-
1
-
-
71249103087
-
Cell-cell and intracellular lactate shuttles
-
Brooks G.A. Cell-cell and intracellular lactate shuttles. J. Physiol. 2009, 587:5591-5600.
-
(2009)
J. Physiol.
, vol.587
, pp. 5591-5600
-
-
Brooks, G.A.1
-
2
-
-
0026009448
-
1H NMR in human visual cortex during physiologic stimulation
-
1H NMR in human visual cortex during physiologic stimulation. Proc. Natl. Acad. Sci. U.S.A 1991, 88:5829-5831.
-
(1991)
Proc. Natl. Acad. Sci. U.S.A
, vol.88
, pp. 5829-5831
-
-
Prichard, J.1
-
3
-
-
0030931102
-
A temporary local energy pool coupled to neuronal activity: fluctuations of extracellular lactate levels in rat brain monitored with rapid-response enzyme-based sensor
-
Hu Y., Wilson G.S. A temporary local energy pool coupled to neuronal activity: fluctuations of extracellular lactate levels in rat brain monitored with rapid-response enzyme-based sensor. J. Neurochem. 1997, 69:1484-1490.
-
(1997)
J. Neurochem.
, vol.69
, pp. 1484-1490
-
-
Hu, Y.1
Wilson, G.S.2
-
4
-
-
83255192949
-
Lactate produced by glycogenolysis in astrocytes regulates memory processing
-
Newman L.A., et al. Lactate produced by glycogenolysis in astrocytes regulates memory processing. PLoS ONE 2011, 6:e28427.
-
(2011)
PLoS ONE
, vol.6
-
-
Newman, L.A.1
-
5
-
-
79952305803
-
Astrocyte-neuron lactate transport is required for long-term memory formation
-
Suzuki A., et al. Astrocyte-neuron lactate transport is required for long-term memory formation. Cell 2011, 144:810-823.
-
(2011)
Cell
, vol.144
, pp. 810-823
-
-
Suzuki, A.1
-
6
-
-
0023780085
-
Nonoxidative glucose consumption during focal physiologic neural activity
-
Fox P.T., et al. Nonoxidative glucose consumption during focal physiologic neural activity. Science 1988, 241:462-464.
-
(1988)
Science
, vol.241
, pp. 462-464
-
-
Fox, P.T.1
-
7
-
-
79960137292
-
Simultaneous two-photon imaging of oxygen and blood flow in deep cerebral vessels
-
Lecoq J., et al. Simultaneous two-photon imaging of oxygen and blood flow in deep cerebral vessels. Nat. Med. 2011, 17:893-898.
-
(2011)
Nat. Med.
, vol.17
, pp. 893-898
-
-
Lecoq, J.1
-
8
-
-
80053004768
-
2 is required to maintain baseline tissue oxygenation at locations distal to blood vessels
-
2 is required to maintain baseline tissue oxygenation at locations distal to blood vessels. J. Neurosci. 2011, 31:13676-13681.
-
(2011)
J. Neurosci.
, vol.31
, pp. 13676-13681
-
-
Devor, A.1
-
9
-
-
0033529827
-
Linear coupling between cerebral blood flow and oxygen consumption in activated human cortex
-
Hoge R.D., et al. Linear coupling between cerebral blood flow and oxygen consumption in activated human cortex. Proc. Natl. Acad. Sci. U.S.A. 1999, 96:9403-9408.
-
(1999)
Proc. Natl. Acad. Sci. U.S.A.
, vol.96
, pp. 9403-9408
-
-
Hoge, R.D.1
-
10
-
-
83455179184
-
Role of the glyoxalase system in astrocyte-mediated neuroprotection
-
Belanger M., et al. Role of the glyoxalase system in astrocyte-mediated neuroprotection. J. Neurosci. 2011, 31:18338-18352.
-
(2011)
J. Neurosci.
, vol.31
, pp. 18338-18352
-
-
Belanger, M.1
-
11
-
-
84868547829
-
Metabolic constraint imposes tradeoff between body size and number of brain neurons in human evolution
-
Fonseca-Azevedo K., Herculano-Houzel S. Metabolic constraint imposes tradeoff between body size and number of brain neurons in human evolution. Proc. Natl. Acad. Sci. U.S.A. 2012, 109:18571-18576.
-
(2012)
Proc. Natl. Acad. Sci. U.S.A.
, vol.109
, pp. 18571-18576
-
-
Fonseca-Azevedo, K.1
Herculano-Houzel, S.2
-
12
-
-
77954394706
-
The perivascular astroglial sheath provides a complete covering of the brain microvessels: an electron microscopic 3D reconstruction
-
Mathiisen T.M., et al. The perivascular astroglial sheath provides a complete covering of the brain microvessels: an electron microscopic 3D reconstruction. Glia 2010, 58:1094-1103.
-
(2010)
Glia
, vol.58
, pp. 1094-1103
-
-
Mathiisen, T.M.1
-
13
-
-
0032079447
-
Structural organization of the perivascular astrocyte endfeet and their relationship with the endothelial glucose transporter: a confocal microscopy study
-
Kacem K., et al. Structural organization of the perivascular astrocyte endfeet and their relationship with the endothelial glucose transporter: a confocal microscopy study. Glia 1998, 23:1-10.
-
(1998)
Glia
, vol.23
, pp. 1-10
-
-
Kacem, K.1
-
14
-
-
34250378351
-
An enquiry into metabolite domains
-
Barros L.F., Martinez C. An enquiry into metabolite domains. Biophys. J. 2007, 92:3878-3884.
-
(2007)
Biophys. J.
, vol.92
, pp. 3878-3884
-
-
Barros, L.F.1
Martinez, C.2
-
15
-
-
0034784359
-
An energy budget for signaling in the grey matter of the brain
-
Attwell D., Laughlin S.B. An energy budget for signaling in the grey matter of the brain. J. Cereb. Blood Flow Metab. 2001, 21:1133-1145.
-
(2001)
J. Cereb. Blood Flow Metab.
, vol.21
, pp. 1133-1145
-
-
Attwell, D.1
Laughlin, S.B.2
-
16
-
-
70249083369
-
Energy-efficient action potentials in hippocampal mossy fibers
-
Alle H., et al. Energy-efficient action potentials in hippocampal mossy fibers. Science 2009, 325:1405-1408.
-
(2009)
Science
, vol.325
, pp. 1405-1408
-
-
Alle, H.1
-
17
-
-
84856711018
-
+ channels and transporters
-
+ channels and transporters. Front. Neuroenerg. 2010, 2:27.
-
(2010)
Front. Neuroenerg.
, vol.2
, pp. 27
-
-
Martinez, C.1
-
18
-
-
0014021759
-
Substrate-utilization of the human kidney
-
Nieth H., Schollmeyer P. Substrate-utilization of the human kidney. Nature 1966, 209:1244-1245.
-
(1966)
Nature
, vol.209
, pp. 1244-1245
-
-
Nieth, H.1
Schollmeyer, P.2
-
19
-
-
79959993856
-
The evolutionary origins of glia
-
Hartline D.K. The evolutionary origins of glia. Glia 2011, 59:1215-1236.
-
(2011)
Glia
, vol.59
, pp. 1215-1236
-
-
Hartline, D.K.1
-
20
-
-
0141533205
-
New roles for astrocytes: redefining the functional architecture of the brain
-
Nedergaard M., et al. New roles for astrocytes: redefining the functional architecture of the brain. Trends Neurosci. 2003, 26:523-530.
-
(2003)
Trends Neurosci.
, vol.26
, pp. 523-530
-
-
Nedergaard, M.1
-
21
-
-
0035909948
-
Different responses of astrocytes and neurons to nitric oxide: the role of glycolytically generated ATP in astrocyte protection
-
Almeida A., et al. Different responses of astrocytes and neurons to nitric oxide: the role of glycolytically generated ATP in astrocyte protection. Proc. Natl. Acad. Sci. U.S.A. 2001, 98:15294-15299.
-
(2001)
Proc. Natl. Acad. Sci. U.S.A.
, vol.98
, pp. 15294-15299
-
-
Almeida, A.1
-
22
-
-
33748896023
-
Competition between glucose and lactate as oxidative energy substrates in both neurons and astrocytes: a comparative NMR study
-
Bouzier-Sore A.K., et al. Competition between glucose and lactate as oxidative energy substrates in both neurons and astrocytes: a comparative NMR study. Eur. J. Neurosci. 2006, 24:1687-1694.
-
(2006)
Eur. J. Neurosci.
, vol.24
, pp. 1687-1694
-
-
Bouzier-Sore, A.K.1
-
23
-
-
33947644899
-
+] sensing
-
+] sensing. Neuron 2007, 54:59-72.
-
(2007)
Neuron
, vol.54
, pp. 59-72
-
-
Shimizu, H.1
-
24
-
-
64349109646
-
Preferential transport and metabolism of glucose in Bergmann glia over Purkinje cells: a multiphoton study of cerebellar slices
-
Barros L.F., et al. Preferential transport and metabolism of glucose in Bergmann glia over Purkinje cells: a multiphoton study of cerebellar slices. Glia 2009, 57:962-970.
-
(2009)
Glia
, vol.57
, pp. 962-970
-
-
Barros, L.F.1
-
25
-
-
84890533352
-
Higher transport and metabolism of glucose in astrocytes compared with neurons: a multiphoton study of hippocampal and cerebellar tissue slices
-
Jakoby P., et al. Higher transport and metabolism of glucose in astrocytes compared with neurons: a multiphoton study of hippocampal and cerebellar tissue slices. Cereb. Cortex 2012, 10.1093/cercor/bhs309.
-
(2012)
Cereb. Cortex
-
-
Jakoby, P.1
-
26
-
-
35548983491
-
The transcriptome and metabolic gene signature of protoplasmic astrocytes in the adult murine cortex
-
Lovatt D., et al. The transcriptome and metabolic gene signature of protoplasmic astrocytes in the adult murine cortex. J. Neurosci. 2007, 27:12255-12266.
-
(2007)
J. Neurosci.
, vol.27
, pp. 12255-12266
-
-
Lovatt, D.1
-
27
-
-
38149129457
-
A transcriptome database for astrocytes, neurons, and oligodendrocytes: a new resource for understanding brain development and function
-
Cahoy J.D., et al. A transcriptome database for astrocytes, neurons, and oligodendrocytes: a new resource for understanding brain development and function. J. Neurosci. 2008, 28:264-278.
-
(2008)
J. Neurosci.
, vol.28
, pp. 264-278
-
-
Cahoy, J.D.1
-
28
-
-
67349249403
-
The bioenergetic and antioxidant status of neurons is controlled by continuous degradation of a key glycolytic enzyme by APC/C-Cdh1
-
Herrero-Mendez A., et al. The bioenergetic and antioxidant status of neurons is controlled by continuous degradation of a key glycolytic enzyme by APC/C-Cdh1. Nat. Cell Biol. 2009, 11:747-752.
-
(2009)
Nat. Cell Biol.
, vol.11
, pp. 747-752
-
-
Herrero-Mendez, A.1
-
29
-
-
79953016477
-
High resolution measurement of the glycolytic rate
-
Bittner C.X., et al. High resolution measurement of the glycolytic rate. Front. Neuroenerg. 2010, 2:26.
-
(2010)
Front. Neuroenerg.
, vol.2
, pp. 26
-
-
Bittner, C.X.1
-
30
-
-
77954354634
-
Phosphorylation status of pyruvate dehydrogenase distinguishes metabolic phenotypes of cultured rat brain astrocytes and neurons
-
Halim N.D., et al. Phosphorylation status of pyruvate dehydrogenase distinguishes metabolic phenotypes of cultured rat brain astrocytes and neurons. Glia 2010, 58:1168-1176.
-
(2010)
Glia
, vol.58
, pp. 1168-1176
-
-
Halim, N.D.1
-
31
-
-
70349086613
-
Human brain glycogen metabolism during and after hypoglycemia
-
Oz G., et al. Human brain glycogen metabolism during and after hypoglycemia. Diabetes 2009, 58:1978-1985.
-
(2009)
Diabetes
, vol.58
, pp. 1978-1985
-
-
Oz, G.1
-
32
-
-
84863011313
-
Brain glycogen supercompensation following exhaustive exercise
-
Matsui T., et al. Brain glycogen supercompensation following exhaustive exercise. J. Physiol. 2012, 590:607-616.
-
(2012)
J. Physiol.
, vol.590
, pp. 607-616
-
-
Matsui, T.1
-
33
-
-
0027216810
-
Glycogen in astrocytes: possible function as lactate supply for neighboring cells
-
Dringen R., et al. Glycogen in astrocytes: possible function as lactate supply for neighboring cells. Brain Res. 1993, 623:208-214.
-
(1993)
Brain Res.
, vol.623
, pp. 208-214
-
-
Dringen, R.1
-
34
-
-
0023890868
-
Lactate-supported synaptic function in the rat hippocampal slice preparation
-
Schurr A., et al. Lactate-supported synaptic function in the rat hippocampal slice preparation. Science 1988, 240:1326-1328.
-
(1988)
Science
, vol.240
, pp. 1326-1328
-
-
Schurr, A.1
-
35
-
-
79956330533
-
In vivo evidence for lactate as a neuronal energy source
-
Wyss M.T., et al. In vivo evidence for lactate as a neuronal energy source. J. Neurosci. 2011, 31:7477-7485.
-
(2011)
J. Neurosci.
, vol.31
, pp. 7477-7485
-
-
Wyss, M.T.1
-
36
-
-
84861429431
-
Glycolytic oligodendrocytes maintain myelin and long-term axonal integrity
-
Funfschilling U., et al. Glycolytic oligodendrocytes maintain myelin and long-term axonal integrity. Nature 2012, 485:517-521.
-
(2012)
Nature
, vol.485
, pp. 517-521
-
-
Funfschilling, U.1
-
37
-
-
33747182796
-
Inhibition of glycogenolysis in astrocytes interrupts memory consolidation in young chickens
-
Gibbs M.E., et al. Inhibition of glycogenolysis in astrocytes interrupts memory consolidation in young chickens. Glia 2006, 54:214-222.
-
(2006)
Glia
, vol.54
, pp. 214-222
-
-
Gibbs, M.E.1
-
38
-
-
35548995067
-
Mechanism suppressing glycogen synthesis in neurons and its demise in progressive myoclonus epilepsy
-
Vilchez D., et al. Mechanism suppressing glycogen synthesis in neurons and its demise in progressive myoclonus epilepsy. Nat. Neurosci. 2007, 10:1407-1413.
-
(2007)
Nat. Neurosci.
, vol.10
, pp. 1407-1413
-
-
Vilchez, D.1
-
39
-
-
84864495783
-
Deleterious effects of neuronal accumulation of glycogen in flies and mice
-
Duran J., et al. Deleterious effects of neuronal accumulation of glycogen in flies and mice. EMBO Mol. Med. 2012, 4:719-729.
-
(2012)
EMBO Mol. Med.
, vol.4
, pp. 719-729
-
-
Duran, J.1
-
40
-
-
0037497019
-
Glycogen regulation and functional role in mouse white matter
-
Brown A.M., et al. Glycogen regulation and functional role in mouse white matter. J. Physiol. 2003, 549:501-512.
-
(2003)
J. Physiol.
, vol.549
, pp. 501-512
-
-
Brown, A.M.1
-
41
-
-
84864200035
-
Oligodendroglia metabolically support axons and contribute to neurodegeneration
-
Lee Y., et al. Oligodendroglia metabolically support axons and contribute to neurodegeneration. Nature 2012, 487:443-448.
-
(2012)
Nature
, vol.487
, pp. 443-448
-
-
Lee, Y.1
-
42
-
-
0842322960
-
A reduced cerebral metabolic ratio in exercise reflects metabolism and not accumulation of lactate within the human brain
-
Dalsgaard M.K., et al. A reduced cerebral metabolic ratio in exercise reflects metabolism and not accumulation of lactate within the human brain. J. Physiol. 2004, 554:571-578.
-
(2004)
J. Physiol.
, vol.554
, pp. 571-578
-
-
Dalsgaard, M.K.1
-
43
-
-
80052689581
-
Cerebral glucose and lactate consumption during cerebral activation by physical activity in humans
-
Rasmussen P., et al. Cerebral glucose and lactate consumption during cerebral activation by physical activity in humans. FASEB J. 2011, 25:2865-2873.
-
(2011)
FASEB J.
, vol.25
, pp. 2865-2873
-
-
Rasmussen, P.1
-
44
-
-
77958528666
-
13C nuclear magnetic resonance spectroscopy
-
13C nuclear magnetic resonance spectroscopy. J. Neurosci. 2010, 30:13983-13991.
-
(2010)
J. Neurosci.
, vol.30
, pp. 13983-13991
-
-
Boumezbeur, F.1
-
45
-
-
57349185900
-
Astroglial metabolic networks sustain hippocampal synaptic transmission
-
Rouach N., et al. Astroglial metabolic networks sustain hippocampal synaptic transmission. Science 2008, 322:1551-1555.
-
(2008)
Science
, vol.322
, pp. 1551-1555
-
-
Rouach, N.1
-
46
-
-
84861595502
-
Panglial gap junctional communication is essential for maintenance of myelin in the CNS
-
Tress O., et al. Panglial gap junctional communication is essential for maintenance of myelin in the CNS. J. Neurosci. 2012, 32:7499-7518.
-
(2012)
J. Neurosci.
, vol.32
, pp. 7499-7518
-
-
Tress, O.1
-
47
-
-
72549091072
-
Synaptically induced sodium signals in hippocampal astrocytes in situ
-
Langer J., Rose C.R. Synaptically induced sodium signals in hippocampal astrocytes in situ. J. Physiol. 2009, 587:5859-5877.
-
(2009)
J. Physiol.
, vol.587
, pp. 5859-5877
-
-
Langer, J.1
Rose, C.R.2
-
49
-
-
0037466252
-
The aerobic brain: lactate decrease at the onset of neural activity
-
Mangia S., et al. The aerobic brain: lactate decrease at the onset of neural activity. Neuroscience 2003, 118:7-10.
-
(2003)
Neuroscience
, vol.118
, pp. 7-10
-
-
Mangia, S.1
-
50
-
-
0030894684
-
Rapid changes in local extracellular rat brain glucose observed with an in vivo glucose sensor
-
Hu Y., Wilson G.S. Rapid changes in local extracellular rat brain glucose observed with an in vivo glucose sensor. J. Neurochem. 1997, 68:1745-1752.
-
(1997)
J. Neurochem.
, vol.68
, pp. 1745-1752
-
-
Hu, Y.1
Wilson, G.S.2
-
51
-
-
78149491490
-
Predominant enhancement of glucose uptake in astrocytes versus neurons during activation of the somatosensory cortex
-
Chuquet J., et al. Predominant enhancement of glucose uptake in astrocytes versus neurons during activation of the somatosensory cortex. J. Neurosci. 2010, 30:15298-15303.
-
(2010)
J. Neurosci.
, vol.30
, pp. 15298-15303
-
-
Chuquet, J.1
-
52
-
-
33750353468
-
NAD(P)H fluorescence transients after synaptic activity in brain slices: predominant role of mitochondrial function
-
Brennan A.M., et al. NAD(P)H fluorescence transients after synaptic activity in brain slices: predominant role of mitochondrial function. J. Cereb. Blood Flow Metab. 2006, 26:1389-1406.
-
(2006)
J. Cereb. Blood Flow Metab.
, vol.26
, pp. 1389-1406
-
-
Brennan, A.M.1
-
53
-
-
84873409180
-
Oxygen consumption rates during three different neuronal activity states in the hippocampal CA3 network
-
Huchzermeyer C., et al. Oxygen consumption rates during three different neuronal activity states in the hippocampal CA3 network. J. Cereb. Blood Flow Metab. 2013, 32:263-271.
-
(2013)
J. Cereb. Blood Flow Metab.
, vol.32
, pp. 263-271
-
-
Huchzermeyer, C.1
-
54
-
-
85027928040
-
Cellular and metabolic origins of flavoprotein autofluorescence in the cerebellar cortex in vivo
-
Reinert K.C., et al. Cellular and metabolic origins of flavoprotein autofluorescence in the cerebellar cortex in vivo. Cerebellum 2011, 10:585-599.
-
(2011)
Cerebellum
, vol.10
, pp. 585-599
-
-
Reinert, K.C.1
-
55
-
-
52649097998
-
Potassium dynamics in the epileptic cortex: new insights on an old topic
-
Frohlich F., et al. Potassium dynamics in the epileptic cortex: new insights on an old topic. Neuroscientist 2008, 14:422-433.
-
(2008)
Neuroscientist
, vol.14
, pp. 422-433
-
-
Frohlich, F.1
-
56
-
-
84865123660
-
A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid beta
-
Iliff J.J., et al. A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid beta. Sci. Transl. Med. 2012, 4:147ra111.
-
(2012)
Sci. Transl. Med.
, vol.4
-
-
Iliff, J.J.1
-
57
-
-
84856734036
-
Acute feedback control of astrocytic glycolysis by lactate
-
Sotelo-Hitschfeld T., et al. Acute feedback control of astrocytic glycolysis by lactate. Glia 2012, 60:674-680.
-
(2012)
Glia
, vol.60
, pp. 674-680
-
-
Sotelo-Hitschfeld, T.1
-
58
-
-
36349004121
-
Lactate favours the dissociation of skeletal muscle 6-phosphofructo-1-kinase tetramers down-regulating the enzyme and muscle glycolysis
-
Costa L.T., et al. Lactate favours the dissociation of skeletal muscle 6-phosphofructo-1-kinase tetramers down-regulating the enzyme and muscle glycolysis. Biochem. J. 2007, 408:123-130.
-
(2007)
Biochem. J.
, vol.408
, pp. 123-130
-
-
Costa, L.T.1
-
60
-
-
3042656565
-
Stimulus-induced brain lactate: effects of aging and prolonged wakefulness
-
Urrila A.S., et al. Stimulus-induced brain lactate: effects of aging and prolonged wakefulness. J. Sleep Res. 2004, 13:111-119.
-
(2004)
J. Sleep Res.
, vol.13
, pp. 111-119
-
-
Urrila, A.S.1
-
61
-
-
34347237157
-
14C]glucose metabolite spreading and release
-
14C]glucose metabolite spreading and release. J. Neurosci. Res. 2007, 85:3254-3266.
-
(2007)
J. Neurosci. Res.
, vol.85
, pp. 3254-3266
-
-
Cruz, N.F.1
-
62
-
-
0032079863
-
Extrasynaptic glutamate diffusion in the hippocampus: ultrastructural constraints, uptake, and receptor activation
-
Rusakov D.A., Kullmann D.M. Extrasynaptic glutamate diffusion in the hippocampus: ultrastructural constraints, uptake, and receptor activation. J. Neurosci. 1998, 18:3158-3170.
-
(1998)
J. Neurosci.
, vol.18
, pp. 3158-3170
-
-
Rusakov, D.A.1
Kullmann, D.M.2
-
63
-
-
77952394341
-
Glucose and lactate supply to the synapse
-
Barros L.F., Deitmer J.W. Glucose and lactate supply to the synapse. Brain Res. Rev. 2010, 63:149-159.
-
(2010)
Brain Res. Rev.
, vol.63
, pp. 149-159
-
-
Barros, L.F.1
Deitmer, J.W.2
-
64
-
-
79953016863
-
+ and a delayed and persistent effect of glutamate
-
+ and a delayed and persistent effect of glutamate. J. Neurosci. 2011, 31:4709-4713.
-
(2011)
J. Neurosci.
, vol.31
, pp. 4709-4713
-
-
Bittner, C.X.1
-
65
-
-
0020645436
-
Potassium accumulation around individual Purkinje cells in cerebellar slices from the guinea-pig
-
Hounsgaard J., Nicholson C. Potassium accumulation around individual Purkinje cells in cerebellar slices from the guinea-pig. J. Physiol. 1983, 340:359-388.
-
(1983)
J. Physiol.
, vol.340
, pp. 359-388
-
-
Hounsgaard, J.1
Nicholson, C.2
-
66
-
-
34547823399
-
Activity-dependent regulation of energy metabolism by astrocytes: an update
-
Pellerin L., et al. Activity-dependent regulation of energy metabolism by astrocytes: an update. Glia 2007, 55:1251-1262.
-
(2007)
Glia
, vol.55
, pp. 1251-1262
-
-
Pellerin, L.1
-
67
-
-
0028080101
-
Glutamate uptake into astrocytes stimulates aerobic glycolysis: a mechanism coupling neuronal activity to glucose utilization
-
Pellerin L., Magistretti P.J. Glutamate uptake into astrocytes stimulates aerobic glycolysis: a mechanism coupling neuronal activity to glucose utilization. Proc. Natl. Acad. Sci. U.S.A. 1994, 91:10625-10629.
-
(1994)
Proc. Natl. Acad. Sci. U.S.A.
, vol.91
, pp. 10625-10629
-
-
Pellerin, L.1
Magistretti, P.J.2
-
68
-
-
0042237889
-
Glutamate triggers rapid glucose transport stimulation in astrocytes as evidenced by real-time confocal microscopy
-
Loaiza A., et al. Glutamate triggers rapid glucose transport stimulation in astrocytes as evidenced by real-time confocal microscopy. J. Neurosci. 2003, 23:7337-7342.
-
(2003)
J. Neurosci.
, vol.23
, pp. 7337-7342
-
-
Loaiza, A.1
-
69
-
-
36448983548
-
2+ cosignaling in the stimulation of the glucose transporter GLUT1 in cultured astrocytes
-
2+ cosignaling in the stimulation of the glucose transporter GLUT1 in cultured astrocytes. Glia 2008, 56:59-68.
-
(2008)
Glia
, vol.56
, pp. 59-68
-
-
Porras, O.H.1
-
71
-
-
84861012031
-
Lactate flux in astrocytes is enhanced by a non-catalytic action of carbonic anhydrase II
-
Stridh M.H., et al. Lactate flux in astrocytes is enhanced by a non-catalytic action of carbonic anhydrase II. J. Physiol. 2012, 590:2333-2351.
-
(2012)
J. Physiol.
, vol.590
, pp. 2333-2351
-
-
Stridh, M.H.1
-
72
-
-
0028904071
-
Persistent resetting of the cerebral oxygen/glucose uptake ratio by brain activation: evidence obtained with the Kety-Schmidt technique
-
Madsen P.L., et al. Persistent resetting of the cerebral oxygen/glucose uptake ratio by brain activation: evidence obtained with the Kety-Schmidt technique. J. Cereb. Blood Flow Metab. 1995, 15:485-491.
-
(1995)
J. Cereb. Blood Flow Metab.
, vol.15
, pp. 485-491
-
-
Madsen, P.L.1
-
73
-
-
84866482758
-
Metabolic communication between astrocytes and neurons via bicarbonate-responsive soluble adenylyl cyclase
-
Choi H.B., et al. Metabolic communication between astrocytes and neurons via bicarbonate-responsive soluble adenylyl cyclase. Neuron 2012, 75:1094-1104.
-
(2012)
Neuron
, vol.75
, pp. 1094-1104
-
-
Choi, H.B.1
-
75
-
-
29144469081
-
Lactate: the ultimate cerebral oxidative energy substrate?
-
Schurr A. Lactate: the ultimate cerebral oxidative energy substrate?. J. Cereb. Blood Flow Metab. 2006, 26:142-152.
-
(2006)
J. Cereb. Blood Flow Metab.
, vol.26
, pp. 142-152
-
-
Schurr, A.1
-
76
-
-
84863552418
-
A mitochondrial pyruvate carrier required for pyruvate uptake in yeast, Drosophila, and humans
-
Bricker D.K., et al. A mitochondrial pyruvate carrier required for pyruvate uptake in yeast, Drosophila, and humans. Science 2012, 337:96-100.
-
(2012)
Science
, vol.337
, pp. 96-100
-
-
Bricker, D.K.1
-
77
-
-
84863553135
-
Identification and functional expression of the mitochondrial pyruvate carrier
-
Herzig S., et al. Identification and functional expression of the mitochondrial pyruvate carrier. Science 2012, 337:93-96.
-
(2012)
Science
, vol.337
, pp. 93-96
-
-
Herzig, S.1
-
78
-
-
80053902441
-
+ redox state with a genetically encoded fluorescent biosensor
-
+ redox state with a genetically encoded fluorescent biosensor. Cell Metab. 2011, 14:545-554.
-
(2011)
Cell Metab.
, vol.14
, pp. 545-554
-
-
Hung, Y.P.1
-
79
-
-
80053898694
-
Genetically encoded fluorescent sensors for intracellular NADH detection
-
Zhao Y., et al. Genetically encoded fluorescent sensors for intracellular NADH detection. Cell Metab. 2011, 14:555-566.
-
(2011)
Cell Metab.
, vol.14
, pp. 555-566
-
-
Zhao, Y.1
-
80
-
-
84874458753
-
A genetically encoded FRET lactate sensor and its use to detect the Warburg effect in single cancer cells
-
San Martín A., et al. A genetically encoded FRET lactate sensor and its use to detect the Warburg effect in single cancer cells. PLoS ONE 2013, 8:e57712.
-
(2013)
PLoS ONE
, vol.8
-
-
San Martín, A.1
-
81
-
-
7444243742
-
Glutamate mediates acute glucose transport inhibition in hippocampal neurons
-
Porras O.H., et al. Glutamate mediates acute glucose transport inhibition in hippocampal neurons. J. Neurosci. 2004, 24:9669-9673.
-
(2004)
J. Neurosci.
, vol.24
, pp. 9669-9673
-
-
Porras, O.H.1
-
82
-
-
79951540531
-
Activity-dependent regulation of surface glucose transporter-3
-
Ferreira J.M., et al. Activity-dependent regulation of surface glucose transporter-3. J. Neurosci. 2011, 31:1991-1999.
-
(2011)
J. Neurosci.
, vol.31
, pp. 1991-1999
-
-
Ferreira, J.M.1
-
83
-
-
65749105773
-
Linking supply to demand: the neuronal monocarboxylate transporter MCT2 and the alpha-amino-3-hydroxyl-5-methyl-4-isoxazole-propionic acid receptor GluR2/3 subunit are associated in a common trafficking process
-
Pierre K., et al. Linking supply to demand: the neuronal monocarboxylate transporter MCT2 and the alpha-amino-3-hydroxyl-5-methyl-4-isoxazole-propionic acid receptor GluR2/3 subunit are associated in a common trafficking process. Eur. J. Neurosci. 2009, 29:1951-1963.
-
(2009)
Eur. J. Neurosci.
, vol.29
, pp. 1951-1963
-
-
Pierre, K.1
-
84
-
-
79952427057
-
Glutamate transport decreases mitochondrial pH and modulates oxidative metabolism in astrocytes
-
Azarias G., et al. Glutamate transport decreases mitochondrial pH and modulates oxidative metabolism in astrocytes. J. Neurosci. 2011, 31:3550-3559.
-
(2011)
J. Neurosci.
, vol.31
, pp. 3550-3559
-
-
Azarias, G.1
-
85
-
-
33749983983
-
Elevated lactate suppresses neuronal firing in vivo and inhibits glucose metabolism in hippocampal slice cultures
-
Gilbert E., et al. Elevated lactate suppresses neuronal firing in vivo and inhibits glucose metabolism in hippocampal slice cultures. Brain Res. 2006, 1117:213-223.
-
(2006)
Brain Res.
, vol.1117
, pp. 213-223
-
-
Gilbert, E.1
-
86
-
-
78449251558
-
Spontaneous network events driven by depolarizing GABA action in neonatal hippocampal slices are not attributable to deficient mitochondrial energy metabolism
-
Ruusuvuori E., et al. Spontaneous network events driven by depolarizing GABA action in neonatal hippocampal slices are not attributable to deficient mitochondrial energy metabolism. J. Neurosci. 2010, 30:15638-15642.
-
(2010)
J. Neurosci.
, vol.30
, pp. 15638-15642
-
-
Ruusuvuori, E.1
-
87
-
-
78650685906
-
Inhibition of spontaneous network activity in neonatal hippocampal slices by energy substrates is not correlated with intracellular acidification
-
Mukhtarov M., et al. Inhibition of spontaneous network activity in neonatal hippocampal slices by energy substrates is not correlated with intracellular acidification. J. Neurochem. 2011, 116:316-321.
-
(2011)
J. Neurochem.
, vol.116
, pp. 316-321
-
-
Mukhtarov, M.1
-
88
-
-
34247344541
-
Suppressed neuronal activity and concurrent arteriolar vasoconstriction may explain negative blood oxygenation level-dependent signal
-
Devor A., et al. Suppressed neuronal activity and concurrent arteriolar vasoconstriction may explain negative blood oxygenation level-dependent signal. J. Neurosci. 2007, 27:4452-4459.
-
(2007)
J. Neurosci.
, vol.27
, pp. 4452-4459
-
-
Devor, A.1
-
89
-
-
0037370712
-
A2B receptor activation promotes glycogen synthesis in astrocytes through modulation of gene expression
-
Allaman I., et al. A2B receptor activation promotes glycogen synthesis in astrocytes through modulation of gene expression. Am. J. Physiol. Cell Physiol. 2003, 284:C696-C704.
-
(2003)
Am. J. Physiol. Cell Physiol.
, vol.284
-
-
Allaman, I.1
-
90
-
-
57649118670
-
Brain metabolism dictates the polarity of astrocyte control over arterioles
-
Gordon G.R., et al. Brain metabolism dictates the polarity of astrocyte control over arterioles. Nature 2008, 456:745-749.
-
(2008)
Nature
, vol.456
, pp. 745-749
-
-
Gordon, G.R.1
-
91
-
-
5644289368
-
Cortical GABA interneurons in neurovascular coupling: relays for subcortical vasoactive pathways
-
Cauli B., et al. Cortical GABA interneurons in neurovascular coupling: relays for subcortical vasoactive pathways. J. Neurosci. 2004, 24:8940-8949.
-
(2004)
J. Neurosci.
, vol.24
, pp. 8940-8949
-
-
Cauli, B.1
-
92
-
-
84870609134
-
The locus coeruleus-norepinephrine network optimizes coupling of cerebral blood volume with oxygen demand
-
Bekar L.K., et al. The locus coeruleus-norepinephrine network optimizes coupling of cerebral blood volume with oxygen demand. J. Cereb. Blood Flow Metab. 2012, 32:2135-2145.
-
(2012)
J. Cereb. Blood Flow Metab.
, vol.32
, pp. 2135-2145
-
-
Bekar, L.K.1
-
93
-
-
79960809092
-
Neuronal activity regulates the regional vulnerability to amyloid-beta deposition
-
Bero A.W., et al. Neuronal activity regulates the regional vulnerability to amyloid-beta deposition. Nat. Neurosci. 2011, 14:750-756.
-
(2011)
Nat. Neurosci.
, vol.14
, pp. 750-756
-
-
Bero, A.W.1
-
94
-
-
78651473295
-
Regulation of oligodendrocyte development and myelination by glucose and lactate
-
Rinholm J.E., et al. Regulation of oligodendrocyte development and myelination by glucose and lactate. J. Neurosci. 2011, 31:538-548.
-
(2011)
J. Neurosci.
, vol.31
, pp. 538-548
-
-
Rinholm, J.E.1
-
95
-
-
84857913840
-
+/NADH redox state
-
+/NADH redox state. J. Neurochem. 2012, 120:1014-1025.
-
(2012)
J. Neurochem.
, vol.120
, pp. 1014-1025
-
-
Requardt, R.P.1
-
96
-
-
44949166565
-
Inhibition of monocarboxylate transporter 2 in the retrotrapezoid nucleus in rats: a test of the astrocyte-neuron lactate shuttle hypothesis
-
Erlichman J.S., et al. Inhibition of monocarboxylate transporter 2 in the retrotrapezoid nucleus in rats: a test of the astrocyte-neuron lactate shuttle hypothesis. J. Neurosci. 2008, 28:4888-4896.
-
(2008)
J. Neurosci.
, vol.28
, pp. 4888-4896
-
-
Erlichman, J.S.1
-
97
-
-
77954640264
-
Acid-sensing ion channels in rat hypothalamic vasopressin neurons of the supraoptic nucleus
-
Ohbuchi T., et al. Acid-sensing ion channels in rat hypothalamic vasopressin neurons of the supraoptic nucleus. J. Physiol. 2010, 588:2147-2162.
-
(2010)
J. Physiol.
, vol.588
, pp. 2147-2162
-
-
Ohbuchi, T.1
-
98
-
-
12144275681
-
Differential effects of glucose and lactate on glucosensing neurons in the ventromedial hypothalamic nucleus
-
Song Z., Routh V.H. Differential effects of glucose and lactate on glucosensing neurons in the ventromedial hypothalamic nucleus. Diabetes 2005, 54:15-22.
-
(2005)
Diabetes
, vol.54
, pp. 15-22
-
-
Song, Z.1
Routh, V.H.2
-
99
-
-
23244458439
-
Regulation of blood glucose by hypothalamic pyruvate metabolism
-
Lam T.K., et al. Regulation of blood glucose by hypothalamic pyruvate metabolism. Science 2005, 309:943-947.
-
(2005)
Science
, vol.309
, pp. 943-947
-
-
Lam, T.K.1
-
100
-
-
77953778872
-
ATP-sensitive potassium channel-mediated lactate effect on orexin neurons: implications for brain energetics during arousal
-
Parsons M.P., Hirasawa M. ATP-sensitive potassium channel-mediated lactate effect on orexin neurons: implications for brain energetics during arousal. J. Neurosci. 2010, 30:8061-8070.
-
(2010)
J. Neurosci.
, vol.30
, pp. 8061-8070
-
-
Parsons, M.P.1
Hirasawa, M.2
-
101
-
-
84865080952
-
Circadian rhythm of redox state regulates excitability in suprachiasmatic nucleus neurons
-
Wang T.A., et al. Circadian rhythm of redox state regulates excitability in suprachiasmatic nucleus neurons. Science 2012, 337:839-842.
-
(2012)
Science
, vol.337
, pp. 839-842
-
-
Wang, T.A.1
-
102
-
-
83455179198
-
Co-compartmentalization of the astroglial glutamate transporter, GLT-1, with glycolytic enzymes and mitochondria
-
Genda E.N., et al. Co-compartmentalization of the astroglial glutamate transporter, GLT-1, with glycolytic enzymes and mitochondria. J. Neurosci. 2011, 31:18275-18288.
-
(2011)
J. Neurosci.
, vol.31
, pp. 18275-18288
-
-
Genda, E.N.1
-
103
-
-
33645900571
-
The redox switch/redox coupling hypothesis
-
Cerdan S., et al. The redox switch/redox coupling hypothesis. Neurochem. Int. 2006, 48:523-530.
-
(2006)
Neurochem. Int.
, vol.48
, pp. 523-530
-
-
Cerdan, S.1
-
104
-
-
77950261397
-
An autocrine lactate loop mediates insulin-dependent inhibition of lipolysis through GPR81
-
Ahmed K., et al. An autocrine lactate loop mediates insulin-dependent inhibition of lipolysis through GPR81. Cell Metab. 2010, 11:311-319.
-
(2010)
Cell Metab.
, vol.11
, pp. 311-319
-
-
Ahmed, K.1
-
105
-
-
84859933483
-
Neuronal adenosine release, and not astrocytic ATP release, mediates feedback inhibition of excitatory activity
-
Lovatt D., et al. Neuronal adenosine release, and not astrocytic ATP release, mediates feedback inhibition of excitatory activity. Proc. Natl. Acad. Sci. U.S.A. 2012, 109:6265-6270.
-
(2012)
Proc. Natl. Acad. Sci. U.S.A.
, vol.109
, pp. 6265-6270
-
-
Lovatt, D.1
-
106
-
-
84861851015
-
Is lactate a volume transmitter of metabolic states of the brain?
-
Bergersen L.H., Gjedde A. Is lactate a volume transmitter of metabolic states of the brain?. Front. Neuroenerg. 2012, 4:5.
-
(2012)
Front. Neuroenerg.
, vol.4
, pp. 5
-
-
Bergersen, L.H.1
Gjedde, A.2
|