메뉴 건너뛰기




Volumn 15, Issue , 2013, Pages 227-251

Mechanics in neuronal development and repair

Author keywords

brain; glial cells; mechanosensitivity; neurons; stiffness; viscoelasticity

Indexed keywords

BIOLOGICAL CELLS; BUILDING BLOCKES; CHEMICAL SIGNALS; GLIAL CELLS; MECHANOSENSITIVITY; MULTIPLE SCLEROSIS; NEURONAL DEVELOPMENT; SPINAL CORD INJURIES (SCI);

EID: 84880322216     PISSN: 15239829     EISSN: 15454274     Source Type: Book Series    
DOI: 10.1146/annurev-bioeng-071811-150045     Document Type: Article
Times cited : (255)

References (194)
  • 1
    • 70350340041 scopus 로고    scopus 로고
    • Stretch growth of integrated axon tracts: Extremes and exploitations
    • Smith DH. 2009. Stretch growth of integrated axon tracts: Extremes and exploitations. Prog. Neurobiol. 89(3):231-39
    • (2009) Prog. Neurobiol , vol.89 , Issue.3 , pp. 231-239
    • Smith, D.H.1
  • 2
    • 0031037505 scopus 로고    scopus 로고
    • A tension-based theory of morphogenesis and compact wiring in the central nervous system
    • Van Essen DC. 1997. A tension-based theory of morphogenesis and compact wiring in the central nervous system. Nature 385:313-18
    • (1997) Nature , vol.385 , pp. 313-318
    • Van Essen, D.C.1
  • 3
    • 0000492844 scopus 로고
    • Nerve patterns: The mechanics of nerve growth
    • Weiss P. 1941. Nerve patterns: The mechanics of nerve growth. Growth: Third Growth Symp. 5:163-203
    • (1941) Growth: Third Growth Symp , vol.5 , pp. 163-203
    • Weiss, P.1
  • 4
    • 0033625536 scopus 로고    scopus 로고
    • Motor proteins regulate force interactions between microtubules and microfilaments in the axon
    • Ahmad FJ, Hughey J, Wittmann T, Hyman A, Greaser M, Baas PW. 2000. Motor proteins regulate force interactions between microtubules and microfilaments in the axon. Nat. Cell Biol. 2:276-80
    • (2000) Nat. Cell Biol , vol.2 , pp. 276-280
    • Ahmad, F.J.1    Hughey, J.2    Wittmann, T.3    Hyman, A.4    Greaser, M.5    Baas, P.W.6
  • 5
    • 0023764059 scopus 로고
    • Tension and compression in the cytoskeleton of PC-12 neurites II: Quantitative measurements
    • Dennerll TJ, Joshi HC, Steel VL, Buxbaum RE, Heidemann SR. 1988. Tension and compression in the cytoskeleton of PC-12 neurites. II: Quantitative measurements. J. Cell Biol. 107:665-74
    • (1988) J. Cell Biol , vol.107 , pp. 665-674
    • Dennerll, T.J.1    Joshi, H.C.2    Steel, V.L.3    Buxbaum, R.E.4    Heidemann, S.R.5
  • 7
    • 33748541597 scopus 로고    scopus 로고
    • Antagonistic forces generated by cytoplasmic dynein and myosin-II during growth cone turning and axonal retraction
    • Myers KA, Tint I, Nadar CV, He Y, Black MM, Baas PW. 2006. Antagonistic forces generated by cytoplasmic dynein and myosin-II during growth cone turning and axonal retraction. Traffic 7:1333-51
    • (2006) Traffic , vol.7 , pp. 1333-1351
    • Myers, K.A.1    Tint, I.2    Nadar, C.V.3    He, Y.4    Black, M.M.5    Baas, P.W.6
  • 8
    • 0035783778 scopus 로고    scopus 로고
    • Astrocytic intermediate filaments: Lessons from GFAP and vimentin knock-out mice
    • Pekny M. 2001. Astrocytic intermediate filaments: Lessons from GFAP and vimentin knock-out mice. Prog. Brain Res. 132:23-30
    • (2001) Prog. Brain Res , vol.132 , pp. 23-30
    • Pekny, M.1
  • 10
    • 0036779579 scopus 로고    scopus 로고
    • Activity-Dependent regulation of dendritic growth and patterning
    • Wong RO, Ghosh A. 2002. Activity-Dependent regulation of dendritic growth and patterning. Nat. Rev. Neurosci. 3:803-12
    • (2002) Nat. Rev. Neurosci , vol.3 , pp. 803-812
    • Wong, R.O.1    Ghosh, A.2
  • 11
    • 0029863153 scopus 로고    scopus 로고
    • Myosin drives retrograde F-Actin flow in neuronal growth cones
    • Lin CH, Espreafico EM, Mooseker MS, Forscher P. 1996. Myosin drives retrograde F-Actin flow in neuronal growth cones. Neuron 16:769-82
    • (1996) Neuron , vol.16 , pp. 769-782
    • Lin, C.H.1    Espreafico, E.M.2    Mooseker, M.S.3    Forscher, P.4
  • 12
    • 33644775671 scopus 로고    scopus 로고
    • Myosin II functions in actin-bundle turnover in neuronal growth cones
    • Medeiros NA, Burnette DT, Forscher P. 2006. Myosin II functions in actin-bundle turnover in neuronal growth cones. Nat. Cell Biol. 8:215-26
    • (2006) Nat. Cell Biol , vol.8 , pp. 215-226
    • Medeiros, N.A.1    Burnette, D.T.2    Forscher, P.3
  • 14
    • 58149230940 scopus 로고    scopus 로고
    • Traction dynamics of filopodia on compliant substrates
    • Chan CE, Odde DJ. 2008. Traction dynamics of filopodia on compliant substrates. Science 322:1687-91
    • (2008) Science , vol.322 , pp. 1687-1691
    • Chan, C.E.1    Odde, D.J.2
  • 16
    • 0033868010 scopus 로고    scopus 로고
    • Substrate-cytoskeletal coupling as a mechanism for the regulation of growth cone motility and guidance
    • SuterDM, Forscher P. 2000. Substrate-cytoskeletal coupling as a mechanism for the regulation of growth cone motility and guidance. J. Neurobiol. 44:97-113
    • (2000) J. Neurobiol , vol.44 , pp. 97-113
    • Suter, D.M.1    Forscher, P.2
  • 18
    • 79952899416 scopus 로고    scopus 로고
    • Second messengers and membrane trafficking direct and organize growth cone steering
    • Tojima T, Hines JH, Henley JR, Kamiguchi H. 2011. Second messengers and membrane trafficking direct and organize growth cone steering. Nat. Rev. Neurosci. 12:191-203
    • (2011) Nat. Rev. Neurosci , vol.12 , pp. 191-203
    • Tojima, T.1    Hines, J.H.2    Henley, J.R.3    Kamiguchi, H.4
  • 19
    • 78149237998 scopus 로고    scopus 로고
    • The biophysics of neuronal growth
    • Franze K, Guck J. 2010. The biophysics of neuronal growth. Rep. Prog. Phys. 73:094601
    • (2010) Rep. Prog. Phys , vol.73 , pp. 094601
    • Franze, K.1    Guck, J.2
  • 21
    • 58049220350 scopus 로고    scopus 로고
    • Mechanotransduction in development: A growing role for contractility
    • Wozniak MA, Chen CS. 2009. Mechanotransduction in development: A growing role for contractility. Nat. Rev. Mol. Cell Biol. 10:34-43
    • (2009) Nat. Rev. Mol. Cell Biol , vol.10 , pp. 34-43
    • Wozniak, M.A.1    Chen, C.S.2
  • 22
    • 77951725201 scopus 로고    scopus 로고
    • The function of mechanical tension in neuronal and network development
    • Ayali A. 2010. The function of mechanical tension in neuronal and network development. Integr. Biol. 2:178-82
    • (2010) Integr. Biol , vol.2 , pp. 178-182
    • Ayali, A.1
  • 23
    • 0028241496 scopus 로고
    • Mechanical tension as a regulator of axonal development
    • Heidemann SR, Buxbaum RE. 1994. Mechanical tension as a regulator of axonal development. Neurotoxicology 15:95-107
    • (1994) Neurotoxicology , vol.15 , pp. 95-107
    • Heidemann, S.R.1    Buxbaum, R.E.2
  • 24
    • 79955774312 scopus 로고    scopus 로고
    • The emerging role of forces in axonal elongation
    • SuterDM, MillerKE. 2011. The emerging role of forces in axonal elongation. Prog.Neurobiol. 94:91-101
    • (2011) Prog.Neurobiol , vol.94 , pp. 91-101
    • Suter, D.M.1    Miller, K.E.2
  • 25
    • 80053928781 scopus 로고    scopus 로고
    • Biophysics of substrate interaction: Influence on neural motility, differentiation, and repair
    • Moore SW, Sheetz MP. 2011. Biophysics of substrate interaction: Influence on neural motility, differentiation, and repair. Dev. Neurobiol. 71:1090-101
    • (2011) Dev. Neurobiol , vol.71 , pp. 1090-1101
    • Moore, S.W.1    Sheetz, M.P.2
  • 26
    • 77249105366 scopus 로고    scopus 로고
    • Biomechanical assessment of brain dynamic responses due to blast pressure waves
    • Chafi MS, Karami G, Ziejewski M. 2010. Biomechanical assessment of brain dynamic responses due to blast pressure waves. Ann. Biomed. Eng. 38:490-504
    • (2010) Ann. Biomed. Eng , vol.38 , pp. 490-504
    • Chafi, M.S.1    Karami, G.2    Ziejewski, M.3
  • 27
    • 19344372816 scopus 로고    scopus 로고
    • Shear properties of brain tissue over a frequency range relevant for automotive impact situations: New experimental results
    • Nicolle S, Lounis M, Willinger R. 2004. Shear properties of brain tissue over a frequency range relevant for automotive impact situations: New experimental results. Stapp Car Crash J. 48:239-58
    • (2004) Stapp Car Crash J. , vol.48 , pp. 239-258
    • Nicolle, S.1    Lounis, M.2    Willinger, R.3
  • 28
    • 72649091789 scopus 로고    scopus 로고
    • Mechanical response of infant brain to manually inflicted shaking
    • Couper Z, Albermani F. 2010. Mechanical response of infant brain to manually inflicted shaking. Proc. Inst. Mech. Eng. H 224:1-15
    • (2010) Proc. Inst. Mech. Eng. H , vol.224 , pp. 1-15
    • Couper, Z.1    Albermani, F.2
  • 30
  • 31
    • 79953028458 scopus 로고    scopus 로고
    • Measurement of the hyperelastic properties of ex vivo brain tissue slices
    • Kaster T, Sack I, Samani A. 2011. Measurement of the hyperelastic properties of ex vivo brain tissue slices. J. Biomech. 44:1158-63
    • (2011) J. Biomech , vol.44 , pp. 1158-1163
    • Kaster, T.1    Sack, I.2    Samani, A.3
  • 32
    • 81555209273 scopus 로고    scopus 로고
    • Mechanically adaptive intracortical implants improve the proximity of neuronal cell bodies
    • Harris JP, Capadona JR, Miller RH, Healy BC, Shanmuganathan K, et al. 2011. Mechanically adaptive intracortical implants improve the proximity of neuronal cell bodies. J. Neural Eng. 8:066011
    • (2011) J. Neural Eng , vol.8 , pp. 066011
    • Harris, J.P.1    Capadona, J.R.2    Miller, R.H.3    Healy, B.C.4    Shanmuganathan, K.5
  • 33
    • 77955107756 scopus 로고    scopus 로고
    • Age-Dependent regional mechanical properties of the rat hippocampus and cortex
    • Elkin BS, Ilankovan A, Morrison B III. 2010. Age-Dependent regional mechanical properties of the rat hippocampus and cortex. J. Biomech. Eng. 132:011010
    • (2010) J. Biomech. Eng , vol.132 , pp. 011010
    • Elkin, B.S.1    Ilankovan, A.2    Morrison Iii, B.3
  • 34
    • 0345447530 scopus 로고    scopus 로고
    • Age-Dependent changes in material properties of the brain and braincase of the rat
    • Gefen A, Gefen N, Zhu Q, Raghupathi R, Margulies SS. 2003. Age-Dependent changes in material properties of the brain and braincase of the rat. J. Neurotrauma 20:1163-77
    • (2003) J. Neurotrauma , vol.20 , pp. 1163-1177
    • Gefen, A.1    Gefen, N.2    Zhu, Q.3    Raghupathi, R.4    Margulies, S.S.5
  • 36
    • 0032432603 scopus 로고    scopus 로고
    • Age-Dependent material properties of the porcine cerebrum: Effect on pediatric inertial head injury criteria
    • Thibault KL, Margulies SS. 1998. Age-Dependent material properties of the porcine cerebrum: Effect on pediatric inertial head injury criteria. J. Biomech. 31:1119-26
    • (1998) J. Biomech , vol.31 , pp. 1119-1126
    • Thibault, K.L.1    Margulies, S.S.2
  • 37
    • 69249234667 scopus 로고    scopus 로고
    • Simultaneous determination of mechanical properties and physiologic parameters in living rat brain
    • Shulyakov AV, Fernando F, Cenkowski SS, Del Bigio MR. 2009. Simultaneous determination of mechanical properties and physiologic parameters in living rat brain. Biomech. Model. Mechanobiol. 8:415-25
    • (2009) Biomech. Model. Mechanobiol , vol.8 , pp. 415-425
    • Shulyakov, A.V.1    Fernando, F.2    Cenkowski, S.S.3    Del Bigio, M.R.4
  • 38
    • 33646204388 scopus 로고    scopus 로고
    • Matrices with compliance comparable to that of brain tissue select neuronal over glial growth in mixed cortical cultures
    • Georges PC, Miller WJ, Meaney DF, Sawyer ES, Janmey PA. 2006. Matrices with compliance comparable to that of brain tissue select neuronal over glial growth in mixed cortical cultures. Biophys. J. 90:3012-18
    • (2006) Biophys. J. , vol.90 , pp. 3012-3018
    • Georges, P.C.1    Miller, W.J.2    Meaney, D.F.3    Sawyer, E.S.4    Janmey, P.A.5
  • 39
    • 79952382498 scopus 로고    scopus 로고
    • Optically based-indentation technique for acute rat brain tissue slices and thin biomaterials
    • Lee SJ, Sun J, Flint JJ, Guo S, Xie HK, et al. 2011. Optically based-indentation technique for acute rat brain tissue slices and thin biomaterials. J. Biomed. Mater. Res. B Appl. Biomater. 97:84-95
    • (2011) J. Biomed. Mater. Res. B Appl. Biomater , vol.97 , pp. 84-95
    • Lee, S.J.1    Sun, J.2    Flint, J.J.3    Guo, S.4    Xie, H.K.5
  • 40
    • 78149283653 scopus 로고    scopus 로고
    • Mechanical difference between white and gray matter in the rat cerebellummeasured by scanning forcemicroscopy
    • Christ AF, Franze K, Gautier H, Moshayedi P, Fawcett J, et al. 2010. Mechanical difference between white and gray matter in the rat cerebellummeasured by scanning forcemicroscopy. J. Biomech. 43:2986-92
    • (2010) J. Biomech , vol.43 , pp. 2986-2992
    • Christ, A.F.1    Franze, K.2    Gautier, H.3    Moshayedi, P.4    Fawcett, J.5
  • 41
    • 79955814272 scopus 로고    scopus 로고
    • Spatial mapping of the mechanical properties of the living retina using scanning force microscopy
    • Franze K, Francke M, Günter K, Christ AF, Körber N, et al. 2011. Spatial mapping of the mechanical properties of the living retina using scanning force microscopy. Soft Matter 7:3147-54
    • (2011) Soft Matter , vol.7 , pp. 3147-3154
    • Franze, K.1    Francke, M.2    Günter, K.3    Christ, A.F.4    Körber, N.5
  • 43
    • 41949121082 scopus 로고    scopus 로고
    • Non-invasive measurement of brain viscoelasticity using magnetic resonance elastography
    • Sack I, Beierbach B, Hamhaber U, KlattD, Braun J. 2008. Non-invasive measurement of brain viscoelasticity using magnetic resonance elastography. NMR Biomed. 21:265-71
    • (2008) NMR Biomed , vol.21 , pp. 265-271
    • Sack, I.1    Beierbach, B.2    Hamhaber, U.3    Klattd Braun, J.4
  • 44
    • 79959507039 scopus 로고    scopus 로고
    • Viscoelastic properties of human cerebellum using magnetic resonance elastography
    • Zhang J, Green MA, Sinkus R, Bilston LE. 2011. Viscoelastic properties of human cerebellum using magnetic resonance elastography. J. Biomech. 44:1909-13
    • (2011) J. Biomech , vol.44 , pp. 1909-1913
    • Zhang, J.1    Green, M.A.2    Sinkus, R.3    Bilston, L.E.4
  • 45
    • 79952756961 scopus 로고    scopus 로고
    • Fifty years of brain tissue mechanical testing: From in vitro to in vivo investigations
    • Chatelin S, Constantinesco A, Willinger R. 2010. Fifty years of brain tissue mechanical testing: From in vitro to in vivo investigations. Biorheology 47:255-76
    • (2010) Biorheology , vol.47 , pp. 255-276
    • Chatelin, S.1    Constantinesco, A.2    Willinger, R.3
  • 46
    • 78651063200 scopus 로고    scopus 로고
    • Mechanisms of mechanical signaling in development and disease
    • Janmey PA, Miller RT. 2011. Mechanisms of mechanical signaling in development and disease. J. Cell Sci. 124:9-18
    • (2011) J. Cell Sci , vol.124 , pp. 9-18
    • Janmey, P.A.1    Miller, R.T.2
  • 47
    • 0038025904 scopus 로고    scopus 로고
    • The creation of three-Dimensional finite elementmodels for simulating head impact biomechanics
    • Horgan TJ,Gilchrist MD. 2003. The creation of three-Dimensional finite elementmodels for simulating head impact biomechanics. Int. J. Crashworth. 8:353-66
    • (2003) Int. J. Crashworth , vol.8 , pp. 353-366
    • Horgan, T.J.1    Gilchrist, M.D.2
  • 49
    • 84869402780 scopus 로고    scopus 로고
    • Complex stiffness gradient substrates for studying mechanotactic cell migration
    • Kuo CHR, Xian J, Brenton JD, Franze K, Sivaniah E. 2012. Complex stiffness gradient substrates for studying mechanotactic cell migration. Adv. Mater. 24(45): 6059-64
    • (2012) Adv. Mater , vol.24 , Issue.45 , pp. 6059-6064
    • Kuo, C.H.R.1    Xian, J.2    Brenton, J.D.3    Franze, K.4    Sivaniah, E.5
  • 50
    • 0033917881 scopus 로고    scopus 로고
    • Cell movement is guided by the rigidity of the substrate
    • Lo CM,WangHB, DemboM,Wang YL. 2000. Cell movement is guided by the rigidity of the substrate. Biophys. J. 79:144-52
    • (2000) Biophys. J. , vol.79 , pp. 144-152
    • Lo, C.M.1    Wang, H.B.2    Dembo, M.3    Wang, Y.L.4
  • 51
    • 67651154119 scopus 로고    scopus 로고
    • The influence of hydrogelmodulus on the proliferation and differentiation of encapsulated neural stem cells
    • Banerjee A, Arha M, Choudhary S, Ashton RS, Bhatia SR, et al. 2009. The influence of hydrogelmodulus on the proliferation and differentiation of encapsulated neural stem cells. Biomaterials 30:4695-99
    • (2009) Biomaterials , vol.30 , pp. 4695-4699
    • Banerjee, A.1    Arha, M.2    Choudhary, S.3    Ashton, R.S.4    Bhatia, S.R.5
  • 52
    • 84870903078 scopus 로고    scopus 로고
    • Soft microenvironments promote the early neurogenic differentiation but not self-renewal of human pluripotent stem cells
    • Keung AJ, Asuri P, Kumar S, Schaffer DV. 2012. Soft microenvironments promote the early neurogenic differentiation but not self-renewal of human pluripotent stem cells. Integr. Biol. 4:1049-58
    • (2012) Integr. Biol , vol.4 , pp. 1049-1058
    • Keung, A.J.1    Asuri, P.2    Kumar, S.3    Schaffer, D.V.4
  • 53
    • 77949567242 scopus 로고    scopus 로고
    • Extracellular matrix rigidity modulates neuroblastoma cell differentiation and N-myc expression
    • Lam WA, Cao L, Umesh V, Keung AJ, Sen S, Kumar S. 2010. Extracellular matrix rigidity modulates neuroblastoma cell differentiation and N-myc expression. Mol. Cancer 9:35
    • (2010) Mol. Cancer , vol.9 , pp. 35
    • Lam, W.A.1    Cao, L.2    Umesh, V.3    Keung, A.J.4    Sen, S.5    Kumar, S.6
  • 54
    • 80053054141 scopus 로고    scopus 로고
    • Acceleration of neuronal precursors differentiation induced by substrate nanotopography
    • Migliorini E, Grenci G, Ban J, Pozzato A, Tormen M, et al. 2011. Acceleration of neuronal precursors differentiation induced by substrate nanotopography. Biotechnol. Bioeng. 108:2736-46
    • (2011) Biotechnol. Bioeng , vol.108 , pp. 2736-2746
    • Migliorini, E.1    Grenci, G.2    Ban, J.3    Pozzato, A.4    Tormen, M.5
  • 55
    • 84859630687 scopus 로고    scopus 로고
    • Magnetic resonance elastography of the brain in a mouse model of Alzheimer's disease: Initial results
    • Murphy MC, Curran GL, Glaser KJ, Rossman PJ, Huston J III, et al. 2012. Magnetic resonance elastography of the brain in a mouse model of Alzheimer's disease: Initial results. Magn. Reson. Imaging 30:535-39
    • (2012) Magn. Reson. Imaging , vol.30 , pp. 535-539
    • Murphy, M.C.1    Curran, G.L.2    Glaser, K.J.3    Rossman, P.J.4    Huston Iii, J.5
  • 56
  • 57
    • 84860200618 scopus 로고    scopus 로고
    • Demyelination reduces brain parenchymal stiffness quantified in vivo by magnetic resonance elastography
    • Schregel K, Wuerfel E, Garteiser P, Gemeinhardt I, Prozorovski T, et al. 2012. Demyelination reduces brain parenchymal stiffness quantified in vivo by magnetic resonance elastography. Proc. Natl. Acad. Sci. USA 109:6650-55
    • (2012) Proc. Natl. Acad. Sci. USA , vol.109 , pp. 6650-6655
    • Schregel, K.1    Wuerfel, E.2    Garteiser, P.3    Gemeinhardt, I.4    Prozorovski, T.5
  • 58
    • 84856032260 scopus 로고    scopus 로고
    • Brain viscoelasticity alteration in chronic-progressive multiple sclerosis
    • Streitberger KJ, Sack I, Krefting D, Pfuller C, Braun J, et al. 2012. Brain viscoelasticity alteration in chronic-progressive multiple sclerosis. PLoS One 7:e29888
    • (2012) PLoS One , vol.7
    • Streitberger, K.J.1    Sack, I.2    Krefting, D.3    Pfuller, C.4    Braun, J.5
  • 59
    • 71849119020 scopus 로고    scopus 로고
    • MR-elastography reveals degradation of tissue integrity in multiple sclerosis
    • Wuerfel J, Paul F, Beierbach B, Hamhaber U, KlattD, et al. 2010. MR-elastography reveals degradation of tissue integrity in multiple sclerosis. NeuroImage 49:2520-25
    • (2010) NeuroImage , vol.49 , pp. 2520-2525
    • Wuerfel, J.1    Paul, F.2    Beierbach, B.3    Klattd, H.U.4
  • 60
    • 68549123397 scopus 로고    scopus 로고
    • Probing the influence of myelin and glia on the tensile properties of the spinal cord
    • Shreiber DI, Hao H, Elias RA. 2009. Probing the influence of myelin and glia on the tensile properties of the spinal cord. Biomech. Model. Mechanobiol. 8:311-21
    • (2009) Biomech. Model. Mechanobiol , vol.8 , pp. 311-321
    • Shreiber, D.I.1    Hao, H.2    Elias, R.A.3
  • 61
    • 84871990334 scopus 로고    scopus 로고
    • Magnetic resonance elastography reveals altered brain viscoelasticity in experimental autoimmune encephalomyelitis
    • Riek K, Millward JM, Hamann I, Mueller S, Pfueller CF, et al. 2012. Magnetic resonance elastography reveals altered brain viscoelasticity in experimental autoimmune encephalomyelitis. NeuroImage 1:81-90
    • (2012) NeuroImage , vol.1 , pp. 81-90
    • Riek, K.1    Millward, J.M.2    Hamann, I.3    Mueller, S.4    Pfueller, C.F.5
  • 64
    • 0010577027 scopus 로고    scopus 로고
    • Defining brain mechanical properties: Effects of region, direction, and species
    • Prange MT, Meaney DF, Margulies SS. 2000. Defining brain mechanical properties: Effects of region, direction, and species. Stapp Car Crash J. 44:205-13
    • (2000) Stapp Car Crash J. , vol.44 , pp. 205-213
    • Prange, M.T.1    Meaney, D.F.2    Margulies, S.S.3
  • 65
    • 0024240224 scopus 로고
    • Quantitative electron microscopy of rabbit Muller (glial) cells in dependence on retinal topography
    • Reichenbach A, Hagen E, Schippel K, Eberhardt W. 1988. Quantitative electron microscopy of rabbit Muller (glial) cells in dependence on retinal topography. Z. Mikrosk. Anat. Forsch. 102:721-55
    • (1988) Z. Mikrosk. Anat. Forsch , vol.102 , pp. 721-755
    • Reichenbach, A.1    Hagen, E.2    Schippel, K.3    Eberhardt, W.4
  • 67
    • 80455129123 scopus 로고    scopus 로고
    • Mechanical manipulation of neurons to control axonal development
    • Lamoureux P, Heidemann S, Miller KE. 2011. Mechanical manipulation of neurons to control axonal development. J. Vis. Exp. (50):e2509
    • (2011) J. Vis. Exp. , vol.50
    • Lamoureux, P.1    Heidemann, S.2    Miller, K.E.3
  • 68
    • 0038649974 scopus 로고    scopus 로고
    • Tensile force-Dependent neurite elicitation via anti-β1 integrin antibody-coated magnetic beads
    • Fass JN,Odde DJ. 2003. Tensile force-Dependent neurite elicitation via anti-β1 integrin antibody-coated magnetic beads. Biophys. J. 85:623-36
    • (2003) Biophys. J. , vol.85 , pp. 623-636
    • Fass, J.N.1    Odde, D.J.2
  • 70
    • 41649088250 scopus 로고    scopus 로고
    • A physical model of axonal elongation: Force, viscosity, and adhesions govern the mode of outgrowth
    • O'TooleM, Lamoureux P,Miller KE. 2008. A physical model of axonal elongation: Force, viscosity, and adhesions govern the mode of outgrowth. Biophys. J. 94:2610-20
    • (2008) Biophys. J. , vol.94 , pp. 2610-2620
    • O'Toole, M.1    Lamoureux, P.2    Miller, K.E.3
  • 71
    • 0030918841 scopus 로고    scopus 로고
    • Cytomechanics of neurite outgrowth from chick brain neurons
    • Chada S, Lamoureux P, Buxbaum RE,Heidemann SR. 1997. Cytomechanics of neurite outgrowth from chick brain neurons. J. Cell Sci. 110:1179-86
    • (1997) J. Cell Sci , vol.110 , pp. 1179-1186
    • Chada, S.1    Lamoureux, P.2    Buxbaum, R.E.3    Heidemann, S.R.4
  • 74
    • 77958133055 scopus 로고    scopus 로고
    • Slowing of axonal regeneration is correlated with increased axonal viscosity during aging
    • Lamoureux PL, O'Toole MR, Heidemann SR, Miller KE. 2010. Slowing of axonal regeneration is correlated with increased axonal viscosity during aging. BMC Neurosci. 11:140
    • (2010) BMC Neurosci , vol.11 , pp. 140
    • Lamoureux, P.L.1    O'Toole, M.R.2    Heidemann, S.R.3    Miller, K.E.4
  • 75
    • 33846799067 scopus 로고    scopus 로고
    • Dendritic spine viscoelasticity and soft-glassy nature: Balancing dynamic remodeling with structural stability
    • Smith BA, Roy H, De Koninck P, Grütter P, De Koninck Y. 2007. Dendritic spine viscoelasticity and soft-glassy nature: Balancing dynamic remodeling with structural stability. Biophys. J. 92:1419-30
    • (2007) Biophys. J. , vol.92 , pp. 1419-1430
    • Smith, B.A.1    Roy, H.2    De Koninck, P.3    Grütter, P.4    De Koninck, Y.5
  • 76
    • 74449083749 scopus 로고    scopus 로고
    • The cavity-To-cavity migration of leukaemic cells through 3D honey-combed hydrogels with adjustable internal dimension and stiffness
    • da Silva J, Lautenschläger F, Sivaniah E, Guck Jr. 2010. The cavity-To-cavity migration of leukaemic cells through 3D honey-combed hydrogels with adjustable internal dimension and stiffness. Biomaterials 31:2201-8
    • (2010) Biomaterials , vol.31 , pp. 2201-2208
    • Da Silva, J.1    Lautenschläger, F.2    Sivaniah, E.3    Guck, J.R.4
  • 77
    • 84866933832 scopus 로고    scopus 로고
    • Viscoelastic properties of differentiating blood cells are fate-And function-Dependent
    • Ekpenyong AE, Whyte G, Chalut K, Pagliara S, Lautenschläger F, et al. 2012. Viscoelastic properties of differentiating blood cells are fate-And function-Dependent. PLoS One 7:e45237
    • (2012) PLoS One , vol.7
    • Ekpenyong, A.E.1    Whyte, G.2    Chalut, K.3    Pagliara, S.4    Lautenschläger, F.5
  • 78
    • 78149268479 scopus 로고    scopus 로고
    • Critical review: Cellular mechanobiology and amoeboid migration
    • Guck J, Lautenschläger F, Paschke S, Beil M. 2010. Critical review: Cellular mechanobiology and amoeboid migration. Integr. Biol. 2:575-83
    • (2010) Integr. Biol , vol.2 , pp. 575-583
    • Guck, J.1    Lautenschläger, F.2    Paschke, S.3    Beil, M.4
  • 79
    • 79551624313 scopus 로고    scopus 로고
    • Reactive glial cells: Increased stiffness correlates with increased intermediate filament expression
    • Lu YB, Iandiev I, HollbornM, Körber N, Ulbricht E, et al. 2011. Reactive glial cells: Increased stiffness correlates with increased intermediate filament expression. FASEB J. 25:624-31
    • (2011) FASEB J. , vol.25 , pp. 624-631
    • Lu, Y.B.1    Iandiev, I.2    Hollborn, M.3    Körber, N.4    Ulbricht, E.5
  • 80
    • 84871865491 scopus 로고    scopus 로고
    • Muller cell expression of genes implicated in proliferative vitreoretinopathy is influenced by substrate elastic modulus
    • Davis JT, WenQ, Janmey PA, OttesonDC, Foster WJ. 2012. Muller cell expression of genes implicated in proliferative vitreoretinopathy is influenced by substrate elastic modulus. Investig. Ophthalmol. Vis. Sci. 53:3014-19
    • (2012) Investig. Ophthalmol. Vis. Sci , vol.53 , pp. 3014-3019
    • Davis, J.T.1    Wen, Q.2    Janmey, P.A.3    Otteson, D.C.4    Foster, W.J.5
  • 81
    • 37349005914 scopus 로고    scopus 로고
    • Fibroblast adaptation and stiffness matching to soft elastic substrates
    • Solon J, Levental I, Sengupta K, Georges PC, Janmey PA. 2007. Fibroblast adaptation and stiffness matching to soft elastic substrates. Biophys. J. 93:4453-61
    • (2007) Biophys. J. , vol.93 , pp. 4453-4461
    • Solon, J.1    Levental, I.2    Sengupta, K.3    Georges, P.C.4    Janmey, P.A.5
  • 82
    • 84867752974 scopus 로고    scopus 로고
    • Mechanical environment modulates biological properties of oligodendrocyte progenitor cells
    • Jagielska A, Norman AL, Whyte G, Vliet KJ, Guck J, Franklin RJ. 2012. Mechanical environment modulates biological properties of oligodendrocyte progenitor cells. Stem Cells Dev. 21:2905-14
    • (2012) Stem Cells Dev , vol.21 , pp. 2905-2914
    • Jagielska, A.1    Norman, A.L.2    Whyte, G.3    Vliet, K.J.4    Guck, J.5    Franklin, R.J.6
  • 85
    • 0034099679 scopus 로고    scopus 로고
    • Visualization and quantification of breast cancer biomechanical properties with magnetic resonance elastography
    • Plewes DB, Bishop J, Samani A, Sciarretta J. 2000. Visualization and quantification of breast cancer biomechanical properties with magnetic resonance elastography. Phys. Med. Biol. 45:1591-610
    • (2000) Phys. Med. Biol , vol.45 , pp. 1591-1610
    • Plewes, D.B.1    Bishop, J.2    Samani, A.3    Sciarretta, J.4
  • 87
    • 0000488492 scopus 로고
    • Regeneration in the spinal cord of the cat and dog
    • Windle WF, Chambers WW. 1950. Regeneration in the spinal cord of the cat and dog. J. Comp. Neurol. 93:241-57
    • (1950) J. Comp. Neurol , vol.93 , pp. 241-257
    • Windle, W.F.1    Chambers, W.W.2
  • 88
    • 77958193306 scopus 로고    scopus 로고
    • Compartmentalization from the outside: The extracellular matrix and functional microdomains in the brain
    • Dityatev A, Seidenbecher CI, Schachner M. 2010. Compartmentalization from the outside: The extracellular matrix and functional microdomains in the brain. Trends Neurosci. 33:503-12
    • (2010) Trends Neurosci , vol.33 , pp. 503-512
    • Dityatev, A.1    Seidenbecher, C.I.2    Schachner, M.3
  • 89
    • 0029823181 scopus 로고    scopus 로고
    • Brain extracellular matrix
    • Ruoslahti E. 1996. Brain extracellular matrix. Glycobiology 6:489-92
    • (1996) Glycobiology , vol.6 , pp. 489-492
    • Ruoslahti, E.1
  • 90
    • 0036829914 scopus 로고    scopus 로고
    • Extravascular collagen in the human epileptic brain: A potential substrate for aberrant cell migration in cases of temporal lobe epilepsy
    • Veznedaroglu E, Van Bockstaele EJ, O'ConnorMJ. 2002. Extravascular collagen in the human epileptic brain: A potential substrate for aberrant cell migration in cases of temporal lobe epilepsy. J. Neurosurg. 97:1125-30
    • (2002) J. Neurosurg , vol.97 , pp. 1125-1130
    • Veznedaroglu, E.1    Van Bockstaele, E.J.2    O'Connor, M.J.3
  • 91
    • 77955714350 scopus 로고    scopus 로고
    • A micromechanical model for the Young's modulus of adipose tissue
    • Comley K, Fleck NA. 2010. A micromechanical model for the Young's modulus of adipose tissue. Int. J. Solids Struct. 47:2982-90
    • (2010) Int. J. Solids Struct , vol.47 , pp. 2982-2990
    • Comley, K.1    Fleck, N.A.2
  • 92
    • 0034024027 scopus 로고    scopus 로고
    • Lecticans: Organizers of the brain extracellular matrix
    • Yamaguchi Y. 2000. Lecticans: Organizers of the brain extracellular matrix. Cell. Mol. Life Sci. 57:276-89
    • (2000) Cell. Mol. Life Sci , vol.57 , pp. 276-289
    • Yamaguchi, Y.1
  • 93
    • 69949183657 scopus 로고    scopus 로고
    • Brain extracellular matrix in neurodegeneration
    • Bonneh-Barkay D, Wiley CA. 2009. Brain extracellular matrix in neurodegeneration. Brain Pathol. 19:573-85
    • (2009) Brain Pathol , vol.19 , pp. 573-585
    • Bonneh-Barkay, D.1    Wiley, C.A.2
  • 94
    • 4344702478 scopus 로고    scopus 로고
    • Extracellular matrix components associated with remodeling processes in brain
    • Rauch U. 2004. Extracellular matrix components associated with remodeling processes in brain. Cell. Mol. Life Sci. 61:2031-45
    • (2004) Cell. Mol. Life Sci , vol.61 , pp. 2031-2045
    • Rauch, U.1
  • 95
    • 33748476449 scopus 로고    scopus 로고
    • Glioma-produced extracellular matrix influences brain tumor tropism of human neural stem cells
    • Ziu M, Schmidt NO, Cargioli TG, Aboody KS, Black PM, Caroll RS. 2006. Glioma-produced extracellular matrix influences brain tumor tropism of human neural stem cells. J. Neurooncol. 79:125-33
    • (2006) J. Neurooncol , vol.79 , pp. 125-133
    • Ziu, M.1    Schmidt, N.O.2    Cargioli, T.G.3    Aboody, K.S.4    Black, P.M.5    Caroll, R.S.6
  • 96
    • 67649392519 scopus 로고    scopus 로고
    • Expression of extracellular matrix molecules in brain metastasis
    • Yoshida S, Takahashi H. 2009. Expression of extracellular matrix molecules in brain metastasis. J. Surg. Oncol. 100:65-68
    • (2009) J. Surg. Oncol , vol.100 , pp. 65-68
    • Yoshida, S.1    Takahashi, H.2
  • 97
    • 60549083987 scopus 로고    scopus 로고
    • The bright side of the glial scar in CNS repair
    • Rolls A, Shechter R, SchwartzM. 2009. The bright side of the glial scar in CNS repair. Nat. Rev. Neurosci. 10:235-41
    • (2009) Nat. Rev. Neurosci , vol.10 , pp. 235-241
    • Rolls, A.1    Shechter, R.2    Schwartz, M.3
  • 98
    • 80053215539 scopus 로고    scopus 로고
    • Microscopic magnetic resonance elastography of traumatic brain injury model
    • Boulet T, Kelso ML, Othman SF. 2011. Microscopic magnetic resonance elastography of traumatic brain injury model. J. Neurosci. Methods 201:296-306
    • (2011) J. Neurosci. Methods , vol.201 , pp. 296-306
    • Boulet, T.1    Kelso, M.L.2    Othman, S.F.3
  • 99
    • 0036148894 scopus 로고    scopus 로고
    • Induction of type IV collagen and other basement-membrane-Associated proteins after spinal cord injury of the adult rat may participate in formation of the glial scar
    • Liesi P, Kauppila T. 2002. Induction of type IV collagen and other basement-membrane-Associated proteins after spinal cord injury of the adult rat may participate in formation of the glial scar. Exp. Neurol. 173:31-45
    • (2002) Exp. Neurol , vol.173 , pp. 31-45
    • Liesi, P.1    Kauppila, T.2
  • 100
    • 0035823430 scopus 로고    scopus 로고
    • Lysyl oxidase, the extracellular matrix-forming enzyme, in rat brain injury sites
    • Gilad GM, Kagan HM, Gilad VH. 2001. Lysyl oxidase, the extracellular matrix-forming enzyme, in rat brain injury sites. Neurosci. Lett. 310:45-48
    • (2001) Neurosci. Lett , vol.310 , pp. 45-48
    • Gilad, G.M.1    Kagan, H.M.2    Gilad, V.H.3
  • 102
    • 84872073873 scopus 로고    scopus 로고
    • Control of three-Dimensional substrate stiffness to manipulate mesenchymal stem cell fate toward neuronal or glial lineages
    • Her GJ, Wu HC, Chen MH, Chen MY, Chang SC, Wang TW. 2013. Control of three-Dimensional substrate stiffness to manipulate mesenchymal stem cell fate toward neuronal or glial lineages. Acta Biomater. 9(2):5170-80
    • (2013) Acta Biomater , vol.9 , Issue.2 , pp. 5170-5180
    • Her, G.J.1    Wu, H.C.2    Chen, M.H.3    Chen, M.Y.4    Chang, S.C.5    Wang, T.W.6
  • 103
    • 33846674418 scopus 로고    scopus 로고
    • Enhanced neurite growth from mammalian neurons in three-Dimensional salmon fibrin gels
    • Ju YE, Janmey PA, McCormick ME, Sawyer ES, Flanagan LA. 2007. Enhanced neurite growth from mammalian neurons in three-Dimensional salmon fibrin gels. Biomaterials 28:2097-108
    • (2007) Biomaterials , vol.28 , pp. 2097-2108
    • Ju, Y.E.1    Janmey, P.A.2    McCormick, M.E.3    Sawyer, E.S.4    Flanagan, L.A.5
  • 104
    • 84855408702 scopus 로고    scopus 로고
    • Novel soft alginate hydrogel strongly supports neurite growth and protects neurons against oxidative stress
    • Matyash M, Despang F, Mandal R, Fiore D, Gelinsky M, Ikonomidou C. 2012. Novel soft alginate hydrogel strongly supports neurite growth and protects neurons against oxidative stress. Tissue Eng. Part A 18:55-66
    • (2012) Tissue Eng. Part A , vol.18 , pp. 55-66
    • Matyash, M.1    Despang, F.2    Mandal, R.3    Fiore, D.4    Gelinsky, M.5    Ikonomidou, C.6
  • 105
    • 84859900503 scopus 로고    scopus 로고
    • Salmon fibrin treatment of spinal cord injury promotes functional recovery and density of serotonergic innervation
    • Sharp KG, Dickson AR, Marchenko SA, Yee KM, Emery PN, et al. 2012. Salmon fibrin treatment of spinal cord injury promotes functional recovery and density of serotonergic innervation. Exp. Neurol. 235:345-56
    • (2012) Exp. Neurol , vol.235 , pp. 345-356
    • Sharp, K.G.1    Dickson, A.R.2    Marchenko, S.A.3    Yee, K.M.4    Emery, P.N.5
  • 106
    • 79960781696 scopus 로고    scopus 로고
    • High molecular weight hyaluronic acid limits astrocyte activation and scar formation after spinal cord injury
    • Khaing ZZ, Milman BD, Vanscoy JE, Seidlits SK, Grill RJ, Schmidt CE. 2011. High molecular weight hyaluronic acid limits astrocyte activation and scar formation after spinal cord injury. J. Neural Eng. 8:046033
    • (2011) J. Neural Eng , vol.8 , pp. 046033
    • Khaing, Z.Z.1    Milman, B.D.2    Vanscoy, J.E.3    Seidlits, S.K.4    Grill, R.J.5    Schmidt, C.E.6
  • 108
    • 27944497333 scopus 로고    scopus 로고
    • Tissue cells feel and respond to the stiffness of their substrate
    • Discher DE, Janmey P, Wang YL. 2005. Tissue cells feel and respond to the stiffness of their substrate. Science 310:1139-43
    • (2005) Science , vol.310 , pp. 1139-1143
    • Discher, D.E.1    Janmey, P.2    Wang, Y.L.3
  • 109
    • 33747152561 scopus 로고    scopus 로고
    • Matrix elasticity directs stem cell lineage specification
    • Engler AJ, Sen S, Sweeney HL,Discher DE. 2006. Matrix elasticity directs stem cell lineage specification. Cell 126:677-89
    • (2006) Cell , vol.126 , pp. 677-689
    • Engler, A.J.1    Sen, S.2    Sweeney, H.L.3    Discher, D.E.4
  • 110
    • 77957241846 scopus 로고    scopus 로고
    • Sensing substrate rigidity by mechanosensitive ion channels with stress fibers and focal adhesions
    • Kobayashi T, Sokabe M. 2010. Sensing substrate rigidity by mechanosensitive ion channels with stress fibers and focal adhesions. Curr. Opin. Cell Biol. 22:669-76
    • (2010) Curr. Opin. Cell Biol , vol.22 , pp. 669-676
    • Kobayashi, T.1    Sokabe, M.2
  • 111
    • 84868019299 scopus 로고    scopus 로고
    • Physically based principles of cell adhesion mechanosensitivity in tissues
    • Ladoux B, Nicolas A. 2012. Physically based principles of cell adhesion mechanosensitivity in tissues. Rep. Prog. Phys. 75:116601
    • (2012) Rep. Prog. Phys , vol.75 , pp. 116601
    • Ladoux, B.1    Nicolas, A.2
  • 112
    • 84868111953 scopus 로고    scopus 로고
    • Mechanosensitive mechanisms in transcriptional regulation
    • Mammoto A, Mammoto T, Ingber DE. 2012. Mechanosensitive mechanisms in transcriptional regulation. J. Cell Sci. 125:3061-73
    • (2012) J. Cell Sci , vol.125 , pp. 3061-3073
    • Mammoto, A.1    Mammoto, T.2    Ingber, D.E.3
  • 114
    • 77956064817 scopus 로고    scopus 로고
    • Cell adhesion: Integrating cytoskeletal dynamics and cellular tension
    • Parsons JT, Horwitz AR, Schwartz MA. 2010. Cell adhesion: Integrating cytoskeletal dynamics and cellular tension. Nat. Rev. Mol. Cell Biol. 11:633-43
    • (2010) Nat. Rev. Mol. Cell Biol , vol.11 , pp. 633-643
    • Parsons, J.T.1    Horwitz, A.R.2    Schwartz, M.A.3
  • 115
    • 84869102195 scopus 로고    scopus 로고
    • Finding the weakest link-exploring integrin-mediated mechanical molecular pathways
    • Roca-Cusachs P, Iskratsch T, SheetzMP. 2012. Finding the weakest link -exploring integrin-mediated mechanical molecular pathways. J. Cell Sci. 125:3025-38
    • (2012) J. Cell Sci , vol.125 , pp. 3025-3038
    • Roca-Cusachs, P.1    Iskratsch, T.2    Sheetz, M.P.3
  • 116
    • 84869138346 scopus 로고    scopus 로고
    • Molecular force transduction by ion channels-diversity and unifying principles
    • Sukharev S, Sachs F. 2012. Molecular force transduction by ion channels -diversity and unifying principles. J. Cell Sci. 125:3075-83
    • (2012) J. Cell Sci , vol.125 , pp. 3075-3083
    • Sukharev, S.1    Sachs, F.2
  • 117
    • 33645780908 scopus 로고    scopus 로고
    • Mechanotransduction involving multimodular proteins: Converting force into biochemical signals
    • Vogel V. 2006. Mechanotransduction involving multimodular proteins: Converting force into biochemical signals. Annu. Rev. Biophys. Biomol. Struct. 35:459-88
    • (2006) Annu. Rev. Biophys. Biomol. Struct , vol.35 , pp. 459-488
    • Vogel, V.1
  • 118
    • 33645773666 scopus 로고    scopus 로고
    • Local force and geometry sensing regulate cell functions
    • Vogel V, Sheetz M. 2006. Local force and geometry sensing regulate cell functions. Nat. Rev. Mol. Cell Biol. 7:265-75
    • (2006) Nat. Rev. Mol. Cell Biol , vol.7 , pp. 265-275
    • Vogel, V.1    Sheetz, M.2
  • 119
    • 58049211966 scopus 로고    scopus 로고
    • Mechanotransduction at a distance: Mechanically coupling the extracellular matrix with the nucleus
    • Wang N, Tytell JD, Ingber DE. 2009. Mechanotransduction at a distance: Mechanically coupling the extracellular matrix with the nucleus. Nat. Rev. Mol. Cell Biol. 10:75-82
    • (2009) Nat. Rev. Mol. Cell Biol , vol.10 , pp. 75-82
    • Wang, N.1    Tytell, J.D.2    Ingber, D.E.3
  • 120
    • 84869098973 scopus 로고    scopus 로고
    • Signalling through mechanical inputs-a coordinated process
    • Zhang H, Labouesse M. 2012. Signalling through mechanical inputs -A coordinated process. J. Cell Sci. 125:3039-49
    • (2012) J. Cell Sci , vol.125 , pp. 3039-3049
    • Zhang, H.1    Labouesse, M.2
  • 121
    • 0018333659 scopus 로고
    • Mechanical tension produced by nerve cells in tissue culture
    • Bray D. 1979. Mechanical tension produced by nerve cells in tissue culture. J. Cell Sci. 37:391-410
    • (1979) J. Cell Sci , vol.37 , pp. 391-410
    • Bray, D.1
  • 122
    • 0018838995 scopus 로고
    • Silicone rubber substrata: A new wrinkle in the study of cell locomotion
    • Harris AKA, Wild PP, Stopak DD. 1980. Silicone rubber substrata: A new wrinkle in the study of cell locomotion. Science 208:177-79
    • (1980) Science , vol.208 , pp. 177-179
    • Harris, A.K.A.1    Wild, P.P.2    Stopak, D.D.3
  • 123
    • 84856740623 scopus 로고    scopus 로고
    • Strength in the periphery: Growth cone biomechanics and substrate rigidity response in peripheral and central nervous system neurons
    • Koch D, Rosoff WJ, Jiang J, Geller HM, Urbach JS. 2012. Strength in the periphery: Growth cone biomechanics and substrate rigidity response in peripheral and central nervous system neurons. Biophys. J. 102:452-60
    • (2012) Biophys. J. , vol.102 , pp. 452-460
    • Koch, D.1    Rosoff, W.J.2    Jiang, J.3    Geller, H.M.4    Urbach, J.S.5
  • 124
    • 84869111112 scopus 로고    scopus 로고
    • United we stand-integrating the actin cytoskeleton and cell-matrix adhesions in cellular mechanotransduction
    • Schwarz US, Gardel ML. 2012. United we stand -integrating the actin cytoskeleton and cell-matrix adhesions in cellular mechanotransduction. J. Cell Sci. 125:3051-60
    • (2012) J. Cell Sci , vol.125 , pp. 3051-3060
    • Schwarz, U.S.1    Gardel, M.L.2
  • 125
    • 58049196875 scopus 로고    scopus 로고
    • Neurosensory mechanotransduction
    • Chalfie M. 2009. Neurosensory mechanotransduction. Nat. Rev. Mol. Cell Biol. 10:44-52
    • (2009) Nat. Rev. Mol. Cell Biol , vol.10 , pp. 44-52
    • Chalfie, M.1
  • 126
    • 70350011889 scopus 로고    scopus 로고
    • Neurite branch retraction is caused by a threshold-Dependent mechanical impact
    • Franze K, Gerdelmann J, Weick M, Betz T, Pawlizak S, et al. 2009. Neurite branch retraction is caused by a threshold-Dependent mechanical impact. Biophys. J. 97:1883-90
    • (2009) Biophys. J. , vol.97 , pp. 1883-1890
    • Franze, K.1    Gerdelmann, J.2    Weick, M.3    Betz, T.4    Pawlizak, S.5
  • 127
    • 84867288262 scopus 로고    scopus 로고
    • Photomechanical responses in Drosophila photoreceptors
    • Hardie RC, FranzeK. 2012. Photomechanical responses in Drosophila photoreceptors. Science 338:260-63
    • (2012) Science , vol.338 , pp. 260-263
    • Hardie, R.C.1    Franze, K.2
  • 128
    • 0033595232 scopus 로고    scopus 로고
    • Regulation of cell movement is mediated by stretch-Activated calcium channels
    • Lee J, Ishihara A, Oxford G, Johnson B, Jacobson K. 1999. Regulation of cell movement is mediated by stretch-Activated calcium channels. Nature 400:382-86
    • (1999) Nature , vol.400 , pp. 382-386
    • Lee, J.1    Ishihara, A.2    Oxford, G.3    Johnson, B.4    Jacobson, K.5
  • 129
    • 31444455532 scopus 로고    scopus 로고
    • The molecular basis for calcium-Dependent axon pathfinding
    • Gomez TM, Zheng JQ. 2006. The molecular basis for calcium-Dependent axon pathfinding. Nat. Rev. Neurosci. 7:115-25
    • (2006) Nat. Rev. Neurosci , vol.7 , pp. 115-125
    • Gomez, T.M.1    Zheng, J.Q.2
  • 130
    • 79551677684 scopus 로고    scopus 로고
    • Cells respond to mechanical stress by rapid disassembly of caveolae
    • Sinha B, Köster D, Ruez R, Gonnord P, Bastiani M, et al. 2011. Cells respond to mechanical stress by rapid disassembly of caveolae. Cell 144:402-13
    • (2011) Cell , vol.144 , pp. 402-413
    • Sinha, B.1    Köster, D.2    Ruez, R.3    Gonnord, P.4    Bastiani, M.5
  • 131
    • 69149106209 scopus 로고    scopus 로고
    • Mechanical tension contributes to clustering of neurotransmitter vesicles at presynaptic terminals
    • Siechen S, Yang S, Chiba A, Saif T. 2009. Mechanical tension contributes to clustering of neurotransmitter vesicles at presynaptic terminals. Proc. Natl. Acad. Sci. USA 106:12611-16
    • (2009) Proc. Natl. Acad. Sci. USA , vol.106 , pp. 12611-12616
    • Siechen, S.1    Yang, S.2    Chiba, A.3    Saif, T.4
  • 132
    • 84865411430 scopus 로고    scopus 로고
    • Transduction of mechanical and cytoskeletal cues by YAP and TAZ
    • Halder G, Dupont S, Piccolo S. 2012. Transduction of mechanical and cytoskeletal cues by YAP and TAZ. Nat. Rev. Mol. Cell Biol. 13:591-600
    • (2012) Nat. Rev. Mol. Cell Biol , vol.13 , pp. 591-600
    • Halder, G.1    Dupont, S.2    Piccolo, S.3
  • 133
    • 77955580383 scopus 로고    scopus 로고
    • Stretchy proteins on stretchy substrates: The important elements of integrin-mediated rigidity sensing
    • Moore SW, Roca-Cusachs P, Sheetz MP. 2010. Stretchy proteins on stretchy substrates: The important elements of integrin-mediated rigidity sensing. Dev. Cell 19:194-206
    • (2010) Dev. Cell , vol.19 , pp. 194-206
    • Moore, S.W.1    Roca-Cusachs, P.2    Sheetz, M.P.3
  • 135
    • 80054043810 scopus 로고    scopus 로고
    • Mechanical strain in actin networks regulates FilGAP and integrin binding to filamin A
    • Ehrlicher AJ, Nakamura F, Hartwig JH, Weitz DA, Stossel TP. 2012. Mechanical strain in actin networks regulates FilGAP and integrin binding to filamin A. Nature 478:260-63
    • (2012) Nature , vol.478 , pp. 260-263
    • Ehrlicher, A.J.1    Nakamura, F.2    Hartwig, J.H.3    Weitz, D.A.4    Stossel, T.P.5
  • 136
    • 84859265312 scopus 로고    scopus 로고
    • Transcription factor regulation by mechanical stress
    • Mendez MG, Janmey PA. 2012. Transcription factor regulation by mechanical stress. Int. J. Biochem. Cell Biol. 44:728-32
    • (2012) Int. J. Biochem. Cell Biol , vol.44 , pp. 728-732
    • Mendez, M.G.1    Janmey, P.A.2
  • 137
    • 0038737042 scopus 로고    scopus 로고
    • Actin dynamics control SRF activity by regulation of its coactivator MAL
    • Miralles F, Posern G, Zaromytidou A-I, Treisman R. 2003. Actin dynamics control SRF activity by regulation of its coactivator MAL. Cell 113:329-42
    • (2003) Cell , vol.113 , pp. 329-342
    • Miralles, F.1    Posern, G.2    Zaromytidou, A.-I.3    Treisman, R.4
  • 140
    • 0031017220 scopus 로고    scopus 로고
    • Demonstration of mechanical connections between integrins, cytoskeletal filaments, and nucleoplasm that stabilize nuclear structure
    • Maniotis AJ, Chen CS, Ingber DE. 1997. Demonstration of mechanical connections between integrins, cytoskeletal filaments, and nucleoplasm that stabilize nuclear structure. Proc.Natl. Acad. Sci. USA 94:849-54
    • (1997) Proc.Natl. Acad. Sci. USA , vol.94 , pp. 849-854
    • Maniotis, A.J.1    Chen, C.S.2    Ingber, D.E.3
  • 141
    • 33747382078 scopus 로고    scopus 로고
    • Microtubules can bear enhanced compressive loads in living cells because of lateral reinforcement
    • Brangwynne CP, MacKintosh FC, Kumar S, Geisse NA, Talbot J, et al. 2006. Microtubules can bear enhanced compressive loads in living cells because of lateral reinforcement. J. Cell Biol. 173:733-41
    • (2006) J. Cell Biol , vol.173 , pp. 733-741
    • Brangwynne, C.P.1    Mackintosh, F.C.2    Kumar, S.3    Geisse, N.A.4    Talbot, J.5
  • 142
    • 55549136772 scopus 로고    scopus 로고
    • Dynamics of chromatin decondensation reveals the structural integrity of a mechanically prestressed nucleus
    • Mazumder A, Roopa T, Basu A, Mahadevan L, Shivashankar GV. 2008. Dynamics of chromatin decondensation reveals the structural integrity of a mechanically prestressed nucleus. Biophys. J. 95:3028-35
    • (2008) Biophys. J. , vol.95 , pp. 3028-3035
    • Mazumder, A.1    Roopa, T.2    Basu, A.3    Mahadevan, L.4    Shivashankar, G.V.5
  • 143
    • 77956921322 scopus 로고    scopus 로고
    • Emergence of a prestressed eukaryotic nucleus during cellular differentiation and development
    • Mazumder A, Shivashankar GV. 2010. Emergence of a prestressed eukaryotic nucleus during cellular differentiation and development. J. R. Soc. Interface 7:S321-30
    • (2010) J. R. Soc. Interface , vol.7
    • Mazumder, A.1    Shivashankar, G.V.2
  • 144
    • 33846283384 scopus 로고    scopus 로고
    • Dynamic genome architecture in the nuclear space: Regulation of gene expression in three dimensions
    • Lanct ̂ ot CC, Cheutin TT, Cremer MM, Cavalli GG, Cremer TT. 2007. Dynamic genome architecture in the nuclear space: Regulation of gene expression in three dimensions. Nat. Rev. Genet. 8:104-15
    • (2007) Nat. Rev. Genet , vol.8 , pp. 104-115
    • Lanct ̂ot, C.C.1    Cheutin, T.T.2    Cremer, M.M.3    Cavalli, G.G.4    Cremer, T.T.5
  • 145
    • 34249307315 scopus 로고    scopus 로고
    • Nuclear organization of the genome and the potential for gene regulation
    • Fraser P, Bickmore W. 2007. Nuclear organization of the genome and the potential for gene regulation. Nature 447:413-17
    • (2007) Nature , vol.447 , pp. 413-417
    • Fraser, P.1    Bickmore, W.2
  • 146
    • 77956651480 scopus 로고    scopus 로고
    • Differentiation and large scale spatial organization of the genome
    • Joffe B, LeonhardtH, Solovei I. 2010. Differentiation and large scale spatial organization of the genome. Curr. Opin. Genet. Dev. 20:562-69
    • (2010) Curr. Opin. Genet. Dev , vol.20 , pp. 562-569
    • Joffe, B.1    Leonhardt, H.2    Solovei, I.3
  • 148
    • 79955805353 scopus 로고    scopus 로고
    • Mechanosignaling to the cell nucleus and gene regulation
    • Shivashankar GV. 2011. Mechanosignaling to the cell nucleus and gene regulation. Annu. Rev. Biophys. 40:361-78
    • (2011) Annu. Rev. Biophys , vol.40 , pp. 361-378
    • Shivashankar, G.V.1
  • 149
    • 75749107907 scopus 로고    scopus 로고
    • Cell mechanics and the cytoskeleton
    • Fletcher DA, Mullins RD. 2010. Cell mechanics and the cytoskeleton. Nature 463:485-92
    • (2010) Nature , vol.463 , pp. 485-492
    • Fletcher, D.A.1    Mullins, R.D.2
  • 150
    • 84867002885 scopus 로고    scopus 로고
    • Mechanical activation of cells induces chromatin remodeling preceding MKL nuclear transport
    • Iyer KV,Pulford S, Mogilner A, ShivashankarGV. 2012. Mechanical activation of cells induces chromatin remodeling preceding MKL nuclear transport. Biophys. J. 103:1416-28
    • (2012) Biophys. J. , vol.103 , pp. 1416-1428
    • Iyer, K.V.1    Pulford, S.2    Mogilner, A.3    Shivashankar, G.V.4
  • 151
    • 44349189707 scopus 로고    scopus 로고
    • Rapid signal transduction in living cells is a unique feature of mechanotransduction
    • Na S, Collin O, Chowdhury F, Tay B, Ouyang M, et al. 2008. Rapid signal transduction in living cells is a unique feature of mechanotransduction. Proc. Natl. Acad. Sci. USA 105:6626-31
    • (2008) Proc. Natl. Acad. Sci. USA , vol.105 , pp. 6626-6631
    • Na, S.1    Collin, O.2    Chowdhury, F.3    Tay, B.4    Ouyang, M.5
  • 152
    • 82455210889 scopus 로고    scopus 로고
    • Atomic force microscopy and its contribution to understanding the development of the nervous system
    • Franze K. 2011. Atomic force microscopy and its contribution to understanding the development of the nervous system. Curr. Opin. Genet. Dev. 21:530-37
    • (2011) Curr. Opin. Genet. Dev , vol.21 , pp. 530-537
    • Franze, K.1
  • 154
    • 36549087232 scopus 로고    scopus 로고
    • RPTPαis required for rigidity-Dependent inhibition of extension and differentiation of hippocampal neurons
    • Kostic A, Sap J, SheetzMP. 2007. RPTPαis required for rigidity-Dependent inhibition of extension and differentiation of hippocampal neurons. J. Cell Sci. 120:3895-904
    • (2007) J. Cell Sci , vol.120 , pp. 3895-3904
    • Kostic, A.1    Sap, J.2    Sheetz, M.P.3
  • 155
    • 49149130189 scopus 로고    scopus 로고
    • Neurite outgrowth on aDNAcrosslinked hydrogel with tunable stiffnesses
    • Jiang FX, Yurke B, Firestein BL,LangranaNA. 2008. Neurite outgrowth on aDNAcrosslinked hydrogel with tunable stiffnesses. Ann. Biomed. Eng. 36:1565-79
    • (2008) Ann. Biomed. Eng , vol.36 , pp. 1565-1579
    • Jiang, F.X.1    Yurke, B.2    Firestein, B.L.3    Langrana, N.A.4
  • 156
    • 34247279846 scopus 로고    scopus 로고
    • Neurite outgrowth and branching of PC12 cells on very soft substrates sharply decreases below a threshold of substrate rigidity
    • Leach JB, Brown XQ, Jacot JG, Dimilla PA, Wong JY. 2007. Neurite outgrowth and branching of PC12 cells on very soft substrates sharply decreases below a threshold of substrate rigidity. J. Neural Eng. 4:26-34
    • (2007) J. Neural Eng , vol.4 , pp. 26-34
    • Leach, J.B.1    Brown, X.Q.2    Jacot, J.G.3    Dimilla, P.A.4    Wong, J.Y.5
  • 157
    • 78651394940 scopus 로고    scopus 로고
    • Cortical neuron outgrowth is insensitive to substrate stiffness
    • Norman LL, Aranda-Espinoza H. 2010. Cortical neuron outgrowth is insensitive to substrate stiffness. Cell. Mol. Bioeng. 3:398-414
    • (2010) Cell. Mol. Bioeng , vol.3 , pp. 398-414
    • Norman, L.L.1    Aranda-Espinoza, H.2
  • 158
    • 80055103253 scopus 로고    scopus 로고
    • Variations in rigidity and ligand density influence neuronal response in methylcellulose-laminin hydrogels
    • Stabenfeldt SE, LaPlaca MC. 2011. Variations in rigidity and ligand density influence neuronal response in methylcellulose-laminin hydrogels. Acta Biomater. 7:4102-8
    • (2011) Acta Biomater , vol.7 , pp. 4102-4108
    • Stabenfeldt, S.E.1    Laplaca, M.C.2
  • 159
    • 78651380496 scopus 로고    scopus 로고
    • Regulation of dendrite arborization by substrate stiffness is mediated by glutamate receptors
    • Previtera ML, Langhammer CG, Langrana NA, Firestein BL. 2010. Regulation of dendrite arborization by substrate stiffness is mediated by glutamate receptors. Ann. Biomed. Eng. 38:3733-43
    • (2010) Ann. Biomed. Eng , vol.38 , pp. 3733-3743
    • Previtera, M.L.1    Langhammer, C.G.2    Langrana, N.A.3    Firestein, B.L.4
  • 160
    • 67649920749 scopus 로고    scopus 로고
    • Growth factors, matrices, and forces combine and control stem cells
    • DischerDE, Mooney DJ, Zandstra PW. 2009. Growth factors, matrices, and forces combine and control stem cells. Science 324:1673-77
    • (2009) Science , vol.324 , pp. 1673-1677
    • Discher, D.E.1    Mooney, D.J.2    Zandstra, P.W.3
  • 161
    • 34447260532 scopus 로고    scopus 로고
    • Inkjet printing of macromolecules on hydrogels to steer neural stem cell differentiation
    • Ilkhanizadeh S, Teixeira AI, Hermanson O. 2007. Inkjet printing of macromolecules on hydrogels to steer neural stem cell differentiation. Biomaterials 28:3936-43
    • (2007) Biomaterials , vol.28 , pp. 3936-3943
    • Ilkhanizadeh, S.1    Teixeira, A.I.2    Hermanson, O.3
  • 162
    • 70350183746 scopus 로고    scopus 로고
    • The effect of substrate stiffness on adult neural stem cell behavior
    • Leipzig ND, Shoichet MS. 2009. The effect of substrate stiffness on adult neural stem cell behavior. Biomaterials 30:6867-78
    • (2009) Biomaterials , vol.30 , pp. 6867-6878
    • Leipzig, N.D.1    Shoichet, M.S.2
  • 163
    • 57549105751 scopus 로고    scopus 로고
    • Substrate modulus directs neural stem cell behavior
    • Saha K, Keung AJ, Irwin EF, Li Y, Little L, et al. 2008. Substrate modulus directs neural stem cell behavior. Biophys. J. 95:4426-38
    • (2008) Biophys. J. , vol.95 , pp. 4426-4438
    • Saha, K.1    Keung, A.J.2    Irwin, E.F.3    Li, Y.4    Little, L.5
  • 164
    • 33846227546 scopus 로고    scopus 로고
    • Getting the right stuff: Controlling neural stem cell state and fate in vivo and in vitro with biomaterials
    • Teixeira AI, Duckworth JK, Hermanson O. 2007. Getting the right stuff: Controlling neural stem cell state and fate in vivo and in vitro with biomaterials. Cell Res. 17:56-61
    • (2007) Cell Res , vol.17 , pp. 56-61
    • Teixeira, A.I.1    Duckworth, J.K.2    Hermanson, O.3
  • 166
    • 80054880557 scopus 로고    scopus 로고
    • RhoGTPasesmediate the mechanosensitive lineage commitment of neural stem cells
    • Keung AJ, de Juan-Pardo EM, SchafferDV, Kumar S. 2011. RhoGTPasesmediate the mechanosensitive lineage commitment of neural stem cells. Stem Cells 29:1886-97
    • (2011) Stem Cells , vol.29 , pp. 1886-1897
    • Keung, A.J.1    De Juan-Pardo, E.M.2    Schaffer, D.V.3    Kumar, S.4
  • 167
    • 84872614923 scopus 로고    scopus 로고
    • Inherently slow and weak forward forces of neuronal growth cones measured by a drift-stabilized atomic force microscope
    • Fuhs T, Reuter L, Vonderhaid I, Claudepierre T, Kas JA. 2013. Inherently slow and weak forward forces of neuronal growth cones measured by a drift-stabilized atomic force microscope. Cytoskeleton 70(1):44-53
    • (2013) Cytoskeleton , vol.70 , Issue.1 , pp. 44-53
    • Fuhs, T.1    Reuter, L.2    Vonderhaid, I.3    Claudepierre, T.4    Kas, J.A.5
  • 168
    • 84855163922 scopus 로고    scopus 로고
    • Mechanotransduction in vivo by repeated talin stretch-relaxation events depends upon vinculin
    • Margadant F, Chew LL, Hu X, Yu H, Bate N, et al. 2011. Mechanotransduction in vivo by repeated talin stretch-relaxation events depends upon vinculin. PLoS Biol. 9(12):1-13
    • (2011) PLoS Biol , vol.9 , Issue.12 , pp. 1-13
    • Margadant, F.1    Chew, L.L.2    Hu, X.3    Yu, H.4    Bate, N.5
  • 169
    • 67650427489 scopus 로고    scopus 로고
    • Traction on immobilized netrin-1 is sufficient to reorient axons
    • Moore SW, Biais N, SheetzMP. 2009. Traction on immobilized netrin-1 is sufficient to reorient axons. Science 325:166
    • (2009) Science , vol.325 , pp. 166
    • Moore, S.W.1    Biais, N.2    Sheetz, M.P.3
  • 170
    • 84865228361 scopus 로고    scopus 로고
    • Netrin-1 attracts axons through FAK-Dependent mechanotransduction
    • Moore SW, Zhang X, Lynch CD, Sheetz MP. 2012. Netrin-1 attracts axons through FAK-Dependent mechanotransduction. J. Neurosci. 32:11574-85
    • (2012) J. Neurosci , vol.32 , pp. 11574-11585
    • Moore, S.W.1    Zhang, X.2    Lynch, C.D.3    Sheetz, M.P.4
  • 171
    • 33947667827 scopus 로고    scopus 로고
    • Neuronal response to high rate shear deformation depends on heterogeneity of the local strain field
    • Cullen DK, LaPlaca MC. 2006. Neuronal response to high rate shear deformation depends on heterogeneity of the local strain field. J. Neurotrauma 23:1304-19
    • (2006) J. Neurotrauma , vol.23 , pp. 1304-1319
    • Cullen, D.K.1    Laplaca, M.C.2
  • 172
    • 15944399930 scopus 로고    scopus 로고
    • High rate shear strain of three-Dimensional neural cell cultures: A new in vitro traumatic brain injury model
    • LaPlacaMC,CullenDK, McLoughlin JJ, Cargill RS II. 2005. High rate shear strain of three-Dimensional neural cell cultures: A new in vitro traumatic brain injury model. J. Biomech. 38:1093-105
    • (2005) J. Biomech , vol.38 , pp. 1093-1105
    • Laplaca, M.C.1    Cullen, D.K.2    McLoughlin, J.J.3    Cargill, I.I.R.S.4
  • 173
    • 77953354136 scopus 로고    scopus 로고
    • Effect of dynamic stiffness of the substrates on neurite outgrowth by using a DNA-crosslinked hydrogel
    • Jiang FX, Yurke B, Schloss RS, Firestein BL, Langrana NA. 2010. Effect of dynamic stiffness of the substrates on neurite outgrowth by using a DNA-crosslinked hydrogel. Tissue Eng. Part A 16:1873-89
    • (2010) Tissue Eng. Part A , vol.16 , pp. 1873-89
    • Jiang, F.X.1    Yurke, B.2    Schloss, R.S.3    Firestein, B.L.4    Langrana, N.A.5
  • 174
    • 0030786378 scopus 로고    scopus 로고
    • An in vitro model of traumatic neuronal injury: Loading rate-Dependent changes in acute cytosolic calcium and lactate dehydrogenase release
    • LaPlaca MC, Lee VM, Thibault LE. 1997. An in vitro model of traumatic neuronal injury: Loading rate-Dependent changes in acute cytosolic calcium and lactate dehydrogenase release. J. Neurotrauma 14:355-68
    • (1997) J. Neurotrauma , vol.14 , pp. 355-368
    • Laplaca, M.C.1    Lee, V.M.2    Thibault, L.E.3
  • 175
    • 0033730926 scopus 로고    scopus 로고
    • Axonal damage in traumatic brain injury
    • Smith DH, Meaney DF. 2000. Axonal damage in traumatic brain injury. Neuroscientist 6:483-95
    • (2000) Neuroscientist , vol.6 , pp. 483-495
    • Smith, D.H.1    Meaney, D.F.2
  • 176
    • 0035105945 scopus 로고    scopus 로고
    • Agarose gel stiffness determines rate of DRG neurite extension in 3D cultures
    • Balgude AP, Yu X, Szymanski A, Bellamkonda RV. 2001. Agarose gel stiffness determines rate of DRG neurite extension in 3D cultures. Biomaterials 22:1077-84
    • (2001) Biomaterials , vol.22 , pp. 1077-1084
    • Balgude, A.P.1    Yu, X.2    Szymanski, A.3    Bellamkonda, R.V.4
  • 178
    • 11044238820 scopus 로고    scopus 로고
    • Effect of collagen gel stiffness on neurite extension
    • Willits RK, Skornia SL. 2004. Effect of collagen gel stiffness on neurite extension. J. Biomater. Sci. Polym. Ed. 15:1521-31
    • (2004) J. Biomater. Sci. Polym. E.d. , vol.15 , pp. 1521-1531
    • Willits, R.K.1    Skornia, S.L.2
  • 179
    • 0035888199 scopus 로고    scopus 로고
    • Dorsal root ganglia neurite extension is inhibited by mechanical and chondroitin sulfate-rich interfaces
    • Yu X, Bellamkonda RV. 2001. Dorsal root ganglia neurite extension is inhibited by mechanical and chondroitin sulfate-rich interfaces. J. Neurosci. Res. 66:303-10
    • (2001) J. Neurosci. Res , vol.66 , pp. 303-310
    • Yu, X.1    Bellamkonda, R.V.2
  • 180
    • 84861712008 scopus 로고    scopus 로고
    • Viscoelastic characterization of rat cerebral cortex and type i collagen scaffolds for central nervous system tissue engineering
    • Elias PZ, Spector M. 2012. Viscoelastic characterization of rat cerebral cortex and type I collagen scaffolds for central nervous system tissue engineering. J. Mech. Behav. Biomed. Mater. 12:63-73
    • (2012) J. Mech. Behav. Biomed. Mater , vol.12 , pp. 63-73
    • Elias, P.Z.1    Spector, M.2
  • 181
    • 43249095866 scopus 로고    scopus 로고
    • Cell growth in response to mechanical stiffness is affected by neuron-Astroglia interactions
    • Jiang X, Georges PC, Li B, Du Y, Kutzing MK, et al. 2007. Cell growth in response to mechanical stiffness is affected by neuron-Astroglia interactions. Open Neurosci. J. 1:7-14
    • (2007) Open Neurosci. J. , vol.1 , pp. 7-14
    • Jiang, X.1    Georges, P.C.2    Li, B.3    Du, Y.4    Kutzing, M.K.5
  • 182
    • 33746255986 scopus 로고    scopus 로고
    • In vitromodel of glial scarring around neuroelectrodes chronically implanted in the CNS
    • Polikov VS, Block ML, Fellous JM,Hong JS, ReichertWM. 2006. In vitromodel of glial scarring around neuroelectrodes chronically implanted in the CNS. Biomaterials 27:5368-76
    • (2006) Biomaterials , vol.27 , pp. 5368-5376
    • Polikov, V.S.1    Block, M.L.2    Fellous, J.M.3    Hong, J.S.4    Reichert, W.M.5
  • 183
    • 33749062944 scopus 로고    scopus 로고
    • Brain-controlled interfaces: Movement restoration with neural prosthetics
    • Schwartz AB, Cui XT,Weber DJ, MoranDW. 2006. Brain-controlled interfaces: Movement restoration with neural prosthetics. Neuron 52:205-20
    • (2006) Neuron , vol.52 , pp. 205-220
    • Schwartz, A.B.1    Cui, X.T.2    Weber, D.J.3    Moran, D.W.4
  • 184
    • 77951572329 scopus 로고    scopus 로고
    • Mechanosensitivity of astrocytes on optimized polyacrylamide gels analyzed by quantitativemorphometry
    • Moshayedi P, Costa LD, Christ A, Lacour SP, Fawcett J, et al. 2010. Mechanosensitivity of astrocytes on optimized polyacrylamide gels analyzed by quantitativemorphometry. J. Phys. Condens.Matter 22:194114
    • (2010) J. Phys. Condens.Matter , vol.22 , pp. 194114
    • Moshayedi, P.1    Costa, L.D.2    Christ, A.3    Lacour, S.P.4    Fawcett, J.5
  • 185
    • 84867550227 scopus 로고    scopus 로고
    • Photocured biodegradable polymer substrates of varying stiffness and microgroove dimensions for promoting nerve cell guidance and differentiation
    • Cai L, Zhang L, Dong J, Wang S. 2012. Photocured biodegradable polymer substrates of varying stiffness and microgroove dimensions for promoting nerve cell guidance and differentiation. Langmuir 28:12557-68
    • (2012) Langmuir , vol.28 , pp. 12557-12568
    • Cai, L.1    Zhang, L.2    Dong, J.3    Wang, S.4
  • 186
    • 84864000744 scopus 로고    scopus 로고
    • The influence of substrate stiffness on the behavior and functions of Schwann cells in culture
    • Gu Y, Ji Y, Zhao Y, Liu Y, Ding F, et al. 2012. The influence of substrate stiffness on the behavior and functions of Schwann cells in culture. Biomaterials 33:6672-81
    • (2012) Biomaterials , vol.33 , pp. 6672-6681
    • Gu, Y.1    Ji, Y.2    Zhao, Y.3    Liu, Y.4    Ding, F.5
  • 187
    • 34447538299 scopus 로고    scopus 로고
    • Strain rate-Dependent induction of reactive astrogliosis and cell death in three-Dimensional neuronal-Astrocytic co-cultures
    • Cullen DK, Simon CM, LaPlaca MC. 2007. Strain rate-Dependent induction of reactive astrogliosis and cell death in three-Dimensional neuronal-Astrocytic co-cultures. Brain Res. 1158:103-15
    • (2007) Brain Res , vol.1158 , pp. 103-115
    • Cullen, D.K.1    Simon, C.M.2    Laplaca, M.C.3
  • 188
    • 77956368325 scopus 로고    scopus 로고
    • Single-cell mechanics provides a sensitive and quantitative means for probing amyloid-βpeptide and neuronal cell interactions
    • Lulevich V, Zimmer CC, Hong HS, Jin LW, Liu GY. 2010. Single-cell mechanics provides a sensitive and quantitative means for probing amyloid-βpeptide and neuronal cell interactions. Proc. Natl. Acad. Sci. USA 107:13872-77
    • (2010) Proc. Natl. Acad. Sci. USA , vol.107 , pp. 13872-13877
    • Lulevich, V.1    Zimmer, C.C.2    Hong, H.S.3    Jin, L.W.4    Liu, G.Y.5
  • 189
    • 84867887350 scopus 로고    scopus 로고
    • Deconstructing the third dimension-how 3D culture microenvironments alter cellular cues
    • Baker BM, Chen CS. 2012. Deconstructing the third dimension -how 3D culture microenvironments alter cellular cues. J. Cell Sci. 125:3015-24
    • (2012) J. Cell Sci , vol.125 , pp. 3015-3024
    • Baker, B.M.1    Chen, C.S.2
  • 190
    • 0037061426 scopus 로고    scopus 로고
    • Chondroitinase ABC promotes functional recovery after spinal cord injury
    • Bradbury EJ, Moon LD, Popat RJ, King VR, Bennett GS, et al. 2002. Chondroitinase ABC promotes functional recovery after spinal cord injury. Nature 416:636-40
    • (2002) Nature , vol.416 , pp. 636-640
    • Bradbury, E.J.1    Moon, L.D.2    Popat, R.J.3    King, V.R.4    Bennett, G.S.5
  • 191
    • 79959672790 scopus 로고    scopus 로고
    • Chondroitinase combined with rehabilitation promotes recovery of forelimb function in rats with chronic spinal cord injury
    • Wang D, Ichiyama RM, Zhao R, Andrews MR, Fawcett JW. 2011. Chondroitinase combined with rehabilitation promotes recovery of forelimb function in rats with chronic spinal cord injury. J. Neurosci. 31:9332-44
    • (2011) J. Neurosci , vol.31 , pp. 9332-9344
    • Wang, D.1    Ichiyama, R.M.2    Zhao, R.3    Andrews, M.R.4    Fawcett, J.W.5
  • 192
    • 80355125177 scopus 로고    scopus 로고
    • Axon stretch growth: The mechanotransduction of neuronal growth
    • Loverde JR, Tolentino RE, Pfister BJ. 2011. Axon stretch growth: The mechanotransduction of neuronal growth. J. Vis. Exp. (54):e2753
    • (2011) J. Vis. Exp. , vol.54
    • Loverde, J.R.1    Tolentino, R.E.2    Pfister, B.J.3
  • 193
    • 26444445003 scopus 로고    scopus 로고
    • Response of brain tissue to chronically implanted neural electrodes
    • Polikov VS, Tresco PA, Reichert WM. 2005. Response of brain tissue to chronically implanted neural electrodes. J. Neurosci. Methods 148:1-18
    • (2005) J. Neurosci. Methods , vol.148 , pp. 1-18
    • Polikov, V.S.1    Tresco, P.A.2    Reichert, W.M.3
  • 194
    • 77957788893 scopus 로고    scopus 로고
    • Flexible and stretchable micro-electrodes for in vitro and in vivo neural interfaces
    • Lacour SP, Benmerah S, Tarte E, FitzGerald J, Serra J, et al. 2010. Flexible and stretchable micro-electrodes for in vitro and in vivo neural interfaces. Med. Biol. Eng. Comput. 48:945-54
    • (2010) Med. Biol. Eng. Comput , vol.48 , pp. 945-954
    • Lacour, S.P.1    Benmerah, S.2    Tarte, E.3    Fitzgerald, J.4    Serra, J.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.