    • Collinson EJ, Wimmer-Kleikamp S, Gerega SK, et al. 2011. The yeast homolog of heme oxygenase-1 affords cellular antioxidant protection via the transcriptional regulation of known antioxidant genes. J Biol Chem 286: 2205-2214.
    • (2011) J Biol Chem , vol.286 , pp. 2205-2214
    • Collinson, E.J.1    Wimmer-Kleikamp, S.2    Gerega, S.K.3
  • 11
    • 0038153078 scopus 로고
    • A physiological role for Saccharomyces cerevisiae copper/zinc superoxide dismutase in copper buffering
    • 29,991-29,997
    • Culotta VC, Joh HD, Lin SJ, et al. 1995. A physiological role for Saccharomyces cerevisiae copper/zinc superoxide dismutase in copper buffering. J Biol Chem 270: 29, 991-29, 997.
    • (1995) J Biol Chem , vol.270
    • Culotta, V.C.1    Joh, H.D.2    Lin, S.J.3
  • 14
    • 84878393908 scopus 로고    scopus 로고
    • Oxidative stress and programmed cell death in yeast
    • Farrugia G, Balzan R. 2012. Oxidative stress and programmed cell death in yeast. Front Oncol 2: 64.
    • (2012) Front Oncol , vol.2 , pp. 64
    • Farrugia, G.1    Balzan, R.2
  • 15
    • 79952104696 scopus 로고    scopus 로고
    • L-Ascorbic acid producing yeasts learn from plants how to recycle it
    • Fossati T, Solinas N, Porro D, Branduardi P. 2011. L-Ascorbic acid producing yeasts learn from plants how to recycle it. Metab Eng 13: 177-185.
    • (2011) Metab Eng , vol.13 , pp. 177-185
    • Fossati, T.1    Solinas, N.2    Porro, D.3    Branduardi, P.4
  • 16
    • 0016414528 scopus 로고
    • Superoxide dismutases
    • Fridovich I. 1975. Superoxide dismutases. Annu Rev Biochem 44: 147-159.
    • (1975) Annu Rev Biochem , vol.44 , pp. 147-159
    • Fridovich, I.1
  • 17
    • 23644459809 scopus 로고    scopus 로고
    • Acid stress adaptation protects Saccharomyces cerevisiae from acetic acid-induced programmed cell death
    • Giannattasio S, Guaragnella N, Corte-Real M, et al. 2005. Acid stress adaptation protects Saccharomyces cerevisiae from acetic acid-induced programmed cell death. Gene 354: 93-98.
    • (2005) Gene , vol.354 , pp. 93-98
    • Giannattasio, S.1    Guaragnella, N.2    Corte-Real, M.3
  • 18
    • 0036270543 scopus 로고    scopus 로고
    • Transformation of yeast by lithium acetate/single-stranded carrier DNA/polyethylene glycol method
    • Gietz RD, Woods RA. 2002. Transformation of yeast by lithium acetate/single-stranded carrier DNA/polyethylene glycol method. Methods Enzymol 350: 87-96.
    • (2002) Methods Enzymol , vol.350 , pp. 87-96
    • Gietz, R.D.1    Woods, R.A.2
  • 19
    • 0030332355 scopus 로고    scopus 로고
    • 1996: a vintage year for yeast and Yeast
    • Goffeau A. 1996. 1996: a vintage year for yeast and Yeast. Yeast 12: 1603-1605.
    • (1996) Yeast , vol.12 , pp. 1603-1605
    • Goffeau, A.1
  • 20
    • 0032873415 scopus 로고    scopus 로고
    • Three new dominant drug resistance cassettes for gene disruption in Saccharomyces cerevisiae
    • Goldstein AL, McCusker JH. 1999. Three new dominant drug resistance cassettes for gene disruption in Saccharomyces cerevisiae. Yeast 15: 1541-1553.
    • (1999) Yeast , vol.15 , pp. 1541-1553
    • Goldstein, A.L.1    McCusker, J.H.2
  • 21
    • 29244444522 scopus 로고    scopus 로고
    • Fluorescence probes used for detection of reactive oxygen species
    • Gomes A, Fernandes E, Lima JL. 2005. Fluorescence probes used for detection of reactive oxygen species. J Biochem Biophys Methods 65: 45-80.
    • (2005) J Biochem Biophys Methods , vol.65 , pp. 45-80
    • Gomes, A.1    Fernandes, E.2    Lima, J.L.3
  • 22
    • 0032583570 scopus 로고    scopus 로고
    • Glutathione and catalase provide overlapping defenses for protection against hydrogen peroxide in the yeast Saccharomyces cerevisiae
    • Grant CM, Perrone G, Dawes IW. 1998. Glutathione and catalase provide overlapping defenses for protection against hydrogen peroxide in the yeast Saccharomyces cerevisiae. Biochem Biophys Res Commun 253: 893-898.
    • (1998) Biochem Biophys Res Commun , vol.253 , pp. 893-898
    • Grant, C.M.1    Perrone, G.2    Dawes, I.W.3
  • 23
    • 38049068839 scopus 로고    scopus 로고
    • Catalase T and Cu,Zn-superoxide dismutase in the acetic acid-induced programmed cell death in Saccharomyces cerevisiae
    • Guaragnella N, Antonacci L, Giannattasio S, et al. 2008. Catalase T and Cu, Zn-superoxide dismutase in the acetic acid-induced programmed cell death in Saccharomyces cerevisiae. FEBS Lett 582: 210-214.
    • (2008) FEBS Lett , vol.582 , pp. 210-214
    • Guaragnella, N.1    Antonacci, L.2    Giannattasio, S.3
  • 24
    • 34547327874 scopus 로고    scopus 로고
    • Hydrogen peroxide and superoxide anion production during acetic acid-induced yeast programmed cell death
    • Guaragnella N, Antonacci L, Passarella S, et al. 2007. Hydrogen peroxide and superoxide anion production during acetic acid-induced yeast programmed cell death. Folia Microbiol (Praha) 52: 237-240.
    • (2007) Folia Microbiol (Praha) , vol.52 , pp. 237-240
    • Guaragnella, N.1    Antonacci, L.2    Passarella, S.3
  • 25
    • 80053351500 scopus 로고    scopus 로고
    • Achievements and perspectives in yeast acetic acid-induced programmed cell death pathways
    • Guaragnella N, Antonacci L, Passarella S, et al. 2011. Achievements and perspectives in yeast acetic acid-induced programmed cell death pathways. Biochem Soc Trans 39: 1538-1543.
    • (2011) Biochem Soc Trans , vol.39 , pp. 1538-1543
    • Guaragnella, N.1    Antonacci, L.2    Passarella, S.3
  • 26
    • 0031911933 scopus 로고    scopus 로고
    • Measurement of the effects of acetic acid and extracellular pH on intracellular pH of nonfermenting, individual Saccharomyces cerevisiae cells by fluorescence microscopy
    • Guldfeldt LU, Arneborg N. 1998. Measurement of the effects of acetic acid and extracellular pH on intracellular pH of nonfermenting, individual Saccharomyces cerevisiae cells by fluorescence microscopy. Appl Environ Microbiol 64: 530-534.
    • (1998) Appl Environ Microbiol , vol.64 , pp. 530-534
    • Guldfeldt, L.U.1    Arneborg, N.2
  • 27
    • 0033167909 scopus 로고    scopus 로고
    • Vitamin C: poison, prophylactic or panacea?
    • Halliwell B. 1999. Vitamin C: poison, prophylactic or panacea? Trends Biochem Sci 24: 255-259.
    • (1999) Trends Biochem Sci , vol.24 , pp. 255-259
    • Halliwell, B.1
  • 28
    • 23844463622 scopus 로고    scopus 로고
    • 2+-deficient or an active Cu,Zn-superoxide dismutase
    • 2+-deficient or an active Cu, Zn-superoxide dismutase. Aging Cell 4: 41-52.
    • (2005) Aging Cell , vol.4 , pp. 41-52
    • Harris, N.1    Bachler, M.2    Costa, V.3
  • 29
    • 35848954992 scopus 로고    scopus 로고
    • SigB-dependent general stress response in Bacillus subtilis and related Gram-positive bacteria
    • Hecker M, Pané-Farré J, Völker U. 2007. SigB-dependent general stress response in Bacillus subtilis and related Gram-positive bacteria. Annu Rev Microbiol 61: 215-236.
    • (2007) Annu Rev Microbiol , vol.61 , pp. 215-236
    • Hecker, M.1    Pané-Farré, J.2    Völker, U.3
  • 31
    • 84864186953 scopus 로고    scopus 로고
    • Metabolic engineering of Saccharomyces cerevisiae: a key cell factory platform for future biorefineries
    • Hong KK, Nielsen J. 2012. Metabolic engineering of Saccharomyces cerevisiae: a key cell factory platform for future biorefineries. Cell Mol Life Sci 69: 2671-2690.
    • (2012) Cell Mol Life Sci , vol.69 , pp. 2671-2690
    • Hong, K.K.1    Nielsen, J.2
  • 32
    • 0031735566 scopus 로고    scopus 로고
    • D-Erythroascorbic acid is an important antioxidant molecule in Saccharomyces cerevisiae
    • Huh WK, Lee BH, Kim ST, et al. 1998. D-Erythroascorbic acid is an important antioxidant molecule in Saccharomyces cerevisiae. Mol Microbiol 30: 895-903.
    • (1998) Mol Microbiol , vol.30 , pp. 895-903
    • Huh, W.K.1    Lee, B.H.2    Kim, S.T.3
  • 33
    • 0029844594 scopus 로고    scopus 로고
    • Importance of catalase in the adaptive response to hydrogen peroxide: analysis of acatalasaemic Saccharomyces cerevisiae
    • Izawa S, Inoue Y, Kimura A. 1996. Importance of catalase in the adaptive response to hydrogen peroxide: analysis of acatalasaemic Saccharomyces cerevisiae. Biochem J 320(1): 61-67.
    • (1996) Biochem J , vol.320 , Issue.1 , pp. 61-67
    • Izawa, S.1    Inoue, Y.2    Kimura, A.3
  • 34
    • 33847050801 scopus 로고    scopus 로고
    • Cell survival responses to environmental stresses via the Keap1-Nrf2-ARE pathway
    • Kensler TW, Wakabayashi N, Biswal S. 2007. Cell survival responses to environmental stresses via the Keap1-Nrf2-ARE pathway. Annu Rev Pharmacol Toxicol 47: 89-116.
    • (2007) Annu Rev Pharmacol Toxicol , vol.47 , pp. 89-116
    • Kensler, T.W.1    Wakabayashi, N.2    Biswal, S.3
  • 35
    • 79960998593 scopus 로고    scopus 로고
    • Sensitivity of antioxidant-deficient yeast to hypochlorite and chlorite
    • Kwolek-Mirek M, Bartosz G, Spickett CM. 2011. Sensitivity of antioxidant-deficient yeast to hypochlorite and chlorite. Yeast 28: 595-609.
    • (2011) Yeast , vol.28 , pp. 595-609
    • Kwolek-Mirek, M.1    Bartosz, G.2    Spickett, C.M.3
  • 36
    • 79251587164 scopus 로고    scopus 로고
    • Exploiting natural variation in Saccharomyces cerevisiae to identify genes for increased ethanol resistance
    • Lewis JA, Elkon IM, McGee MA, et al. 2010. Exploiting natural variation in Saccharomyces cerevisiae to identify genes for increased ethanol resistance. Genetics 186: 1197-1205.
    • (2010) Genetics , vol.186 , pp. 1197-1205
    • Lewis, J.A.1    Elkon, I.M.2    McGee, M.A.3
  • 37
    • 0026665991 scopus 로고
    • Yeast lacking superoxide dismutase. Isolation of genetic suppressors
    • 18,298-18,302
    • Liu XF, Elashvili I, Gralla EB, et al. 1992. Yeast lacking superoxide dismutase. Isolation of genetic suppressors. J. Biol. Chem. 267: 18, 298-18, 302.
    • (1992) J. Biol. Chem. , vol.267
    • Liu, X.F.1    Elashvili, I.2    Gralla, E.B.3
  • 38
    • 12244274385 scopus 로고    scopus 로고
    • Acetic acid induces a programmed cell death process in the food spoilage yeast Zygosaccharomyces bailii
    • Ludovico P, Sansonetty F, Silva MT, Côrte-Real M. 2003. Acetic acid induces a programmed cell death process in the food spoilage yeast Zygosaccharomyces bailii. FEMS Yeast Res 3: 91-96.
    • (2003) FEMS Yeast Res , vol.3 , pp. 91-96
    • Ludovico, P.1    Sansonetty, F.2    Silva, M.T.3    Côrte-Real, M.4
  • 39
    • 0034807841 scopus 로고    scopus 로고
    • Saccharomyces cerevisiae commits to a programmed cell death process in response to acetic acid
    • Ludovico P, Sousa MJ, Silva MT, et al. 2001. Saccharomyces cerevisiae commits to a programmed cell death process in response to acetic acid. Microbiology 147: 2409-2415.
    • (2001) Microbiology , vol.147 , pp. 2409-2415
    • Ludovico, P.1    Sousa, M.J.2    Silva, M.T.3
  • 40
    • 0345643515 scopus 로고    scopus 로고
    • Oxygen stress: a regulator of apoptosis in yeast
    • Madeo F, Fröhlich E, Ligr M, et al. 1999. Oxygen stress: a regulator of apoptosis in yeast. J Cell Biol 145: 757-767.
    • (1999) J Cell Biol , vol.145 , pp. 757-767
    • Madeo, F.1    Fröhlich, E.2    Ligr, M.3
  • 41
    • 0020665080 scopus 로고
    • By-product inhibition effects on ethanolic fermentation by Saccharomyces cerevisiae
    • Maiorella B, Blanch HW, Wilke CR. 1983. By-product inhibition effects on ethanolic fermentation by Saccharomyces cerevisiae. Biotechnol Bioeng 25: 103-121.
    • (1983) Biotechnol Bioeng , vol.25 , pp. 103-121
    • Maiorella, B.1    Blanch, H.W.2    Wilke, C.R.3
  • 42
    • 34047202420 scopus 로고    scopus 로고
    • Vanguards of paradigm shift in radiation biology: radiation-induced adaptive and bystander responses
    • Matsumoto H, Hamada N, Takahashi A, et al. 2007. Vanguards of paradigm shift in radiation biology: radiation-induced adaptive and bystander responses. J Radiat Res 48: 97-106.
    • (2007) J Radiat Res , vol.48 , pp. 97-106
    • Matsumoto, H.1    Hamada, N.2    Takahashi, A.3
  • 44
    • 0000333909 scopus 로고    scopus 로고
    • Anti-apoptotic actions of cycloheximide: blockade of programmed cell death or induction of programmed cell life?
    • Mattson MP, Furukawa K. 1997. Anti-apoptotic actions of cycloheximide: blockade of programmed cell death or induction of programmed cell life? Apoptosis 2: 257-264.
    • (1997) Apoptosis , vol.2 , pp. 257-264
    • Mattson, M.P.1    Furukawa, K.2
  • 45
    • 84859586432 scopus 로고    scopus 로고
    • The response to heat shock and oxidative stress in Saccharomyces cerevisiae
    • Morano KA, Grant CM, Moye-Rowley WS. 2012. The response to heat shock and oxidative stress in Saccharomyces cerevisiae. Genetics 190: 1157-1195.
    • (2012) Genetics , vol.190 , pp. 1157-1195
    • Morano, K.A.1    Grant, C.M.2    Moye-Rowley, W.S.3
  • 47
    • 19544391785 scopus 로고    scopus 로고
    • Cellular factors required for protection from hyperoxia toxicity in Saccharomyces cerevisiae
    • Outten CE, Falk RL, Culotta VC. 2005. Cellular factors required for protection from hyperoxia toxicity in Saccharomyces cerevisiae. Biochem J 388: 93-101.
    • (2005) Biochem J , vol.388 , pp. 93-101
    • Outten, C.E.1    Falk, R.L.2    Culotta, V.C.3
  • 48
    • 0343618697 scopus 로고    scopus 로고
    • Fermentation of lignocellulosic hydrolysates. II: inhibitors and mechanisms of inhibition
    • Palmqvist E, Hahn-Hägerdal B. 2000. Fermentation of lignocellulosic hydrolysates. II: inhibitors and mechanisms of inhibition. Bioresource Technol 74: 25-33.
    • (2000) Bioresource Technol , vol.74 , pp. 25-33
    • Palmqvist, E.1    Hahn-Hägerdal, B.2
  • 49
    • 0025608322 scopus 로고
    • Activity of glycolytic enzymes of Saccharomyces cerevisiae in the presence of acetic acid
    • Pampulha ME, Loureiro-Dias MC. 1990. Activity of glycolytic enzymes of Saccharomyces cerevisiae in the presence of acetic acid. Appl Microbiol Biotechnol 34: 375-380.
    • (1990) Appl Microbiol Biotechnol , vol.34 , pp. 375-380
    • Pampulha, M.E.1    Loureiro-Dias, M.C.2
  • 50
    • 0009622238 scopus 로고    scopus 로고
    • The nature of prooxidant activity of vitamin C
    • Paolini M, Pozzetti L, Pedulli GF, et al. 1999. The nature of prooxidant activity of vitamin C. Life Sci 64: 273-278.
    • (1999) Life Sci , vol.64 , pp. 273-278
    • Paolini, M.1    Pozzetti, L.2    Pedulli, G.F.3
  • 51
    • 0034769551 scopus 로고    scopus 로고
    • Weak acid adaptation: the stress response that confers yeasts with resistance to organic acid food preservatives
    • Piper P, Calderon CO, Hatzixanthis K, Mollapour M. 2001. Weak acid adaptation: the stress response that confers yeasts with resistance to organic acid food preservatives. Microbiology 147: 2635-2642.
    • (2001) Microbiology , vol.147 , pp. 2635-2642
    • Piper, P.1    Calderon, C.O.2    Hatzixanthis, K.3    Mollapour, M.4
  • 52
    • 29944434766 scopus 로고    scopus 로고
    • Pro-oxidative vs antioxidative properties of ascorbic acid in chromium(VI)-induced damage: an in vivo and in vitro approach
    • Poljsak B, Gazdag Z, Jenko-Brinovec S, et al. 2005. Pro-oxidative vs antioxidative properties of ascorbic acid in chromium(VI)-induced damage: an in vivo and in vitro approach. J Appl Toxicol 25: 535-548.
    • (2005) J Appl Toxicol , vol.25 , pp. 535-548
    • Poljsak, B.1    Gazdag, Z.2    Jenko-Brinovec, S.3
  • 53
    • 79952535978 scopus 로고    scopus 로고
    • Production of recombinant proteins and metabolites in yeasts: when are these systems better than bacterial production systems?
    • Porro D, Gasser B, Fossati T, et al. 2011. Production of recombinant proteins and metabolites in yeasts: when are these systems better than bacterial production systems? Appl Microbiol Biotechnol 89: 939-948.
    • (2011) Appl Microbiol Biotechnol , vol.89 , pp. 939-948
    • Porro, D.1    Gasser, B.2    Fossati, T.3
  • 54
    • 84870718175 scopus 로고    scopus 로고
    • Modulation of mitochondrial outer membrane permeabilization and apoptosis by ceramide metabolism
    • Rego A, Costa M, Chaves SR, et al. 2012. Modulation of mitochondrial outer membrane permeabilization and apoptosis by ceramide metabolism. PLoS One 7: e48571.
    • (2012) PLoS One , vol.7
    • Rego, A.1    Costa, M.2    Chaves, S.R.3
  • 55
    • 33749024433 scopus 로고    scopus 로고
    • Antioxidant activity of l-ascorbic acid in wild-type and superoxide dismutase deficient strains of Saccharomyces cerevisiae
    • Saffi J, Sonego L, Varela QD, Salvador M. 2006. Antioxidant activity of l-ascorbic acid in wild-type and superoxide dismutase deficient strains of Saccharomyces cerevisiae. Redox Rep 11: 179-184.
    • (2006) Redox Rep , vol.11 , pp. 179-184
    • Saffi, J.1    Sonego, L.2    Varela, Q.D.3    Salvador, M.4
  • 56
    • 79957871574 scopus 로고    scopus 로고
    • Acetate but not propionate induces oxidative stress in bakers' yeast Saccharomyces cerevisiae
    • Semchyshyn HM, Abrat OB, Miedzobrodzki J, et al. 2011. Acetate but not propionate induces oxidative stress in bakers' yeast Saccharomyces cerevisiae. Redox Rep 16: 15-23.
    • (2011) Redox Rep , vol.16 , pp. 15-23
    • Semchyshyn, H.M.1    Abrat, O.B.2    Miedzobrodzki, J.3
  • 57
    • 0037095620 scopus 로고    scopus 로고
    • Diversity of properties among catalases
    • Switala J, Loewen PC. 2002. Diversity of properties among catalases. Arch Biochem Biophys 401: 145-154.
    • (2002) Arch Biochem Biophys , vol.401 , pp. 145-154
    • Switala, J.1    Loewen, P.C.2
  • 58
    • 84870830687 scopus 로고    scopus 로고
    • Quantitative analysis of the modes of growth inhibition by weak organic acids in Saccharomyces cerevisiae
    • Ullah A, Orij R, Brul S, Smits GJ. 2012. Quantitative analysis of the modes of growth inhibition by weak organic acids in Saccharomyces cerevisiae. Appl Environ Microbiol 78: 8377-8387.
    • (2012) Appl Environ Microbiol , vol.78 , pp. 8377-8387
    • Ullah, A.1    Orij, R.2    Brul, S.3    Smits, G.J.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.