-
1
-
-
63749105226
-
MTOR and the control of whole body metabolism
-
Polak P., Hall M.N. mTOR and the control of whole body metabolism. Curr. Opin. Cell Biol. 2009, 21:209-218.
-
(2009)
Curr. Opin. Cell Biol.
, vol.21
, pp. 209-218
-
-
Polak, P.1
Hall, M.N.2
-
2
-
-
32044465506
-
TOR signaling in growth and metabolism
-
Wullschleger S., et al. TOR signaling in growth and metabolism. Cell 2006, 124:471-484.
-
(2006)
Cell
, vol.124
, pp. 471-484
-
-
Wullschleger, S.1
-
3
-
-
78649348967
-
Regulation of the mTOR complex 1 pathway by nutrients, growth factors, and stress
-
Sengupta S., et al. Regulation of the mTOR complex 1 pathway by nutrients, growth factors, and stress. Mol. Cell 2010, 40:310-322.
-
(2010)
Mol. Cell
, vol.40
, pp. 310-322
-
-
Sengupta, S.1
-
4
-
-
65649128580
-
Amino acid regulation of TOR complex 1
-
Avruch J., et al. Amino acid regulation of TOR complex 1. Am. J. Physiol. Endocrinol. Metab. 2009, 296:E592-E602.
-
(2009)
Am. J. Physiol. Endocrinol. Metab.
, vol.296
-
-
Avruch, J.1
-
5
-
-
0035976615
-
Phosphatidic acid-mediated mitogenic activation of mTOR signaling
-
Fang Y., et al. Phosphatidic acid-mediated mitogenic activation of mTOR signaling. Science 2001, 294:1942-1945.
-
(2001)
Science
, vol.294
, pp. 1942-1945
-
-
Fang, Y.1
-
6
-
-
33846438568
-
Regulation of mTOR by phosphatidic acid?
-
Foster D.A. Regulation of mTOR by phosphatidic acid?. Cancer Res. 2007, 67:1-4.
-
(2007)
Cancer Res.
, vol.67
, pp. 1-4
-
-
Foster, D.A.1
-
7
-
-
54149107123
-
MTOR signaling: PLD takes center stage
-
Sun Y., Chen J. mTOR signaling: PLD takes center stage. Cell Cycle 2008, 7:3118-3123.
-
(2008)
Cell Cycle
, vol.7
, pp. 3118-3123
-
-
Sun, Y.1
Chen, J.2
-
8
-
-
62849111751
-
Regulation of mTORC1 and mTORC2 complex assembly by phosphatidic acid: competition with rapamycin
-
Toschi A., et al. Regulation of mTORC1 and mTORC2 complex assembly by phosphatidic acid: competition with rapamycin. Mol. Cell. Biol. 2009, 29:1411-1420.
-
(2009)
Mol. Cell. Biol.
, vol.29
, pp. 1411-1420
-
-
Toschi, A.1
-
9
-
-
84859778293
-
MTOR signaling in growth control and disease
-
Laplante M., Sabatini D.M. mTOR signaling in growth control and disease. Cell 2012, 149:274-293.
-
(2012)
Cell
, vol.149
, pp. 274-293
-
-
Laplante, M.1
Sabatini, D.M.2
-
10
-
-
68949103681
-
Phosphatidic acid signaling to mTOR: signals for the survival of human cancer cells
-
Foster D.A. Phosphatidic acid signaling to mTOR: signals for the survival of human cancer cells. Biochim. Biophys. Acta 2009, 1791:949-955.
-
(2009)
Biochim. Biophys. Acta
, vol.1791
, pp. 949-955
-
-
Foster, D.A.1
-
11
-
-
0028845640
-
What is the restriction point?
-
Zetterberg A., et al. What is the restriction point?. Curr. Opin. Cell Biol. 1995, 7:835-842.
-
(1995)
Curr. Opin. Cell Biol.
, vol.7
, pp. 835-842
-
-
Zetterberg, A.1
-
12
-
-
79960048104
-
Regulation of G1 cell cycle progression: distinguishing the restriction point from a nutrient-sensing cell growth checkpoint(s)
-
Foster D., et al. Regulation of G1 cell cycle progression: distinguishing the restriction point from a nutrient-sensing cell growth checkpoint(s). Genes Cancer 2010, 1:1124-1131.
-
(2010)
Genes Cancer
, vol.1
, pp. 1124-1131
-
-
Foster, D.1
-
13
-
-
0345732640
-
MTOR controls cell cycle progression through its cell growth effectors S6K1 and 4E-BP1/eukaryotic translation initiation factor 4E
-
Fingar D.C., et al. mTOR controls cell cycle progression through its cell growth effectors S6K1 and 4E-BP1/eukaryotic translation initiation factor 4E. Mol. Cell. Biol. 2004, 24:200-216.
-
(2004)
Mol. Cell. Biol.
, vol.24
, pp. 200-216
-
-
Fingar, D.C.1
-
14
-
-
39149089610
-
Defective TGF-beta signaling sensitizes human cancer cells to rapamycin
-
Gadir N., et al. Defective TGF-beta signaling sensitizes human cancer cells to rapamycin. Oncogene 2008, 27:1055-1062.
-
(2008)
Oncogene
, vol.27
, pp. 1055-1062
-
-
Gadir, N.1
-
15
-
-
84858604270
-
Metabolic reprogramming: a cancer hallmark even Warburg did not anticipate
-
Ward P.S., et al. Metabolic reprogramming: a cancer hallmark even Warburg did not anticipate. Cancer Cell 2012, 21:297-308.
-
(2012)
Cancer Cell
, vol.21
, pp. 297-308
-
-
Ward, P.S.1
-
16
-
-
84859489680
-
Molecular damage in cancer: an argument for mTOR-driven aging
-
Blagosklonny M.V. Molecular damage in cancer: an argument for mTOR-driven aging. Aging 2011, 3:1130-1141.
-
(2011)
Aging
, vol.3
, pp. 1130-1141
-
-
Blagosklonny, M.V.1
-
17
-
-
78751699575
-
Activating mutations of TOR (target of rapamycin)
-
Hardt M., et al. Activating mutations of TOR (target of rapamycin). Genes Cells 2011, 16:141-151.
-
(2011)
Genes Cells
, vol.16
, pp. 141-151
-
-
Hardt, M.1
-
18
-
-
84861444859
-
Regulation of glucose transport by insulin: traffic control of GLUT4
-
Leto D., Saltiel A.R. Regulation of glucose transport by insulin: traffic control of GLUT4. Nat. Rev. Mol. Cell Biol. 2012, 13:383-396.
-
(2012)
Nat. Rev. Mol. Cell Biol.
, vol.13
, pp. 383-396
-
-
Leto, D.1
Saltiel, A.R.2
-
19
-
-
0001221508
-
On respiratory impairment in cancer cells
-
Warburg O. On respiratory impairment in cancer cells. Science 1956, 124:269-270.
-
(1956)
Science
, vol.124
, pp. 269-270
-
-
Warburg, O.1
-
20
-
-
84868019043
-
Cancer cell metabolism: one hallmark, many faces
-
Cantor J.R., Sabatini D.M. Cancer cell metabolism: one hallmark, many faces. Cancer Discov. 2012, 2:881-898.
-
(2012)
Cancer Discov.
, vol.2
, pp. 881-898
-
-
Cantor, J.R.1
Sabatini, D.M.2
-
21
-
-
0038339003
-
Phospholipase D confers rapamycin resistance in human breast cancer cells
-
Chen Y., et al. Phospholipase D confers rapamycin resistance in human breast cancer cells. Oncogene 2003, 22:3937-3942.
-
(2003)
Oncogene
, vol.22
, pp. 3937-3942
-
-
Chen, Y.1
-
22
-
-
84862166355
-
The phospholipase D1 pathway modulates macroautophagy
-
Dall'Armi C., et al. The phospholipase D1 pathway modulates macroautophagy. Nat. Commun. 2010, 1:142.
-
(2010)
Nat. Commun.
, vol.1
, pp. 142
-
-
Dall'Armi, C.1
-
23
-
-
84868121895
-
Redundant functions of phospholipases D1 and D2 in platelet alpha-granule release
-
Thielmann I., et al. Redundant functions of phospholipases D1 and D2 in platelet alpha-granule release. J. Thromb. Haemost. 2012, 10.1111/j.1538-7836.2012.04924.x.
-
(2012)
J. Thromb. Haemost.
-
-
Thielmann, I.1
-
24
-
-
33751348056
-
Ablation in mice of the mTORC components raptor, rictor, or mLST8 reveals that mTORC2 is required for signaling to Akt-FOXO and PKCα, but not S6K1
-
Guertin D., et al. Ablation in mice of the mTORC components raptor, rictor, or mLST8 reveals that mTORC2 is required for signaling to Akt-FOXO and PKCα, but not S6K1. Dev. Cell 2006, 11:859-871.
-
(2006)
Dev. Cell
, vol.11
, pp. 859-871
-
-
Guertin, D.1
-
25
-
-
6344245674
-
Disruption of the mouse mTOR gene leads to early postimplantation lethality and prohibits embryonic stem cell development
-
Gangloff Y.G., et al. Disruption of the mouse mTOR gene leads to early postimplantation lethality and prohibits embryonic stem cell development. Mol. Cell. Biol. 2004, 24:9508-9516.
-
(2004)
Mol. Cell. Biol.
, vol.24
, pp. 9508-9516
-
-
Gangloff, Y.G.1
-
26
-
-
0033571069
-
Phosphatidic acid, a key intermediate in lipid metabolism
-
Athenstaedt K., Daum G. Phosphatidic acid, a key intermediate in lipid metabolism. Eur. J. Biochem. 1999, 266:1-16.
-
(1999)
Eur. J. Biochem.
, vol.266
, pp. 1-16
-
-
Athenstaedt, K.1
Daum, G.2
-
27
-
-
67349112100
-
Glycerol-3-phosphate acyltransferases: rate limiting enzymes of triacylglycerol biosynthesis
-
Wendel A.A., et al. Glycerol-3-phosphate acyltransferases: rate limiting enzymes of triacylglycerol biosynthesis. Biochim. Biophys. Acta 2009, 1791:501-506.
-
(2009)
Biochim. Biophys. Acta
, vol.1791
, pp. 501-506
-
-
Wendel, A.A.1
-
28
-
-
83055173170
-
Diacylglycerol kinase ζ: at the crossroads of lipid signaling and protein complex organization
-
Rincon E., et al. Diacylglycerol kinase ζ: at the crossroads of lipid signaling and protein complex organization. Prog. Lipid Res. 2012, 51:1-10.
-
(2012)
Prog. Lipid Res.
, vol.51
, pp. 1-10
-
-
Rincon, E.1
-
29
-
-
38149018650
-
Diacylglycerol kinases: at the hub of cell signalling
-
Merida I., et al. Diacylglycerol kinases: at the hub of cell signalling. Biochem. J. 2008, 409:1-18.
-
(2008)
Biochem. J.
, vol.409
, pp. 1-18
-
-
Merida, I.1
-
30
-
-
33750813851
-
Identification of a novel human lysophosphatidic acid acyltransferase, LPAAT-theta, which activates mTOR pathway
-
Tang W., et al. Identification of a novel human lysophosphatidic acid acyltransferase, LPAAT-theta, which activates mTOR pathway. J. Biochem. Mol. Biol. 2006, 39:626-635.
-
(2006)
J. Biochem. Mol. Biol.
, vol.39
, pp. 626-635
-
-
Tang, W.1
-
31
-
-
15444378732
-
Modulation of the mammalian target of rapamycin pathway by diacylglycerol kinase-produced phosphatidic acid
-
Avila-Flores A., et al. Modulation of the mammalian target of rapamycin pathway by diacylglycerol kinase-produced phosphatidic acid. J. Biol. Chem. 2005, 280:10091-10099.
-
(2005)
J. Biol. Chem.
, vol.280
, pp. 10091-10099
-
-
Avila-Flores, A.1
-
32
-
-
79955061238
-
Diacylglycerol kinase inhibitor R59022-induced autophagy and apoptosis in the neuronal cell line NG108-15
-
Takita T., et al. Diacylglycerol kinase inhibitor R59022-induced autophagy and apoptosis in the neuronal cell line NG108-15. Arch. Biochem. Biophys. 2011, 509:197-201.
-
(2011)
Arch. Biochem. Biophys.
, vol.509
, pp. 197-201
-
-
Takita, T.1
-
33
-
-
79954618943
-
Negative regulation of mTOR activation by diacylglycerol kinases
-
Gorentla B., et al. Negative regulation of mTOR activation by diacylglycerol kinases. Blood 2011, 117:4022-4031.
-
(2011)
Blood
, vol.117
, pp. 4022-4031
-
-
Gorentla, B.1
-
34
-
-
1542323186
-
Inhibition of lysophosphatidic acid acyltransferase beta disrupts proliferative and survival signals in normal cells and induces apoptosis of tumor cells
-
Coon M., et al. Inhibition of lysophosphatidic acid acyltransferase beta disrupts proliferative and survival signals in normal cells and induces apoptosis of tumor cells. Mol. Cancer Ther. 2003, 2:1067-1078.
-
(2003)
Mol. Cancer Ther.
, vol.2
, pp. 1067-1078
-
-
Coon, M.1
-
35
-
-
84864003561
-
PERK utilizes intrinsic lipid kinase activity to generate phosphatidic acid, mediate Akt activation, and promote adipocyte differentiation
-
Bobrovnikova-Marjon E., et al. PERK utilizes intrinsic lipid kinase activity to generate phosphatidic acid, mediate Akt activation, and promote adipocyte differentiation. Mol. Cell. Biol. 2012, 32:2268-2278.
-
(2012)
Mol. Cell. Biol.
, vol.32
, pp. 2268-2278
-
-
Bobrovnikova-Marjon, E.1
-
36
-
-
84856111924
-
The unfolded protein response: controlling cell fate decisions under ER stress and beyond
-
Hetz C. The unfolded protein response: controlling cell fate decisions under ER stress and beyond. Nat. Rev. Mol. Cell Biol. 2012, 13:89-102.
-
(2012)
Nat. Rev. Mol. Cell Biol.
, vol.13
, pp. 89-102
-
-
Hetz, C.1
-
37
-
-
40649104735
-
Loss of the tuberous sclerosis complex tumor suppressors triggers the unfolded protein response to regulate insulin signaling and apoptosis
-
Ozcan U., et al. Loss of the tuberous sclerosis complex tumor suppressors triggers the unfolded protein response to regulate insulin signaling and apoptosis. Mol. Cell 2008, 29:541-551.
-
(2008)
Mol. Cell
, vol.29
, pp. 541-551
-
-
Ozcan, U.1
-
38
-
-
37449024702
-
The biology of cancer: metabolic reprogramming fuels cell growth and proliferation
-
DeBerardinis R.J., et al. The biology of cancer: metabolic reprogramming fuels cell growth and proliferation. Cell Metab. 2008, 7:11-20.
-
(2008)
Cell Metab.
, vol.7
, pp. 11-20
-
-
DeBerardinis, R.J.1
-
39
-
-
43749083041
-
Brick by brick: metabolism and tumor cell growth
-
DeBerardinis R.J., et al. Brick by brick: metabolism and tumor cell growth. Curr. Opin. Genet. Dev. 2008, 18:54-61.
-
(2008)
Curr. Opin. Genet. Dev.
, vol.18
, pp. 54-61
-
-
DeBerardinis, R.J.1
-
40
-
-
77957907225
-
Phospholipase D-mTOR requirement for the Warburg effect in human cancer cells
-
Toschi A., et al. Phospholipase D-mTOR requirement for the Warburg effect in human cancer cells. Cancer Lett. 2010, 299:72-79.
-
(2010)
Cancer Lett.
, vol.299
, pp. 72-79
-
-
Toschi, A.1
-
41
-
-
40749163248
-
The M2 splice isoform of pyruvate kinase is important for cancer metabolism and tumour growth
-
Christofk H.R., et al. The M2 splice isoform of pyruvate kinase is important for cancer metabolism and tumour growth. Nature 2008, 452:230-233.
-
(2008)
Nature
, vol.452
, pp. 230-233
-
-
Christofk, H.R.1
-
42
-
-
77449131347
-
Tyrosine phosphorylation inhibits PKM2 to promote the Warburg effect and tumor growth
-
Hitosugi T., et al. Tyrosine phosphorylation inhibits PKM2 to promote the Warburg effect and tumor growth. Sci. Signal. 2009, 2:ra73.
-
(2009)
Sci. Signal.
, vol.2
-
-
Hitosugi, T.1
-
43
-
-
66249108601
-
Understanding the Warburg effect: the metabolic requirements of cell proliferation
-
Vander Heiden M.G., et al. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 2009, 324:1029-1033.
-
(2009)
Science
, vol.324
, pp. 1029-1033
-
-
Vander Heiden, M.G.1
-
44
-
-
80051923932
-
Functional genomics reveal that the serine synthesis pathway is essential in breast cancer
-
Possemato R., et al. Functional genomics reveal that the serine synthesis pathway is essential in breast cancer. Nature 2011, 476:346-350.
-
(2011)
Nature
, vol.476
, pp. 346-350
-
-
Possemato, R.1
-
45
-
-
80052751477
-
Pyruvate kinase triggers a metabolic feedback loop that controls redox metabolism in respiring cells
-
Gruning N.M., et al. Pyruvate kinase triggers a metabolic feedback loop that controls redox metabolism in respiring cells. Cell Metab. 2011, 14:415-427.
-
(2011)
Cell Metab.
, vol.14
, pp. 415-427
-
-
Gruning, N.M.1
-
46
-
-
60749121730
-
Dietary n-6 and n-3 polyunsaturated fatty acids: from biochemistry to clinical implications in cardiovascular prevention
-
Russo G.L. Dietary n-6 and n-3 polyunsaturated fatty acids: from biochemistry to clinical implications in cardiovascular prevention. Biochem. Pharmacol. 2009, 77:937-946.
-
(2009)
Biochem. Pharmacol.
, vol.77
, pp. 937-946
-
-
Russo, G.L.1
-
47
-
-
0026906553
-
The essential fatty acids
-
Sardesai V.M. The essential fatty acids. Nutr. Clin. Pract. 1992, 7:179-186.
-
(1992)
Nutr. Clin. Pract.
, vol.7
, pp. 179-186
-
-
Sardesai, V.M.1
-
48
-
-
84863115883
-
Glycerolipid signals alter mTOR complex 2 (mTORC2) to diminish insulin signaling
-
Zhang C., et al. Glycerolipid signals alter mTOR complex 2 (mTORC2) to diminish insulin signaling. Proc. Natl. Acad. Sci. U.S.A. 2012, 109:1667-1672.
-
(2012)
Proc. Natl. Acad. Sci. U.S.A.
, vol.109
, pp. 1667-1672
-
-
Zhang, C.1
-
49
-
-
80051917141
-
Phosphatidic acid activates mammalian target of rapamycin complex 1 (mTORC1) kinase by displacing FK506 binding protein 38 (FKBP38) and exerting an allosteric effect
-
Yoon M.S., et al. Phosphatidic acid activates mammalian target of rapamycin complex 1 (mTORC1) kinase by displacing FK506 binding protein 38 (FKBP38) and exerting an allosteric effect. J. Biol. Chem. 2011, 286:29568-29574.
-
(2011)
J. Biol. Chem.
, vol.286
, pp. 29568-29574
-
-
Yoon, M.S.1
-
50
-
-
79960387847
-
Phospholipase D mediates nutrient input to mammalian target of rapamycin complex 1 (mTORC1)
-
Xu L., et al. Phospholipase D mediates nutrient input to mammalian target of rapamycin complex 1 (mTORC1). J. Biol. Chem. 2011, 286:25477-25486.
-
(2011)
J. Biol. Chem.
, vol.286
, pp. 25477-25486
-
-
Xu, L.1
-
51
-
-
84855731134
-
Class III PI-3-kinase activates phospholipase D in an amino acid-sensing mTORC1 pathway
-
Yoon M.S., et al. Class III PI-3-kinase activates phospholipase D in an amino acid-sensing mTORC1 pathway. J. Cell Biol. 2011, 195:435-447.
-
(2011)
J. Cell Biol.
, vol.195
, pp. 435-447
-
-
Yoon, M.S.1
-
52
-
-
38549134335
-
Structural characterization of the interaction of mTOR with phosphatidic acid and a novel class of inhibitor: compelling evidence for a central role of the FRB domain in small molecule-mediated regulation of mTOR
-
Veverka V., et al. Structural characterization of the interaction of mTOR with phosphatidic acid and a novel class of inhibitor: compelling evidence for a central role of the FRB domain in small molecule-mediated regulation of mTOR. Oncogene 2008, 27:585-595.
-
(2008)
Oncogene
, vol.27
, pp. 585-595
-
-
Veverka, V.1
-
53
-
-
84862555250
-
The FKBP-rapamycin binding domain of human TOR undergoes strong conformational changes in the presence of membrane mimetics with and without the regulator phosphatidic acid
-
Rodriguez Camargo D.C., et al. The FKBP-rapamycin binding domain of human TOR undergoes strong conformational changes in the presence of membrane mimetics with and without the regulator phosphatidic acid. Biochemistry 2012, 51:4909-4921.
-
(2012)
Biochemistry
, vol.51
, pp. 4909-4921
-
-
Rodriguez Camargo, D.C.1
-
54
-
-
33644503868
-
Identification of pathways regulating cell size and cell-cycle progression by RNAi
-
Bjorklund M., et al. Identification of pathways regulating cell size and cell-cycle progression by RNAi. Nature 2006, 439:1009-1013.
-
(2006)
Nature
, vol.439
, pp. 1009-1013
-
-
Bjorklund, M.1
-
55
-
-
78649808161
-
Phospholipase D controls Dictyostelium development by regulating G protein signaling
-
Ray S., et al. Phospholipase D controls Dictyostelium development by regulating G protein signaling. Cell. Signal. 2011, 23:335-343.
-
(2011)
Cell. Signal.
, vol.23
, pp. 335-343
-
-
Ray, S.1
-
56
-
-
84856704227
-
TOR complex 2 (TORC2) in Dictyostelium suppresses phagocytic nutrient capture independently of TORC1-mediated nutrient sensing
-
Rosel D., et al. TOR complex 2 (TORC2) in Dictyostelium suppresses phagocytic nutrient capture independently of TORC1-mediated nutrient sensing. J. Cell Sci. 2012, 125:37-48.
-
(2012)
J. Cell Sci.
, vol.125
, pp. 37-48
-
-
Rosel, D.1
-
57
-
-
0242664746
-
Functional analysis of a phosphatidic acid binding domain in human Raf-1 kinase: mutations in the phosphatidate binding domain lead to tail and trunk abnormalities in developing zebrafish embryos
-
Ghosh S., et al. Functional analysis of a phosphatidic acid binding domain in human Raf-1 kinase: mutations in the phosphatidate binding domain lead to tail and trunk abnormalities in developing zebrafish embryos. J. Biol. Chem. 2003, 278:45690-45696.
-
(2003)
J. Biol. Chem.
, vol.278
, pp. 45690-45696
-
-
Ghosh, S.1
-
58
-
-
0034651872
-
An EGF receptor/Ral-GTPase signaling cascade regulates c-Src activity and substrate specificity
-
Goi T., et al. An EGF receptor/Ral-GTPase signaling cascade regulates c-Src activity and substrate specificity. EMBO J. 2000, 19:623-630.
-
(2000)
EMBO J.
, vol.19
, pp. 623-630
-
-
Goi, T.1
-
59
-
-
0028818914
-
Involvement of Ral GTPase in v-Src-induced phospholipase D activation
-
Jiang H., et al. Involvement of Ral GTPase in v-Src-induced phospholipase D activation. Nature 1995, 378:409-412.
-
(1995)
Nature
, vol.378
, pp. 409-412
-
-
Jiang, H.1
-
60
-
-
58049216316
-
RalA functions as an indispensable signal mediator for the nutrient-sensing system
-
Maehama T., et al. RalA functions as an indispensable signal mediator for the nutrient-sensing system. J. Biol. Chem. 2008, 283:35053-35059.
-
(2008)
J. Biol. Chem.
, vol.283
, pp. 35053-35059
-
-
Maehama, T.1
-
61
-
-
84859018387
-
Phospholipase D and mTORC1: nutrients are what bring them together
-
Wiczer B.M., Thomas G. Phospholipase D and mTORC1: nutrients are what bring them together. Sci. Signal. 2012, 5:pe13.
-
(2012)
Sci. Signal.
, vol.5
-
-
Wiczer, B.M.1
Thomas, G.2
-
62
-
-
0037436828
-
Phospholipase D prevents apoptosis in v-Src-transformed rat fibroblasts and MDA-MB-231 breast cancer cells
-
Zhong M., et al. Phospholipase D prevents apoptosis in v-Src-transformed rat fibroblasts and MDA-MB-231 breast cancer cells. Biochem. Biophys. Res. Commun. 2003, 302:615-619.
-
(2003)
Biochem. Biophys. Res. Commun.
, vol.302
, pp. 615-619
-
-
Zhong, M.1
-
63
-
-
13244289821
-
Alternative phospholipase D/mTOR survival signal in human breast cancer cells
-
Chen Y., et al. Alternative phospholipase D/mTOR survival signal in human breast cancer cells. Oncogene 2005, 24:672-679.
-
(2005)
Oncogene
, vol.24
, pp. 672-679
-
-
Chen, Y.1
-
64
-
-
23844465938
-
Survival signals generated by estrogen and phospholipase D in MCF-7 breast cancer cells are dependent on Myc
-
Rodrik V., et al. Survival signals generated by estrogen and phospholipase D in MCF-7 breast cancer cells are dependent on Myc. Mol. Cell. Biol. 2005, 25:7917-7925.
-
(2005)
Mol. Cell. Biol.
, vol.25
, pp. 7917-7925
-
-
Rodrik, V.1
-
65
-
-
33749337752
-
Myc stabilization in response to estrogen and phospholipase D in MCF-7 breast cancer cells
-
Rodrik V., et al. Myc stabilization in response to estrogen and phospholipase D in MCF-7 breast cancer cells. FEBS Lett. 2006, 580:5647-5652.
-
(2006)
FEBS Lett.
, vol.580
, pp. 5647-5652
-
-
Rodrik, V.1
-
66
-
-
27744539859
-
MTOR-dependent suppression of protein phosphatase 2A is critical for phospholipase D survival signals in human breast cancer cells
-
Hui L., et al. mTOR-dependent suppression of protein phosphatase 2A is critical for phospholipase D survival signals in human breast cancer cells. J. Biol. Chem. 2005, 280:35829-35835.
-
(2005)
J. Biol. Chem.
, vol.280
, pp. 35829-35835
-
-
Hui, L.1
-
67
-
-
33744943819
-
Phospholipase D couples survival and migration signals in stress response of human cancer cells
-
Zheng Y., et al. Phospholipase D couples survival and migration signals in stress response of human cancer cells. J. Biol. Chem. 2006, 281:15862-15868.
-
(2006)
J. Biol. Chem.
, vol.281
, pp. 15862-15868
-
-
Zheng, Y.1
-
68
-
-
36048979906
-
Phospholipase D provides a survival signal in human cancer cells with activated H-Ras or K-Ras
-
Shi M., et al. Phospholipase D provides a survival signal in human cancer cells with activated H-Ras or K-Ras. Cancer Lett. 2007, 258:268-275.
-
(2007)
Cancer Lett.
, vol.258
, pp. 268-275
-
-
Shi, M.1
-
69
-
-
48249084606
-
Honokiol suppresses survival signals mediated by Ras-dependent phospholipase D activity in human cancer cells
-
Garcia A., et al. Honokiol suppresses survival signals mediated by Ras-dependent phospholipase D activity in human cancer cells. Clin. Cancer Res. 2008, 14:4267-4274.
-
(2008)
Clin. Cancer Res.
, vol.14
, pp. 4267-4274
-
-
Garcia, A.1
-
70
-
-
34447256138
-
Honokiol, a natural biphenyl, inhibits in vitro and in vivo growth of breast cancer through induction of apoptosis and cell cycle arrest
-
Wolf I., et al. Honokiol, a natural biphenyl, inhibits in vitro and in vivo growth of breast cancer through induction of apoptosis and cell cycle arrest. Int. J. Oncol. 2007, 30:1529-1537.
-
(2007)
Int. J. Oncol.
, vol.30
, pp. 1529-1537
-
-
Wolf, I.1
-
71
-
-
77956730942
-
Design, synthesis, and biological evaluation of halogenated N-(2-(4-oxo-1-phenyl-1,3,8-triazaspiro[4.5]decan-8-yl)ethyl)benzamides: discovery of an isoform-selective small molecule phospholipase D2 inhibitor
-
Lavieri R.R., et al. Design, synthesis, and biological evaluation of halogenated N-(2-(4-oxo-1-phenyl-1,3,8-triazaspiro[4.5]decan-8-yl)ethyl)benzamides: discovery of an isoform-selective small molecule phospholipase D2 inhibitor. J. Med. Chem. 2010, 53:6706-6719.
-
(2010)
J. Med. Chem.
, vol.53
, pp. 6706-6719
-
-
Lavieri, R.R.1
-
72
-
-
61849108279
-
Design and synthesis of isoform-selective phospholipase D (PLD) inhibitors. Part I: Impact of alternative halogenated privileged structures for PLD1 specificity
-
Lewis J.A., et al. Design and synthesis of isoform-selective phospholipase D (PLD) inhibitors. Part I: Impact of alternative halogenated privileged structures for PLD1 specificity. Bioorg. Med. Chem. Lett. 2009, 19:1916-1920.
-
(2009)
Bioorg. Med. Chem. Lett.
, vol.19
, pp. 1916-1920
-
-
Lewis, J.A.1
-
73
-
-
63149128774
-
Design and synthesis of isoform-selective phospholipase D (PLD) inhibitors. Part II. Identification of the 1,3,8-triazaspiro[4,5]decan-4-one privileged structure that engenders PLD2 selectivity
-
Lavieri R., et al. Design and synthesis of isoform-selective phospholipase D (PLD) inhibitors. Part II. Identification of the 1,3,8-triazaspiro[4,5]decan-4-one privileged structure that engenders PLD2 selectivity. Bioorg. Med. Chem. Lett. 2009, 19:2240-2243.
-
(2009)
Bioorg. Med. Chem. Lett.
, vol.19
, pp. 2240-2243
-
-
Lavieri, R.1
-
74
-
-
34748912615
-
Fatty acid synthase and the lipogenic phenotype in cancer pathogenesis
-
Menendez J.A., Lupu R. Fatty acid synthase and the lipogenic phenotype in cancer pathogenesis. Nat. Rev. Cancer 2007, 7:763-777.
-
(2007)
Nat. Rev. Cancer
, vol.7
, pp. 763-777
-
-
Menendez, J.A.1
Lupu, R.2
|