-
1
-
-
69249230769
-
Mammalian cell-cycle regulation: several Cdks, numerous cyclins and diverse compensatory mechanisms
-
Satyanarayana A, Kaldis P, (2009) Mammalian cell-cycle regulation: several Cdks, numerous cyclins and diverse compensatory mechanisms. Oncogene 28: 2925-2939.
-
(2009)
Oncogene
, vol.28
, pp. 2925-2939
-
-
Satyanarayana, A.1
Kaldis, P.2
-
2
-
-
60749109846
-
Cell cycle, CDKs and cancer: a changing paradigm
-
Malumbres M, Barbacid M, (2009) Cell cycle, CDKs and cancer: a changing paradigm. Nat Rev Cancer 9: 153-166.
-
(2009)
Nat Rev Cancer
, vol.9
, pp. 153-166
-
-
Malumbres, M.1
Barbacid, M.2
-
3
-
-
34250865564
-
CDC25 phosphatases in cancer cells: key players? Good targets
-
Boutros R, Lobjois V, Ducommun B, (2007) CDC25 phosphatases in cancer cells: key players? Good targets? Nat Rev Cancer 7: 495-507.
-
(2007)
Nat Rev Cancer
, vol.7
, pp. 495-507
-
-
Boutros, R.1
Lobjois, V.2
Ducommun, B.3
-
5
-
-
0026319225
-
Specific activation of cdc25 tyrosine phosphatases by B-type cyclins: evidence for multiple roles of mitotic cyclins
-
Galaktionov K, Beach D, (1991) Specific activation of cdc25 tyrosine phosphatases by B-type cyclins: evidence for multiple roles of mitotic cyclins. Cell 67: 1181-1194.
-
(1991)
Cell
, vol.67
, pp. 1181-1194
-
-
Galaktionov, K.1
Beach, D.2
-
6
-
-
0026234297
-
An additional homolog of the fission yeast cdc25+ gene occurs in humans and is highly expressed in some cancer cells
-
Nagata A, Igarashi M, Jinno S, Suto K, Okayama H, (1991) An additional homolog of the fission yeast cdc25+ gene occurs in humans and is highly expressed in some cancer cells. New Biol 3: 959-968.
-
(1991)
New Biol
, vol.3
, pp. 959-968
-
-
Nagata, A.1
Igarashi, M.2
Jinno, S.3
Suto, K.4
Okayama, H.5
-
7
-
-
34547107624
-
Hemizygous disruption of Cdc25A inhibits cellular transformation and mammary tumorigenesis in mice
-
Ray D, Terao Y, Nimbalkar D, Hirai H, Osmundson EC, et al. (2007) Hemizygous disruption of Cdc25A inhibits cellular transformation and mammary tumorigenesis in mice. Cancer Res 67: 6605-6611.
-
(2007)
Cancer Res
, vol.67
, pp. 6605-6611
-
-
Ray, D.1
Terao, Y.2
Nimbalkar, D.3
Hirai, H.4
Osmundson, E.C.5
-
8
-
-
0036544855
-
Cdc25b phosphatase is required for resumption of meiosis during oocyte maturation
-
Lincoln AJ, Wickramasinghe D, Stein P, Schultz RM, Palko ME, et al. (2002) Cdc25b phosphatase is required for resumption of meiosis during oocyte maturation. Nat Genet 30: 446-449.
-
(2002)
Nat Genet
, vol.30
, pp. 446-449
-
-
Lincoln, A.J.1
Wickramasinghe, D.2
Stein, P.3
Schultz, R.M.4
Palko, M.E.5
-
9
-
-
0034997233
-
Absence of apparent phenotype in mice lacking Cdc25C protein phosphatase
-
Chen MS, Hurov J, White LS, Woodford-Thomas T, Piwnica-Worms H, (2001) Absence of apparent phenotype in mice lacking Cdc25C protein phosphatase. Mol Cell Biol 21: 3853-3861.
-
(2001)
Mol Cell Biol
, vol.21
, pp. 3853-3861
-
-
Chen, M.S.1
Hurov, J.2
White, L.S.3
Woodford-Thomas, T.4
Piwnica-Worms, H.5
-
10
-
-
0038446759
-
Functional cdc25C dual-specificity phosphatase is required for S-phase entry in human cells
-
Turowski P, Franckhauser C, Morris MC, Vaglio P, Fernandez A, et al. (2003) Functional cdc25C dual-specificity phosphatase is required for S-phase entry in human cells. Mol Biol Cell 14: 2984-2998.
-
(2003)
Mol Biol Cell
, vol.14
, pp. 2984-2998
-
-
Turowski, P.1
Franckhauser, C.2
Morris, M.C.3
Vaglio, P.4
Fernandez, A.5
-
11
-
-
60549096658
-
In vivo roles of CDC25 phosphatases: biological insight into the anti-cancer therapeutic targets
-
Kiyokawa H, Ray D, (2008) In vivo roles of CDC25 phosphatases: biological insight into the anti-cancer therapeutic targets. Anticancer Agents Med Chem 8: 832-836.
-
(2008)
Anticancer Agents Med Chem
, vol.8
, pp. 832-836
-
-
Kiyokawa, H.1
Ray, D.2
-
12
-
-
43049116427
-
Differential phosphorylation of Cdc25C phosphatase in mitosis
-
Bonnet J, Mayonove P, Morris MC, (2008) Differential phosphorylation of Cdc25C phosphatase in mitosis. Biochem Biophys Res Commun 370: 483-488.
-
(2008)
Biochem Biophys Res Commun
, vol.370
, pp. 483-488
-
-
Bonnet, J.1
Mayonove, P.2
Morris, M.C.3
-
13
-
-
34447644226
-
The G2/M checkpoint phosphatase cdc25C is located within centrosomes
-
Busch C, Barton O, Morgenstern E, Götz C, Günther J, et al. (2007) The G2/M checkpoint phosphatase cdc25C is located within centrosomes. Int J Biochem Cell Biol 39: 1707-1713.
-
(2007)
Int J Biochem Cell Biol
, vol.39
, pp. 1707-1713
-
-
Busch, C.1
Barton, O.2
Morgenstern, E.3
Götz, C.4
Günther, J.5
-
14
-
-
0034112516
-
The role of cdc25 phosphatases in cell cycle checkpoints
-
Hoffmann I, (2000) The role of cdc25 phosphatases in cell cycle checkpoints. Protoplasma 211: 8-11.
-
(2000)
Protoplasma
, vol.211
, pp. 8-11
-
-
Hoffmann, I.1
-
15
-
-
0037034936
-
Cdc25C interacts with PCNA at G2/M transition
-
Kawabe T, Suganuma M, Ando T, Kimura M, Hori H, et al. (2002) Cdc25C interacts with PCNA at G2/M transition. Oncogene 21: 1717-1726.
-
(2002)
Oncogene
, vol.21
, pp. 1717-1726
-
-
Kawabe, T.1
Suganuma, M.2
Ando, T.3
Kimura, M.4
Hori, H.5
-
16
-
-
13244256828
-
Regulation of Cdc25C activity during the meiotic G2/M transition
-
Perdiguero E, Nebreda AR, (2004) Regulation of Cdc25C activity during the meiotic G2/M transition. Cell Cycle 3: 733-737.
-
(2004)
Cell Cycle
, vol.3
, pp. 733-737
-
-
Perdiguero, E.1
Nebreda, A.R.2
-
17
-
-
33947322004
-
Regulation of Cdc25C by ERK-MAP kinases during the G2/M transition
-
Wang R, He G, Nelman-Gonzalez M, Ashorn CL, Gallick GE, et al. (2007) Regulation of Cdc25C by ERK-MAP kinases during the G2/M transition. Cell 128: 1119-1132.
-
(2007)
Cell
, vol.128
, pp. 1119-1132
-
-
Wang, R.1
He, G.2
Nelman-Gonzalez, M.3
Ashorn, C.L.4
Gallick, G.E.5
-
18
-
-
0032484084
-
Linkage of ATM to cell cycle regulation by the Chk2 protein kinase
-
Matsuoka S, Huang M, Elledge SJ, (1998) Linkage of ATM to cell cycle regulation by the Chk2 protein kinase. Science 282: 1893-1897.
-
(1998)
Science
, vol.282
, pp. 1893-1897
-
-
Matsuoka, S.1
Huang, M.2
Elledge, S.J.3
-
19
-
-
0030611095
-
Mitotic and G2 checkpoint control: regulation of 14-3-3 protein binding by phosphorylation of Cdc25C on serine-216
-
Peng CY, Graves PR, Thoma RS, Wu Z, Shaw AS, et al. (1997) Mitotic and G2 checkpoint control: regulation of 14-3-3 protein binding by phosphorylation of Cdc25C on serine-216. Science 277: 1501-1505.
-
(1997)
Science
, vol.277
, pp. 1501-1505
-
-
Peng, C.Y.1
Graves, P.R.2
Thoma, R.S.3
Wu, Z.4
Shaw, A.S.5
-
20
-
-
0030867582
-
Conservation of the Chk1 checkpoint pathway in mammals: linkage of DNA damage to Cdk regulation through Cdc25
-
Sanchez Y, Wong C, Thoma RS, Richman R, Wu Z, et al. (1997) Conservation of the Chk1 checkpoint pathway in mammals: linkage of DNA damage to Cdk regulation through Cdc25. Science 277: 1497-1501.
-
(1997)
Science
, vol.277
, pp. 1497-1501
-
-
Sanchez, Y.1
Wong, C.2
Thoma, R.S.3
Richman, R.4
Wu, Z.5
-
21
-
-
0034053130
-
The Chk1 protein kinase and the Cdc25C regulatory pathways are targets of the anticancer agent UCN-01
-
Graves PR, Yu L, Schwarz JK, Gales J, Sausville EA, et al. (2000) The Chk1 protein kinase and the Cdc25C regulatory pathways are targets of the anticancer agent UCN-01. J Biol Chem 275: 5600-5605.
-
(2000)
J Biol Chem
, vol.275
, pp. 5600-5605
-
-
Graves, P.R.1
Yu, L.2
Schwarz, J.K.3
Gales, J.4
Sausville, E.A.5
-
22
-
-
0038418869
-
Chk1 and Chk2 kinases in checkpoint control and cancer
-
Bartek J, Lukas J, (2003) Chk1 and Chk2 kinases in checkpoint control and cancer. Cancer Cell 3: 421-429.
-
(2003)
Cancer Cell
, vol.3
, pp. 421-429
-
-
Bartek, J.1
Lukas, J.2
-
23
-
-
0032190082
-
Replication checkpoint requires phosphorylation of the phosphatase Cdc25 by Cds1 or Chk1
-
Zeng Y, Forbes KC, Wu Z, Moreno S, Piwnica-Worms H, et al. (1998) Replication checkpoint requires phosphorylation of the phosphatase Cdc25 by Cds1 or Chk1. Nature 395: 507-510.
-
(1998)
Nature
, vol.395
, pp. 507-510
-
-
Zeng, Y.1
Forbes, K.C.2
Wu, Z.3
Moreno, S.4
Piwnica-Worms, H.5
-
24
-
-
0035235736
-
Mitotic kinases as regulators of cell division and its checkpoints
-
Nigg EA, (2001) Mitotic kinases as regulators of cell division and its checkpoints. Nat Rev Mol Cell Biol 2: 21-32.
-
(2001)
Nat Rev Mol Cell Biol
, vol.2
, pp. 21-32
-
-
Nigg, E.A.1
-
25
-
-
27644480747
-
Increased expression and activity of CDC25CPhosphatase and an alternatively spliced variant in prostate cancer
-
Ozen M, Ittmann M, (2005) Increased expression and activity of CDC25CPhosphatase and an alternatively spliced variant in prostate cancer. Clin Cancer Res 11: 4701-4706.
-
(2005)
Clin Cancer Res
, vol.11
, pp. 4701-4706
-
-
Ozen, M.1
Ittmann, M.2
-
26
-
-
0032489533
-
Expression of human prostatic acid phosphatase correlates with androgen-stimulated cell proliferation in prostate cancer cell lines
-
Lin MF, Meng TC, Rao PS, Chang C, Schonthal AH, et al. (1998) Expression of human prostatic acid phosphatase correlates with androgen-stimulated cell proliferation in prostate cancer cell lines. J Biol Chem 273: 5939-5947.
-
(1998)
J Biol Chem
, vol.273
, pp. 5939-5947
-
-
Lin, M.F.1
Meng, T.C.2
Rao, P.S.3
Chang, C.4
Schonthal, A.H.5
-
27
-
-
77954946655
-
Human prostatic acid phosphatase, an authentic tyrosine phosphatase, dephosphorylates ErbB-2 and regulates prostate cancer cell growth
-
Chuang TD, Chen SJ, Lin FF, Veeramani S, Kumar S, et al. (2010) Human prostatic acid phosphatase, an authentic tyrosine phosphatase, dephosphorylates ErbB-2 and regulates prostate cancer cell growth. J Biol Chem 285: 23598-23606.
-
(2010)
J Biol Chem
, vol.285
, pp. 23598-23606
-
-
Chuang, T.D.1
Chen, S.J.2
Lin, F.F.3
Veeramani, S.4
Kumar, S.5
-
28
-
-
0034785826
-
Decreased expression of cellular prostatic acid phosphatase increases tumorigenicity of human prostate cancer cells
-
Lin MF, Lee MS, Zhou XW, Andressen JC, Meng TC, et al. (2001) Decreased expression of cellular prostatic acid phosphatase increases tumorigenicity of human prostate cancer cells. J Urol 166: 1943-1950.
-
(2001)
J Urol
, vol.166
, pp. 1943-1950
-
-
Lin, M.F.1
Lee, M.S.2
Zhou, X.W.3
Andressen, J.C.4
Meng, T.C.5
-
29
-
-
0026760922
-
Expression of human prostatic acid phosphatase activity and the growth of prostate carcinoma cells
-
Lin MF, DaVolio J, Garcia-Arenas R, (1992) Expression of human prostatic acid phosphatase activity and the growth of prostate carcinoma cells. Cancer Res 52: 4600-4607.
-
(1992)
Cancer Res
, vol.52
, pp. 4600-4607
-
-
Lin, M.F.1
DaVolio, J.2
Garcia-Arenas, R.3
-
30
-
-
29144502951
-
Cellular prostatic acid phosphatase: a protein tyrosine phosphatase involved in androgen-independent proliferation of prostate cancer
-
Veeramani S, Yuan TC, Chen SJ, Lin FF, Petersen JE, et al. (2005) Cellular prostatic acid phosphatase: a protein tyrosine phosphatase involved in androgen-independent proliferation of prostate cancer. Endocr Relat Cancer 12: 805-822.
-
(2005)
Endocr Relat Cancer
, vol.12
, pp. 805-822
-
-
Veeramani, S.1
Yuan, T.C.2
Chen, S.J.3
Lin, F.F.4
Petersen, J.E.5
-
31
-
-
0032555565
-
Tyrosine phosphorylation of c-ErbB-2 is regulated by the cellular form of prostatic acid phosphatase in human prostate cancer cells
-
Meng TC, Lin MF, (1998) Tyrosine phosphorylation of c-ErbB-2 is regulated by the cellular form of prostatic acid phosphatase in human prostate cancer cells. J Biol Chem 273: 22096-22104.
-
(1998)
J Biol Chem
, vol.273
, pp. 22096-22104
-
-
Meng, T.C.1
Lin, M.F.2
-
32
-
-
2442471671
-
Tyrosine-317 of p52(Shc) mediates androgen-stimulated proliferation signals in human prostate cancer cells
-
Lee MS, Igawa T, Lin MF, (2004) Tyrosine-317 of p52(Shc) mediates androgen-stimulated proliferation signals in human prostate cancer cells. Oncogene 23: 3048-3058.
-
(2004)
Oncogene
, vol.23
, pp. 3048-3058
-
-
Lee, M.S.1
Igawa, T.2
Lin, M.F.3
-
33
-
-
0346024127
-
p66Shc protein is upregulated by steroid hormones in hormone-sensitive cancer cells and in primary prostate carcinomas
-
Lee MS, Igawa T, Chen SJ, Van Bemmel D, Lin JS, et al. (2004) p66Shc protein is upregulated by steroid hormones in hormone-sensitive cancer cells and in primary prostate carcinomas. Int J Cancer 108: 672-678.
-
(2004)
Int J Cancer
, vol.108
, pp. 672-678
-
-
Lee, M.S.1
Igawa, T.2
Chen, S.J.3
Van Bemmel, D.4
Lin, J.S.5
-
34
-
-
0020638814
-
LNCaP model of human prostatic carcinoma
-
Horoszewicz JS, Leong SS, Kawinski E, Karr JP, Rosenthal H, et al. (1983) LNCaP model of human prostatic carcinoma. Cancer Res 43: 1809-1818.
-
(1983)
Cancer Res
, vol.43
, pp. 1809-1818
-
-
Horoszewicz, J.S.1
Leong, S.S.2
Kawinski, E.3
Karr, J.P.4
Rosenthal, H.5
-
35
-
-
0031426427
-
Establishment of two human prostate cancer cell lines derived from a single bone metastasis
-
Navone NM, Olive M, Ozen M, Davis R, Troncoso P, et al. (1997) Establishment of two human prostate cancer cell lines derived from a single bone metastasis. Clin Cancer Res 3: 2493-2500.
-
(1997)
Clin Cancer Res
, vol.3
, pp. 2493-2500
-
-
Navone, N.M.1
Olive, M.2
Ozen, M.3
Davis, R.4
Troncoso, P.5
-
36
-
-
0018779369
-
Establishment and characterization of a human prostatic carcinoma cell line (PC-3)
-
Kaighn ME, Narayan KS, Ohnuki Y, Lechner JF, Jones LW, (1979) Establishment and characterization of a human prostatic carcinoma cell line (PC-3). Invest Urol 17: 16-23.
-
(1979)
Invest Urol
, vol.17
, pp. 16-23
-
-
Kaighn, M.E.1
Narayan, K.S.2
Ohnuki, Y.3
Lechner, J.F.4
Jones, L.W.5
-
37
-
-
0018090233
-
Isolation of a human prostate carcinoma cell line (DU 145)
-
Stone KR, Mickey DD, Wunderli H, Mickey GH, Paulson DF, (1978) Isolation of a human prostate carcinoma cell line (DU 145). Int J Cancer 21: 274-281.
-
(1978)
Int J Cancer
, vol.21
, pp. 274-281
-
-
Stone, K.R.1
Mickey, D.D.2
Wunderli, H.3
Mickey, G.H.4
Paulson, D.F.5
-
38
-
-
0035064109
-
VCaP, a cell-based model system of human prostate cancer
-
Korenchuk S, Lehr JE, Mclean L, Lee YG, Whitney S, et al. (2001) VCaP, a cell-based model system of human prostate cancer. In Vivo 15: 163-168.
-
(2001)
In Vivo
, vol.15
, pp. 163-168
-
-
Korenchuk, S.1
Lehr, J.E.2
Mclean, L.3
Lee, Y.G.4
Whitney, S.5
-
39
-
-
34047209514
-
Prostate-derived factor as a paracrine and autocrine factor for the proliferation of androgen receptor-positive human prostate cancer cells
-
Chen SJ, Karan D, Johansson SL, Lin FF, Zeckser J, et al. (2007) Prostate-derived factor as a paracrine and autocrine factor for the proliferation of androgen receptor-positive human prostate cancer cells. Prostate 67: 557-571.
-
(2007)
Prostate
, vol.67
, pp. 557-571
-
-
Chen, S.J.1
Karan, D.2
Johansson, S.L.3
Lin, F.F.4
Zeckser, J.5
-
40
-
-
84861608177
-
Reactive oxygen species induced by p66Shc longevity protein mediate nongenomic androgen action via tyrosine phosphorylation signaling to enhance tumorigenicity of prostate cancer cells
-
Veeramani S, Chou YW, Lin FC, Muniyan S, Lin FF, et al. (2012) Reactive oxygen species induced by p66Shc longevity protein mediate nongenomic androgen action via tyrosine phosphorylation signaling to enhance tumorigenicity of prostate cancer cells. Free Radic Biol Med 53: 95-108.
-
(2012)
Free Radic Biol Med
, vol.53
, pp. 95-108
-
-
Veeramani, S.1
Chou, Y.W.2
Lin, F.C.3
Muniyan, S.4
Lin, F.F.5
-
41
-
-
0036187849
-
Establishment and characterization of androgen-independent human prostate cancer LNCaP cell model
-
Igawa T, Lin FF, Lee MS, Karan D, Batra SK, et al. (2002) Establishment and characterization of androgen-independent human prostate cancer LNCaP cell model. Prostate 50: 222-235.
-
(2002)
Prostate
, vol.50
, pp. 222-235
-
-
Igawa, T.1
Lin, F.F.2
Lee, M.S.3
Karan, D.4
Batra, S.K.5
-
42
-
-
0025786007
-
Evaluation of glucocorticoid-induced DNA fragmentation in mouse thymocytes by flow cytometry
-
Telford WG, King LE, Fraker PJ, (1991) Evaluation of glucocorticoid-induced DNA fragmentation in mouse thymocytes by flow cytometry. Cell Prolif 24: 447-459.
-
(1991)
Cell Prolif
, vol.24
, pp. 447-459
-
-
Telford, W.G.1
King, L.E.2
Fraker, P.J.3
-
43
-
-
80053130009
-
Histone deacetylase inhibitor valproic acid suppresses the growth and increases the androgen responsiveness of prostate cancer cells
-
Chou YW, Chaturvedi NK, Ouyang S, Lin FF, Kaushik D, et al. (2011) Histone deacetylase inhibitor valproic acid suppresses the growth and increases the androgen responsiveness of prostate cancer cells. Cancer Lett 311: 177-186.
-
(2011)
Cancer Lett
, vol.311
, pp. 177-186
-
-
Chou, Y.W.1
Chaturvedi, N.K.2
Ouyang, S.3
Lin, F.F.4
Kaushik, D.5
-
44
-
-
0023001625
-
Tyrosyl kinase activity is inversely related to prostatic acid phosphatase activity in two human prostate carcinoma cell lines
-
Lin MF, Lee CL, Clinton GM, (1986) Tyrosyl kinase activity is inversely related to prostatic acid phosphatase activity in two human prostate carcinoma cell lines. Mol Cell Biol 6: 4753-4757.
-
(1986)
Mol Cell Biol
, vol.6
, pp. 4753-4757
-
-
Lin, M.F.1
Lee, C.L.2
Clinton, G.M.3
-
45
-
-
0035048518
-
Differential expression of cdc25 cell-cycle-activating phosphatases in human colorectal carcinoma
-
Hernández S, Bessa X, Beà S, Hernández L, Nadal A, et al. (2001) Differential expression of cdc25 cell-cycle-activating phosphatases in human colorectal carcinoma. Lab Invest 81: 465-473.
-
(2001)
Lab Invest
, vol.81
, pp. 465-473
-
-
Hernández, S.1
Bessa, X.2
Beà, S.3
Hernández, L.4
Nadal, A.5
-
46
-
-
0041922560
-
Alteration of G2 cell cycle regulators occurs during carcinogenesis of the endometrium
-
Tsuda H, Hashiguchi Y, Inoue T, Yamamoto K, (2003) Alteration of G2 cell cycle regulators occurs during carcinogenesis of the endometrium. Oncology 65: 159-166.
-
(2003)
Oncology
, vol.65
, pp. 159-166
-
-
Tsuda, H.1
Hashiguchi, Y.2
Inoue, T.3
Yamamoto, K.4
-
47
-
-
0033768114
-
Differential responsiveness of prostatic acid phosphatase and prostate-specific antigen mRNA to androgen in prostate cancer cells
-
Lin MF, Lee MS, Garcia-Arenas R, Lin FF, (2000) Differential responsiveness of prostatic acid phosphatase and prostate-specific antigen mRNA to androgen in prostate cancer cells. Cell Biol Int 24: 681-689.
-
(2000)
Cell Biol Int
, vol.24
, pp. 681-689
-
-
Lin, M.F.1
Lee, M.S.2
Garcia-Arenas, R.3
Lin, F.F.4
-
48
-
-
0037421958
-
Overexpression of Cdc25B, an androgen receptor coactivator, in prostate cancer
-
Ngan ES, Hashimoto Y, Ma ZQ, Tsai MJ, Tsai SY, (2003) Overexpression of Cdc25B, an androgen receptor coactivator, in prostate cancer. Oncogene 22: 734-739.
-
(2003)
Oncogene
, vol.22
, pp. 734-739
-
-
Ngan, E.S.1
Hashimoto, Y.2
Ma, Z.Q.3
Tsai, M.J.4
Tsai, S.Y.5
-
49
-
-
0035171497
-
Cdc25B functions as a novel coactivator for the steroid receptors
-
Ma ZQ, Liu Z, Ngan ES, Tsai SY, (2001) Cdc25B functions as a novel coactivator for the steroid receptors. Mol Cell Biol 21: 8056-8067.
-
(2001)
Mol Cell Biol
, vol.21
, pp. 8056-8067
-
-
Ma, Z.Q.1
Liu, Z.2
Ngan, E.S.3
Tsai, S.Y.4
-
50
-
-
0141919570
-
Coordinate expression of Cdc25B and ER-alpha is frequent in low-grade endometrioid endometrial carcinoma but uncommon in high-grade endometrioid and nonendometrioid carcinomas
-
Wu W, Slomovitz BM, Celestino J, Chung L, Thornton A, et al. (2003) Coordinate expression of Cdc25B and ER-alpha is frequent in low-grade endometrioid endometrial carcinoma but uncommon in high-grade endometrioid and nonendometrioid carcinomas. Cancer Res 63: 6195-6199.
-
(2003)
Cancer Res
, vol.63
, pp. 6195-6199
-
-
Wu, W.1
Slomovitz, B.M.2
Celestino, J.3
Chung, L.4
Thornton, A.5
-
51
-
-
0034682240
-
Interaction between protein tyrosine phosphatase and protein tyrosine kinase is involved in androgen-promoted growth of human prostate cancer cells
-
Meng TC, Lee MS, Lin MF, (2000) Interaction between protein tyrosine phosphatase and protein tyrosine kinase is involved in androgen-promoted growth of human prostate cancer cells. Oncogene 19: 2664-2677.
-
(2000)
Oncogene
, vol.19
, pp. 2664-2677
-
-
Meng, T.C.1
Lee, M.S.2
Lin, M.F.3
-
52
-
-
33947322004
-
Regulation of Cdc25C by ERK-MAP kinases during the G2/M transition
-
Wang R, He G, Nelman-Gonzalez M, Ashorn CL, Gallick GE, (2007) Regulation of Cdc25C by ERK-MAP kinases during the G2/M transition. Cell 128: 1119-1132.
-
(2007)
Cell
, vol.128
, pp. 1119-1132
-
-
Wang, R.1
He, G.2
Nelman-Gonzalez, M.3
Ashorn, C.L.4
Gallick, G.E.5
-
53
-
-
33645726418
-
The dual specificity phosphatase Cdc25C is a direct target for transcriptional repression by the tumor suppressor p53
-
St Clair S, Manfredi JJ, (2006) The dual specificity phosphatase Cdc25C is a direct target for transcriptional repression by the tumor suppressor p53. Cell Cycle 5: 709-713.
-
(2006)
Cell Cycle
, vol.5
, pp. 709-713
-
-
St Clair, S.1
Manfredi, J.J.2
-
54
-
-
79251536860
-
Steroids up-regulate p66Shc longevity protein in growth regulation by inhibiting its ubiquitination
-
Kumar S, Kumar S, Rajendran M, Alam SM, Lin FF, et al. (2011) Steroids up-regulate p66Shc longevity protein in growth regulation by inhibiting its ubiquitination. PLoS One 6: e15942.
-
(2011)
PLoS One
, vol.6
-
-
Kumar, S.1
Kumar, S.2
Rajendran, M.3
Alam, S.M.4
Lin, F.F.5
-
55
-
-
50649122731
-
Mitochondrial redox signaling by p66Shc is involved in regulating androgenic growth stimulation of human prostate cancer cells
-
Veeramani S, Yuan TC, Lin FF, Lin MF, (2008) Mitochondrial redox signaling by p66Shc is involved in regulating androgenic growth stimulation of human prostate cancer cells. Oncogene 27: 5057-5068.
-
(2008)
Oncogene
, vol.27
, pp. 5057-5068
-
-
Veeramani, S.1
Yuan, T.C.2
Lin, F.F.3
Lin, M.F.4
-
56
-
-
0037133189
-
Arsenite-induced Cdc25C degradation is through the KEN-box and ubiquitin-proteasome pathway
-
Chen F, Zhang Z, Bower J, Lu Y, Leonard SS, et al. (2002) Arsenite-induced Cdc25C degradation is through the KEN-box and ubiquitin-proteasome pathway. Proc Natl Acad Sci U S A 99: 1990-1995.
-
(2002)
Proc Natl Acad Sci U S A
, vol.99
, pp. 1990-1995
-
-
Chen, F.1
Zhang, Z.2
Bower, J.3
Lu, Y.4
Leonard, S.S.5
-
57
-
-
33645716061
-
p14ARF triggers G2 arrest through ERK-mediated Cdc25C phosphorylation, ubiquitination and proteasomal degradation
-
Eymin B, Claverie P, Salon C, Brambilla C, Brambilla E, et al. (2006) p14ARF triggers G2 arrest through ERK-mediated Cdc25C phosphorylation, ubiquitination and proteasomal degradation. Cell Cycle 5: 759-765.
-
(2006)
Cell Cycle
, vol.5
, pp. 759-765
-
-
Eymin, B.1
Claverie, P.2
Salon, C.3
Brambilla, C.4
Brambilla, E.5
-
58
-
-
0038394715
-
Multiple monoubiquitination of RTKs is sufficient for their endocytosis and degradation
-
Haglund K, Sigismund S, Polo S, Szymkiewicz I, Di Fiore PP, et al. (2003) Multiple monoubiquitination of RTKs is sufficient for their endocytosis and degradation. Nat Cell Biol 5: 461-466.
-
(2003)
Nat Cell Biol
, vol.5
, pp. 461-466
-
-
Haglund, K.1
Sigismund, S.2
Polo, S.3
Szymkiewicz, I.4
Di Fiore, P.P.5
-
59
-
-
54849435425
-
Androgen-independent prostate cancer cells acquire the complete steroidogenic potential of synthesizing testosterone from cholesterol
-
Dillard PR, Lin MF, Khan SA, (2008) Androgen-independent prostate cancer cells acquire the complete steroidogenic potential of synthesizing testosterone from cholesterol. Mol Cell Endocrinol 295: 115-120.
-
(2008)
Mol Cell Endocrinol
, vol.295
, pp. 115-120
-
-
Dillard, P.R.1
Lin, M.F.2
Khan, S.A.3
|