메뉴 건너뛰기




Volumn 3, Issue , 2013, Pages

Isolated nanographene crystals for nano-floating gate in charge trapping memory

Author keywords

[No Author keywords available]

Indexed keywords


EID: 84880090537     PISSN: None     EISSN: 20452322     Source Type: Journal    
DOI: 10.1038/srep02126     Document Type: Article
Times cited : (51)

References (36)
  • 2
  • 4
    • 17444382701 scopus 로고    scopus 로고
    • Metal nanocrystal memory with high-κ tunneling barrier for improved data retention
    • DOI 10.1109/TED.2005.844793
    • Lee, J. J. & Kwong, D. L. Metal nanocrystal memory with high-k tunneling barrier for improved data retention. IEEE Trans Electron Devices 52, 507-511 (2005). (Pubitemid 40535875)
    • (2005) IEEE Transactions on Electron Devices , vol.52 , Issue.4 , pp. 507-511
    • Lee, J.J.1    Kwong, D.-L.2
  • 5
    • 33748280650 scopus 로고    scopus 로고
    • Formation of Ru nanocrystals by plasma enhanced atomic layer deposition for nonvolatile memory applications
    • Yim, S.-S., Lee, M.-S., Kim, K.-S. & Kim, K.-B. Formation of Ru nanocrystals by plasma enhanced atomic layer deposition for nonvolatile memory applications. Appl. Phys. Lett. 89, 093115 (2006).
    • (2006) Appl. Phys. Lett. , vol.89 , pp. 093115
    • Yim, S.-S.1    Lee, M.-S.2    Kim, K.-S.3    Kim, K.-B.4
  • 7
    • 58449084731 scopus 로고    scopus 로고
    • Tunable Memory Characteristics of Nanostructured, Nonvolatile Charge Trap Memory Devices Based on a Binary Mixture of Metal Nanoparticles as a Charge Trapping Layer
    • Lee, J.-S. et al. Tunable Memory Characteristics of Nanostructured, Nonvolatile Charge Trap Memory Devices Based on a Binary Mixture of Metal Nanoparticles as a Charge Trapping Layer. Advanced Materials 21, 178-183 (2009).
    • (2009) Advanced Materials , vol.21 , pp. 178-183
    • Lee, J.-S.1
  • 8
    • 74849119167 scopus 로고    scopus 로고
    • Metal nanodot memory by self-assembled block copolymer lift-off
    • Hong, A. J. et al. Metal Nanodot Memory by Self-Assembled Block Copolymer Lift-Off. Nano Letters 10, 224-229 (2010).
    • (2010) Nano Letters , vol.10 , pp. 224-229
    • Hong, A.J.1
  • 9
    • 80052523231 scopus 로고    scopus 로고
    • Progress in non-volatile memory devices based on nanostructured materials and nanofabrication
    • Lee, J.-S. Progress in non-volatile memory devices based on nanostructured materials and nanofabrication. J. Mater. Chem. 21, 14097 (2011).
    • (2011) J. Mater. Chem. , vol.21 , pp. 14097
    • Lee, J.-S.1
  • 11
    • 80054096580 scopus 로고    scopus 로고
    • Nano-floating gate memory devices
    • Lee, J.-S. Nano-Floating Gate Memory Devices. Electronic Materials Letters 7, 175-183 (2011).
    • (2011) Electronic Materials Letters , vol.7 , pp. 175-183
    • Lee, J.-S.1
  • 12
    • 33847690144 scopus 로고    scopus 로고
    • The rise of graphene
    • DOI 10.1038/nmat1849, PII NMAT1849
    • Geim, A. K. & Novoselov, K. S. The rise of graphene. Nature materials 6, 183-191 (2007). (Pubitemid 46353764)
    • (2007) Nature Materials , vol.6 , Issue.3 , pp. 183-191
    • Geim, A.K.1    Novoselov, K.S.2
  • 13
    • 80055020282 scopus 로고    scopus 로고
    • Graphene flash memory
    • Hong, A. J. et al. Graphene Flash Memory. ACS Nano 5, 7812-7817 (2011).
    • (2011) ACS Nano , vol.5 , pp. 7812-7817
    • Hong, A.J.1
  • 14
    • 77951190481 scopus 로고    scopus 로고
    • Wide memory window in graphene oxide charge storage nodes
    • Wang, S., Pu, J., Chan, D. S. H., Cho, B. J. & Loh, K. P. Wide Memory Window in Graphene Oxide Charge Storage Nodes. Appl. Phys. Lett. 96, 143109 (2010).
    • (2010) Appl. Phys. Lett. , vol.96 , pp. 143109
    • Wang, S.1    Pu, J.2    Chan, D.S.H.3    Cho, B.J.4    Loh, K.P.5
  • 15
    • 84864119961 scopus 로고    scopus 로고
    • Multilayer Graphene as Charge Storage Layer in Floating Gate Flash Memory
    • Milan, Italy
    • Misra, A. et al. Multilayer Graphene as Charge Storage Layer in Floating Gate Flash Memory. 2012 4th IEEE International Memory Workshop, Milan, Italy (2012).
    • (2012) 2012 4th IEEE International Memory Workshop
    • Misra, A.1
  • 16
    • 84873627210 scopus 로고    scopus 로고
    • Layer-by-layer-assembled reduced graphene oxide/gold nanoparticle hybrid double-floating-gate structure for low-voltage flexible flash memory
    • Han, S. et al. Layer-by-Layer-Assembled Reduced Graphene Oxide/Gold Nanoparticle Hybrid Double-Floating-Gate Structure for Low-Voltage Flexible Flash Memory. Advanced Materials 25, 872-877 (2013).
    • (2013) Advanced Materials , vol.25 , pp. 872-877
    • Han, S.1
  • 17
    • 79952185709 scopus 로고    scopus 로고
    • Catalyst-free growth of nanographene film on various substrates
    • Zhang, L. et al. Catalyst-free growth of nanographene film on various substrates. Nano Research 4, 315-321 (2011).
    • (2011) Nano Research , vol.4 , pp. 315-321
    • Zhang, L.1
  • 18
    • 84860571450 scopus 로고    scopus 로고
    • Growth characterization and properties of nanographene
    • Yang, W. et al. Growth Characterization and Properties of Nanographene. Small 8, 1429-1435 (2012).
    • (2012) Small , vol.8 , pp. 1429-1435
    • Yang, W.1
  • 19
    • 84862791992 scopus 로고    scopus 로고
    • Vapour-phase graphene epitaxy at low temperatures
    • Zhang, L. et al. Vapour-Phase Graphene Epitaxy at Low Temperatures. Nano Research 5, 258-264 (2012).
    • (2012) Nano Research , vol.5 , pp. 258-264
    • Zhang, L.1
  • 20
    • 0001153756 scopus 로고
    • Ultrahigh-vacuum quasiepitaxialgrowth of model van der Waals thin films. II. Experiment
    • Forrest, S. R., Burrows, P. E., Haskal, E. I. & So, F. F. Ultrahigh-vacuum quasiepitaxialgrowth of model van der Waals thin films. II. Experiment. Phy. Rev. B 49, 11309-11321 (1994).
    • (1994) Phy. Rev. B , vol.49 , pp. 11309-11321
    • Forrest, S.R.1    Burrows, P.E.2    Haskal, E.I.3    So, F.F.4
  • 21
    • 84862294401 scopus 로고    scopus 로고
    • Van der Waals Epitaxy of MoS2 Layers Using Graphene as Growth Templates
    • Shi, Y. et al. van der Waals Epitaxy of MoS2 Layers Using Graphene as Growth Templates. Nano Letters 12, 2784-2791 (2012).
    • (2012) Nano Letters , vol.12 , pp. 2784-2791
    • Shi, Y.1
  • 22
    • 0035882062 scopus 로고    scopus 로고
    • Resonant Raman spectroscopy of disordered, amorphous, and diamondlike carbon
    • Ferrari, A. C. & Robertson, J. Resonant Raman spectroscopy of disordered, amorphous, and diamondlike carbon. Phys. Rev. B 64, 075414 (2001).
    • (2001) Phys. Rev. B , vol.64 , pp. 075414
    • Ferrari, A.C.1    Robertson, J.2
  • 23
    • 34249889935 scopus 로고    scopus 로고
    • Raman spectroscopy of graphene and graphite: Disorder, electron-phonon coupling, doping and nonadiabatic effects
    • DOI 10.1016/j.ssc.2007.03.052, PII S0038109807002967, Exploring graphene Recent research advances
    • Ferrari, A. C. Raman spectroscopy of graphene and graphite: Disorder, electron-phonon coupling, doping and nonadiabatic effects. Solid State Communications 143, 47-57 (2007). (Pubitemid 46874496)
    • (2007) Solid State Communications , vol.143 , Issue.1-2 , pp. 47-57
    • Ferrari, A.C.1
  • 24
    • 80051638443 scopus 로고    scopus 로고
    • Quantifying Defects in Graphene via Raman Spectroscopy at Different Excitation Energies
    • Cancado, L. G. et al. Quantifying Defects in Graphene via Raman Spectroscopy at Different Excitation Energies. Nano Letters 11, 3190-3196 (2011).
    • (2011) Nano Letters , vol.11 , pp. 3190-3196
    • Cancado, L.G.1
  • 25
    • 46849118052 scopus 로고    scopus 로고
    • Real versus Measured Surface Potentials in Scanning Kelvin Probe Microscopy
    • Charrier, D. S. H., Kemerink, M., Smalbrugge, B. E., Vries, T. & Janssen, R. A. J. Real versus Measured Surface Potentials in Scanning Kelvin Probe Microscopy. ACS Nano 2, 622-626 (2008).
    • (2008) ACS Nano , vol.2 , pp. 622-626
    • Charrier, D.S.H.1    Kemerink, M.2    Smalbrugge, B.E.3    Vries, T.4    Janssen, R.A.J.5
  • 26
    • 33746814810 scopus 로고    scopus 로고
    • Charge trapping properties at silicon nitride/silicon oxide interface studied by variable-temperature electrostatic force microscopy
    • Tzeng, S.-D. & Gwoa, S. Charge trapping properties at silicon nitride/silicon oxide interface studied by variable-temperature electrostatic force microscopy. Journal of Applied Physics 100, 023711 (2006).
    • (2006) Journal of Applied Physics , vol.100 , pp. 023711
    • Tzeng, S.-D.1    Gwoa, S.2
  • 27
    • 82955164092 scopus 로고    scopus 로고
    • Investigation on interface related charge trap and loss characteristics of high-k based trapping structures by electrostatic force microscopy
    • Zhu, C. et al. Investigation on interface related charge trap and loss characteristics of high-k based trapping structures by electrostatic force microscopy. Appl. Phys. Lett. 99, 223504 (2011).
    • (2011) Appl. Phys. Lett. , vol.99 , pp. 223504
    • Zhu, C.1
  • 29
    • 61649085309 scopus 로고    scopus 로고
    • Surface potentials and layer charge distributions in few-layer graphene films
    • Datta, S. S., Strachan, D. R., Mele, E. J. & Charlie Johnson, A. T. Surface potentials and layer charge distributions in few-layer graphene films. Nano letters 9, 7-11 (2009).
    • (2009) Nano Letters , vol.9 , pp. 7-11
    • Datta, S.S.1    Strachan, D.R.2    Mele, E.J.3    Charlie Johnson, A.T.4
  • 30
    • 67649119884 scopus 로고    scopus 로고
    • Charging and discharging of graphene in ambient conditions studied with scanning probe microscopy
    • Verdaguer, A. et al. Charging and discharging of graphene in ambient conditions studied with scanning probe microscopy. Appl. Phys. Lett. 94, 233105 (2009).
    • (2009) Appl. Phys. Lett. , vol.94 , pp. 233105
    • Verdaguer, A.1
  • 31
    • 72849122590 scopus 로고    scopus 로고
    • Tuning the graphene work function by electric field effect
    • Yu, Y.-J. et al. Tuning the Graphene Work Function by Electric Field Effect. Nano Letters 9, 3430-3434 (2009).
    • (2009) Nano Letters , vol.9 , pp. 3430-3434
    • Yu, Y.-J.1
  • 32
    • 77951615752 scopus 로고    scopus 로고
    • Quantum Confinement by an Order-Disorder Boundary in Nanocrystalline Silicon
    • Bagolini, L., Mattoni, A., Fugallo, G. & Colombo, L. Quantum Confinement by an Order-Disorder Boundary in Nanocrystalline Silicon. Phys. Rev. Lett. 104, 176803 (2010).
    • (2010) Phys. Rev. Lett. , vol.104 , pp. 176803
    • Bagolini, L.1    Mattoni, A.2    Fugallo, G.3    Colombo, L.4
  • 33
    • 60949104104 scopus 로고    scopus 로고
    • The influence of edge structure on the electronic properties of graphene quantum dots and nanoribbons
    • Ritter, K. A. & Lyding, J. W. The Influence of Edge Structure on the Electronic Properties of Graphene Quantum Dots and Nanoribbons. Nature Materials 8, 235-242 (2009).
    • (2009) Nature Materials , vol.8 , pp. 235-242
    • Ritter, K.A.1    Lyding, J.W.2
  • 36
    • 54249111065 scopus 로고    scopus 로고
    • 3 single quantum well for nanoscale flash memory device applications
    • 3 Single Quantum Well for Nanoscale Flash Memory Device Applications. Japanese Journal of Applied Physics 47, 1818-1821 (2008).
    • (2008) Japanese Journal of Applied Physics , vol.47 , pp. 1818-1821
    • Maikap, S.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.