메뉴 건너뛰기




Volumn 64, Issue , 2013, Pages 273-293

Cosolvent effects on protein stability

Author keywords

Molecular dynamics simulations; Preferential interaction; Protein folding; TMAO; Urea

Indexed keywords

METABOLISM; PROTEIN FOLDING; SOLUTIONS; UREA;

EID: 84876001560     PISSN: 0066426X     EISSN: None     Source Type: Book Series    
DOI: 10.1146/annurev-physchem-040412-110156     Document Type: Article
Times cited : (411)

References (120)
  • 1
    • 0015859467 scopus 로고
    • Principles that govern folding of protein chains
    • Anfinsen CB. 1973. Principles that govern folding of protein chains. Science 181:223-30
    • (1973) Science , vol.181 , pp. 223-230
    • Anfinsen, C.B.1
  • 2
    • 0028947257 scopus 로고
    • Funnels, pathways, and the energy landscape of protein folding: A synthesis
    • Bryngelson JD, Onuchic JN, Socci ND,Wolynes PG. 1995. Funnels, pathways, and the energy landscape of protein folding: A synthesis. Proteins 21:167-95
    • (1995) Proteins , vol.21 , pp. 167-195
    • Bryngelson, J.D.1    Onuchic, J.N.2    Socci, N.D.3    Wolynes, P.G.4
  • 6
    • 0020017199 scopus 로고
    • High-pressure effects on proteins and other biomolecules
    • Heremans K. 1982. High-pressure effects on proteins and other biomolecules. Annu. Rev. Biophys. Bioeng. 11:1-21
    • (1982) Annu. Rev. Biophys. Bioeng. , vol.11 , pp. 1-21
    • Heremans, K.1
  • 7
    • 0027310845 scopus 로고
    • The control of protein stability and association by weak interactions with water: How do solvents affect these processes?
    • Timasheff SN. 1993. The control of protein stability and association by weak interactions with water: How do solvents affect these processes? Annu. Rev. Biophys. Biomol. Struct. 22:67-97
    • (1993) Annu. Rev. Biophys. Biomol. Struct. , vol.22 , pp. 67-97
    • Timasheff, S.N.1
  • 8
    • 36849150819 scopus 로고
    • Protein stabilization: Thermodynamics of unfolding
    • Kauzmann W. 1987. Protein stabilization: thermodynamics of unfolding. Nature 325:763-64
    • (1987) Nature , vol.325 , pp. 763-764
    • Kauzmann, W.1
  • 9
    • 0035478292 scopus 로고    scopus 로고
    • Pressure provides new insights into protein folding, dynamics and structure
    • Silva JL, Foguel D, Royer CA. 2001. Pressure provides new insights into protein folding, dynamics and structure. Trends Biochem. Sci. 26:612-18
    • (2001) Trends Biochem. Sci. , vol.26 , pp. 612-618
    • Silva, J.L.1    Foguel, D.2    Royer, C.A.3
  • 10
    • 0037171140 scopus 로고    scopus 로고
    • Revisiting volume changes in pressure-induced protein unfolding
    • Royer CA. 2002. Revisiting volume changes in pressure-induced protein unfolding. Biochim. Biophys. Acta 1595:201-9
    • (2002) Biochim. Biophys. Acta , vol.1595 , pp. 201-209
    • Royer, C.A.1
  • 11
    • 0032539604 scopus 로고    scopus 로고
    • The pressure dependence of hydrophobic interactions is consistent with the observed pressure denaturation of proteins
    • HummerG,Garde S, Garcia AE,PaulaitisME,Pratt LR. 1998. The pressure dependence of hydrophobic interactions is consistent with the observed pressure denaturation of proteins. Proc. Natl. Acad. Sci. USA 95:1552-55
    • (1998) Proc. Natl. Acad. Sci. USA , vol.95 , pp. 1552-1555
    • Hummer, G.1    Garde, S.2    Garcia, A.E.3    Paulaitis, M.E.4    Pratt, L.R.5
  • 12
    • 77951232650 scopus 로고    scopus 로고
    • Studying pressure denaturation of a protein by molecular dynamics simulations
    • Sarupria S, GhoshT,Garcia AE,Garde S. 2010. Studying pressure denaturation of a protein by molecular dynamics simulations. Proteins 78:1641-51
    • (2010) Proteins , vol.78 , pp. 1641-1651
    • Sarupria, S.1    Ghosh, T.2    Garcia, A.E.3    Garde, S.4
  • 14
    • 0014952474 scopus 로고
    • Thermodynamics of protein denaturation: Effect of pressure on denaturation of ribonuclease A
    • Brandts JF, Oliveira RJ,Westort C. 1970. Thermodynamics of protein denaturation: effect of pressure on denaturation of ribonuclease A. Biochemistry 9:1038-47
    • (1970) Biochemistry , vol.9 , pp. 1038-1047
    • Brandts, J.F.1    Oliveira, R.J.2    Westort, C.3
  • 15
    • 0015236387 scopus 로고
    • Reversible pressure-temperature denaturation of chymotrypsinogen
    • Hawley SA. 1971. Reversible pressure-temperature denaturation of chymotrypsinogen. Biochemistry 10:2436-42
    • (1971) Biochemistry , vol.10 , pp. 2436-2442
    • Hawley, S.A.1
  • 16
    • 18744415073 scopus 로고    scopus 로고
    • Simulations of the pressure and temperature unfolding of an α-helical peptide
    • Paschek D, Gnanakaran S, Garcia AE. 2005. Simulations of the pressure and temperature unfolding of an α-helical peptide. Proc. Natl. Acad. Sci. USA 102:6765-70
    • (2005) Proc. Natl. Acad. Sci. USA , vol.102 , pp. 6765-6770
    • Paschek, D.1    Gnanakaran, S.2    Garcia, A.E.3
  • 17
    • 56649083699 scopus 로고    scopus 로고
    • Computing the stability diagram of the Trp-cage miniprotein
    • Paschek D, Hempel S, Garcia AE. 2008. Computing the stability diagram of the Trp-cage miniprotein. Proc. Natl. Acad. Sci. USA 105:17754-59
    • (2008) Proc. Natl. Acad. Sci. USA , vol.105 , pp. 17754-17759
    • Paschek, D.1    Hempel, S.2    Garcia, A.E.3
  • 18
    • 77953508894 scopus 로고    scopus 로고
    • Microsecond simulations of the folding/unfolding thermodynamics of the Trp-cage miniprotein
    • Day R, Paschek D, Garcia AE. 2010. Microsecond simulations of the folding/unfolding thermodynamics of the Trp-cage miniprotein. Proteins 78:1889-99
    • (2010) Proteins , vol.78 , pp. 1889-1899
    • Day, R.1    Paschek, D.2    Garcia, A.E.3
  • 20
    • 0034681955 scopus 로고    scopus 로고
    • Vapor pressure osmometry studies of osmolyte-protein interactions: Implications for the action of osmoprotectants in vivo and for the interpretation of "osmotic stress" experiments in vitro
    • Courtenay ES, Capp MW, Anderson CF, Record MT. 2000. Vapor pressure osmometry studies of osmolyte-protein interactions: implications for the action of osmoprotectants in vivo and for the interpretation of "osmotic stress" experiments in vitro. Biochemistry 39:4455-71
    • (2000) Biochemistry , vol.39 , pp. 4455-4471
    • Courtenay, E.S.1    Capp, M.W.2    Anderson, C.F.3    Record, M.T.4
  • 21
    • 46449109015 scopus 로고    scopus 로고
    • Structure and energetics of the hydrogen-bonded backbone in protein folding
    • Bolen DW, Rose G. 2008. Structure and energetics of the hydrogen-bonded backbone in protein folding. Annu. Rev. Biochem. 77:339-62
    • (2008) Annu. Rev. Biochem. , vol.77 , pp. 339-362
    • Bolen, D.W.1    Rose, G.2
  • 22
    • 0030762556 scopus 로고    scopus 로고
    • A naturally occuring protective system in urea-rich cells: Mechanism of osmolyte protection of proteins against urea denaturation
    • Wang A, Bolen DW. 1997. A naturally occuring protective system in urea-rich cells: mechanism of osmolyte protection of proteins against urea denaturation. Biochemistry 36:9101-8
    • (1997) Biochemistry , vol.36 , pp. 9101-9108
    • Wang, A.1    Bolen, D.W.2
  • 23
    • 0008863560 scopus 로고
    • Some factors in the interpretation of protein denaturation
    • Kauzmann W. 1959. Some factors in the interpretation of protein denaturation. Adv. Protein Chem. 14:1-63
    • (1959) Adv. Protein Chem. , vol.14 , pp. 1-63
    • Kauzmann, W.1
  • 24
    • 0022555885 scopus 로고
    • Determination and analysis of urea and guanidine hydrochloride denaturation curves
    • Pace C. 1986. Determination and analysis of urea and guanidine hydrochloride denaturation curves. Methods Enzymol. 131:266-80
    • (1986) Methods Enzymol. , vol.131 , pp. 266-280
    • Pace, C.1
  • 25
    • 20544461199 scopus 로고    scopus 로고
    • Thermodynamics of protein interactions with urea and guanidinium chloride
    • Makhatadze GI. 1999. Thermodynamics of protein interactions with urea and guanidinium chloride. J. Phys. Chem. B 103:4781-85
    • (1999) J. Phys. Chem. B , vol.103 , pp. 4781-4785
    • Makhatadze, G.I.1
  • 26
    • 33749541104 scopus 로고
    • Structural approach to solvent power of water for hydrocarbons: Urea as a structure breaker
    • Frank HS, Franks F. 1968. Structural approach to solvent power of water for hydrocarbons: urea as a structure breaker. J. Chem. Phys. 48:4746-57
    • (1968) J. Chem. Phys. , vol.48 , pp. 4746-4757
    • Frank, H.S.1    Franks, F.2
  • 27
    • 0025370815 scopus 로고
    • Dominant forces in protein folding
    • Dill KA. 1990. Dominant forces in protein folding. Biochemistry 29:7133-55
    • (1990) Biochemistry , vol.29 , pp. 7133-7155
    • Dill, K.A.1
  • 28
    • 0141560450 scopus 로고    scopus 로고
    • Impact of urea on water structure: A clue to its properties as a denaturant?
    • Soper AK, Castner EW, Luzar A. 2003. Impact of urea on water structure: A clue to its properties as a denaturant? Biophys. Chem. 105:649-66
    • (2003) Biophys. Chem. , vol.105 , pp. 649-666
    • Soper, A.K.1    Castner, E.W.2    Luzar, A.3
  • 30
    • 33845488514 scopus 로고    scopus 로고
    • Effect of urea on the structural dynamics of water
    • Rezus YLA, Bakker HJ. 2006. Effect of urea on the structural dynamics of water. Proc. Natl. Acad. Sci. USA 103:18417-20
    • (2006) Proc. Natl. Acad. Sci. USA , vol.103 , pp. 18417-18420
    • Yla, R.1    Bakker, H.J.2
  • 31
    • 34249806047 scopus 로고    scopus 로고
    • Preferential solvation in urea solutions at different concentrations: Properties from simulation studies
    • Kokubo H, Pettitt BM. 2007. Preferential solvation in urea solutions at different concentrations: properties from simulation studies. J. Phys. Chem. B 111:5233-42
    • (2007) J. Phys. Chem. B , vol.111 , pp. 5233-5242
    • Kokubo, H.1    Pettitt, B.M.2
  • 32
    • 34250723399 scopus 로고    scopus 로고
    • Aqueous urea solutions: Structure, energetics, and urea aggregation
    • Stumpe MC, Grubmuller H. 2007. Aqueous urea solutions: structure, energetics, and urea aggregation. J. Phys. Chem. B 111:6220-28
    • (2007) J. Phys. Chem. B , vol.111 , pp. 6220-6228
    • Stumpe, M.C.1    Grubmuller, H.2
  • 33
    • 55949131241 scopus 로고    scopus 로고
    • Urea denaturation by stronger dispersion interactions with proteins than water implies a two-stage unfolding
    • Hua L, Zhou RH, Thirumalai D, Berne BJ. 2008. Urea denaturation by stronger dispersion interactions with proteins than water implies a two-stage unfolding. Proc. Natl. Acad. Sci. USA 105:16928-33
    • (2008) Proc. Natl. Acad. Sci. USA , vol.105 , pp. 16928-16933
    • Hua, L.1    Zhou, R.H.2    Thirumalai, D.3    Berne, B.J.4
  • 34
    • 79959992889 scopus 로고    scopus 로고
    • Can simulations quantitatively predict peptide transfer free energies to urea solutions? Thermodynamic concepts and force field limitations
    • Horinek D, Netz RR. 2011. Can simulations quantitatively predict peptide transfer free energies to urea solutions? Thermodynamic concepts and force field limitations. J. Phys. Chem. A 115:6125-36.
    • (2011) J. Phys. Chem. A , vol.115 , pp. 6125-6136
    • Horinek, D.1    Netz, R.R.2
  • 35
    • 27244437952 scopus 로고    scopus 로고
    • Predicting the energetics of osmolyte-induced protein folding/unfolding
    • Auton M, Bolen DW. 2005. Predicting the energetics of osmolyte-induced protein folding/unfolding. Proc. Natl. Acad. Sci. USA 102:15065-68
    • (2005) Proc. Natl. Acad. Sci. USA , vol.102 , pp. 15065-15068
    • Auton, M.1    Bolen, D.W.2
  • 36
    • 37549043949 scopus 로고    scopus 로고
    • Interaction of urea with amino acids: Implications for urea-induced protein denaturation
    • Stumpe MC, Grubmuller H. 2007. Interaction of urea with amino acids: implications for urea-induced protein denaturation. J. Am. Chem. Soc. 129:16126-31
    • (2007) J. Am. Chem. Soc. , vol.129 , pp. 16126-16131
    • Stumpe, M.C.1    Grubmuller, H.2
  • 37
    • 77956142105 scopus 로고    scopus 로고
    • Urea interactions with protein groups: A volumetric study. amino acids
    • Lee S, Shek YL, Chalikian TV. 2010. Urea interactions with protein groups: A volumetric study. amino acids. Biopolymers 93:866-79
    • (2010) Biopolymers , vol.93 , pp. 866-879
    • Lee, S.1    Shek, Y.L.2    Chalikian, T.V.3
  • 38
    • 80054717093 scopus 로고    scopus 로고
    • Quantifying why urea is a protein denaturant, whereas glycine betaine is a protein stabilizer
    • Guinn EJ, Pegram LM, Capp MW, Pollock MN, Record MT. 2011. Quantifying why urea is a protein denaturant, whereas glycine betaine is a protein stabilizer. Proc. Natl. Acad. Sci. USA 108:16932-37
    • (2011) Proc. Natl. Acad. Sci. USA , vol.108 , pp. 16932-16937
    • Guinn, E.J.1    Pegram, L.M.2    Capp, M.W.3    Pollock, M.N.4    Record, M.T.5
  • 39
    • 55949132427 scopus 로고    scopus 로고
    • Protein denaturation by urea: Slash and bond
    • Rossky PJ. 2008. Protein denaturation by urea: slash and bond. Proc. Natl. Acad. Sci. USA 105:16825-26
    • (2008) Proc. Natl. Acad. Sci. USA , vol.105 , pp. 16825-16826
    • Rossky, P.J.1
  • 40
    • 0032554078 scopus 로고    scopus 로고
    • Hydrophobic interactions in aqueous urea solutions with implications for the mechanism of protein denaturation
    • Wallqvist A, Covell DG, Thirumalai D. 1998. Hydrophobic interactions in aqueous urea solutions with implications for the mechanism of protein denaturation. J. Am. Chem. Soc. 120:427-28
    • (1998) J. Am. Chem. Soc. , vol.120 , pp. 427-428
    • Wallqvist, A.1    Covell, D.G.2    Thirumalai, D.3
  • 41
    • 0036891682 scopus 로고    scopus 로고
    • Origins of protein denatured state compactness and hydrophobic clustering in aqueous urea: Inferences from nonpolar potentials of mean force
    • Shimizu S, Chan HS. 2002. Origins of protein denatured state compactness and hydrophobic clustering in aqueous urea: inferences from nonpolar potentials of mean force. Proteins Struct. Funct. Genet. 49:560- 66
    • (2002) Proteins Struct. Funct. Genet. , vol.49 , pp. 560-566
    • Shimizu, S.1    Chan, H.S.2
  • 42
    • 12444288031 scopus 로고    scopus 로고
    • Methane clustering in explicit water: Effect of urea on hydrophobic interactions
    • Oostenbrink C, van Gunsteren WF. 2005. Methane clustering in explicit water: effect of urea on hydrophobic interactions. Phys. Chem. Chem. Phys. 7:53-58
    • (2005) Phys. Chem. Chem. Phys. , vol.7 , pp. 53-58
    • Oostenbrink, C.1    Van Gunsteren, W.F.2
  • 43
    • 33646163934 scopus 로고    scopus 로고
    • Does urea denature hydrophobic interactions?
    • Lee ME, van der Vegt NFA. 2006. Does urea denature hydrophobic interactions? J. Am. Chem. Soc. 128:4948-49
    • (2006) J. Am. Chem. Soc. , vol.128 , pp. 4948-4949
    • Lee, M.E.1    Van Der Vegt, N.F.A.2
  • 44
    • 34250869055 scopus 로고    scopus 로고
    • Interactions between hydrophobic and ionic solutes in aqueous guanidinium chloride and urea solutions: Lessons for protein denaturation mechanism
    • O'BrienEP,DimaRI,BrooksB,Thirumalai D. 2007. Interactions between hydrophobic and ionic solutes in aqueous guanidinium chloride and urea solutions: lessons for protein denaturation mechanism. J. Am. Chem. Soc. 129:7346-53
    • (2007) J. Am. Chem. Soc. , vol.129 , pp. 7346-7353
    • O'Brien, E.P.1    Dima, R.I.2    Brooks, B.3    Thirumalai, D.4
  • 45
    • 51749109783 scopus 로고    scopus 로고
    • Chemical denaturants inhibit the onset of dewetting
    • England JL, Pande VS, Haran G. 2008. Chemical denaturants inhibit the onset of dewetting. J. Am. Chem. Soc. 130:11854-55
    • (2008) J. Am. Chem. Soc. , vol.130 , pp. 11854-11855
    • England, J.L.1    Pande, V.S.2    Haran, G.3
  • 46
    • 63149153986 scopus 로고    scopus 로고
    • Urea's action on hydrophobic interactions
    • Zangi R, Zhou RH, Berne BJ. 2009. Urea's action on hydrophobic interactions. J. Am. Chem. Soc. 131:1535-41
    • (2009) J. Am. Chem. Soc. , vol.131 , pp. 1535-1541
    • Zangi, R.1    Zhou, R.H.2    Berne, B.J.3
  • 47
    • 74949083228 scopus 로고    scopus 로고
    • Effects of cosolvents on the hydration of carbon nanotubes
    • Yang LJ, Gao YQ. 2010. Effects of cosolvents on the hydration of carbon nanotubes. J. Am. Chem. Soc. 132:842-48
    • (2010) J. Am. Chem. Soc. , vol.132 , pp. 842-848
    • Yang, L.J.1    Gao, Y.Q.2
  • 48
    • 77951567662 scopus 로고    scopus 로고
    • Urea-induced drying of carbon nanotubes suggests existence of a dry globule-like transient state during chemical denaturation of proteins
    • Das P, Zhou RH. 2010. Urea-induced drying of carbon nanotubes suggests existence of a dry globule-like transient state during chemical denaturation of proteins. J. Phys. Chem. B 114:5427-30
    • (2010) J. Phys. Chem. B , vol.114 , pp. 5427-5430
    • Das, P.1    Zhou, R.H.2
  • 49
    • 0030939289 scopus 로고    scopus 로고
    • Molecular dynamics simulations of the unfolding of barnase in water and 8 m aqueous urea
    • Tirado-Rives J, Orozco M, Jorgensen WL. 1997. Molecular dynamics simulations of the unfolding of barnase in water and 8 m aqueous urea. Biochemistry 36:7313-29
    • (1997) Biochemistry , vol.36 , pp. 7313-7329
    • Tirado-Rives, J.1    Orozco, M.2    Jorgensen, W.L.3
  • 50
    • 0038370011 scopus 로고    scopus 로고
    • The molecular basis for the chemical denaturation of proteins by urea
    • Bennion BJ, Daggett V. 2003. The molecular basis for the chemical denaturation of proteins by urea. Proc. Natl. Acad. Sci. USA 100:5142-47
    • (2003) Proc. Natl. Acad. Sci. USA , vol.100 , pp. 5142-5147
    • Bennion, B.J.1    Daggett, V.2
  • 51
    • 23244452958 scopus 로고    scopus 로고
    • Effect of urea on peptide conformation in water: Molecular dynamics and experimental characterization
    • Caballero-Herrera A, Nordstrand K, BerndtKD,NilssonL. 2005. Effect of urea on peptide conformation in water: molecular dynamics and experimental characterization. Biophys. J. 89:842-57
    • (2005) Biophys. J. , vol.89 , pp. 842-857
    • Caballero-Herrera, A.1    Nordstrand, K.2    Berndt, K.D.3    Nilsson, L.4
  • 52
    • 57149110439 scopus 로고    scopus 로고
    • Polar or apolar: The role of polarity for urea-induced protein denaturation
    • Stumpe MC, Grubmuller H. 2008. Polar or apolar: The role of polarity for urea-induced protein denaturation. PLoS Comput. Biol. 4:e1000221
    • (2008) PLoS Comput. Biol. , vol.4
    • Stumpe, M.C.1    Grubmuller, H.2
  • 53
    • 11344259541 scopus 로고    scopus 로고
    • Characterization of the denaturation of human α- Lactalbumin in urea by molecular dynamics simulations
    • Smith LJ, Jones RM, van Gunsteren WF. 2005. Characterization of the denaturation of human α- lactalbumin in urea by molecular dynamics simulations. Proteins Struct. Funct. Genet. 58:439-49
    • (2005) Proteins Struct. Funct. Genet. , vol.58 , pp. 439-449
    • Smith, L.J.1    Jones, R.M.2    Van Gunsteren, W.F.3
  • 54
    • 0037343333 scopus 로고    scopus 로고
    • The dominant interaction between peptide and urea is electrostatic in nature: A molecular dynamics simulation study
    • Tobi D, ElberR,Thirumalai D. 2003. The dominant interaction between peptide and urea is electrostatic in nature: A molecular dynamics simulation study. Biopolymers 68:359-69
    • (2003) Biopolymers , vol.68 , pp. 359-369
    • Tobi, D.1    Elber, R.2    Thirumalai, D.3
  • 55
  • 56
    • 77749285768 scopus 로고    scopus 로고
    • Equilibrium study of protein denaturation by urea
    • Canchi DR, Paschek D, García A. 2010. Equilibrium study of protein denaturation by urea. J. Am. Chem. Soc. 132:2338-44
    • (2010) J. Am. Chem. Soc. , vol.132 , pp. 2338-2344
    • Canchi, D.R.1    Paschek, D.2    García, A.3
  • 57
    • 79953858621 scopus 로고    scopus 로고
    • Backbone and side-chain contributions in protein denaturation by urea
    • Canchi DR, García AE. 2011. Backbone and side-chain contributions in protein denaturation by urea. Biophys. J. 100:1526-33
    • (2011) Biophys. J. , vol.100 , pp. 1526-1533
    • Canchi, D.R.1    García, A.E.2
  • 58
    • 0037997632 scopus 로고    scopus 로고
    • A Kirkwood-Buff derived force field for mixtures of urea and water
    • Weerasinghe S, Smith PE. 2003. A Kirkwood-Buff derived force field for mixtures of urea and water. J. Phys. Chem. B 107:3891-98
    • (2003) J. Phys. Chem. B , vol.107 , pp. 3891-3898
    • Weerasinghe, S.1    Smith, P.E.2
  • 59
    • 0346780365 scopus 로고    scopus 로고
    • A Kirkwood-Buff derived force field for sodium chloride in water
    • Weerasinghe S, Smith PE. 2003. A Kirkwood-Buff derived force field for sodium chloride in water. J. Chem. Phys. 119:11342-49
    • (2003) J. Chem. Phys. , vol.119 , pp. 11342-11349
    • Weerasinghe, S.1    Smith, P.E.2
  • 60
    • 4043160479 scopus 로고    scopus 로고
    • A Kirkwood-Buff derived force field for the simulation of aqueous guanidinium chloride solutions
    • Weerasinghe S, Smith PE. 2004. A Kirkwood-Buff derived force field for the simulation of aqueous guanidinium chloride solutions. J. Chem. Phys. 121:2180-86
    • (2004) J. Chem. Phys. , vol.121 , pp. 2180-2186
    • Weerasinghe, S.1    Smith, P.E.2
  • 61
    • 23844511595 scopus 로고    scopus 로고
    • AKirkwood-Buff derived force field for methanol and aqueous methanol solutions
    • Weerasinghe S, Smith PE. 2005.AKirkwood-Buff derived force field for methanol and aqueous methanol solutions. J. Phys. Chem. B 109:15080-86
    • (2005) J. Phys. Chem. B , vol.109 , pp. 15080-15086
    • Weerasinghe, S.1    Smith, P.E.2
  • 62
    • 33751132430 scopus 로고
    • The statistical mechanical theory of solutions. 1
    • Kirkwood JG, Buff FP. 1951. The statistical mechanical theory of solutions. 1. J. Chem. Phys. 19:774-77
    • (1951) J. Chem. Phys. , vol.19 , pp. 774-777
    • Kirkwood, J.G.1    Buff, F.P.2
  • 64
    • 85005481062 scopus 로고
    • Urea: Potential functions, log p, and free energy of hydration
    • Duffy E, Severance D, JorgensonW. 1993. Urea: potential functions, log p, and free energy of hydration. Isr. J. Chem. 33:323
    • (1993) Isr. J. Chem. , vol.33 , pp. 323
    • Duffy, E.1    Severance, D.2    Jorgenson, W.3
  • 65
    • 84876012908 scopus 로고    scopus 로고
    • Isothermal unfolding of globular proteins in aqueous urea solutions
    • Tanford C. 2004. Isothermal unfolding of globular proteins in aqueous urea solutions. J. Am. Chem. Soc. 126:1958-61
    • (2004) J. Am. Chem. Soc. , vol.126 , pp. 1958-1961
    • Tanford, C.1
  • 66
    • 34848916114 scopus 로고    scopus 로고
    • Anatomy of energetic changes accompanying ureainduced protein denaturation
    • Auton M, Holthauzen LMF, Bolen DW. 2007. Anatomy of energetic changes accompanying ureainduced protein denaturation. Proc. Natl. Acad. Sci. USA 104:15317-22
    • (2007) Proc. Natl. Acad. Sci. USA , vol.104 , pp. 15317-15322
    • Auton, M.1    Lmf, H.2    Bolen, D.W.3
  • 67
    • 33846839535 scopus 로고    scopus 로고
    • Characterizing the unfolded states of proteins using single-molecule FRET spectroscopy and molecular simulations
    • Merchant KA, Best RB, Louis JM, Gopich IV, Eaton WA. 2007. Characterizing the unfolded states of proteins using single-molecule FRET spectroscopy and molecular simulations. Proc. Natl. Acad. Sci. USA 104:1528-33
    • (2007) Proc. Natl. Acad. Sci. USA , vol.104 , pp. 1528-1533
    • Merchant, K.A.1    Best, R.B.2    Louis, J.M.3    Gopich, I.V.4    Eaton, W.A.5
  • 68
    • 51649087154 scopus 로고    scopus 로고
    • Effects of denaturants and osmolytes on proteins are accurately predicted by themolecular transfer model
    • O'Brien EP, Ziv G, Haran G, Brooks BR, Thirumalai D. 2008. Effects of denaturants and osmolytes on proteins are accurately predicted by themolecular transfer model. Proc.Natl. Acad. Sci. USA 105:13403-8
    • (2008) Proc.Natl. Acad. Sci. USA , vol.105 , pp. 13403-13408
    • O'Brien, E.P.1    Ziv, G.2    Haran, G.3    Brooks, B.R.4    Thirumalai, D.5
  • 69
    • 80054991841 scopus 로고    scopus 로고
    • Effect of urea on the β-hairpin conformational ensemble and protein denaturation mechanism
    • Berteotti A, Barducci A, Parrinello M. 2011. Effect of urea on the β-hairpin conformational ensemble and protein denaturation mechanism. J. Am. Chem. Soc. 133:17200-6
    • (2011) J. Am. Chem. Soc. , vol.133 , pp. 17200-17206
    • Berteotti, A.1    Barducci, A.2    Parrinello, M.3
  • 70
    • 67749142097 scopus 로고    scopus 로고
    • Protein folding, protein collapse, and Tanford's transfer model: Lessons from single-molecule FRET
    • Ziv G, Haran G. 2009. Protein folding, protein collapse, and Tanford's transfer model: lessons from single-molecule FRET. J. Am. Chem. Soc. 131:2942-47
    • (2009) J. Am. Chem. Soc. , vol.131 , pp. 2942-2947
    • Ziv, G.1    Haran, G.2
  • 71
    • 79953759344 scopus 로고    scopus 로고
    • Role of solvation effects in protein denaturation: From thermodynamics to single molecules and back
    • England JL, Haran G. 2011. Role of solvation effects in protein denaturation: from thermodynamics to single molecules and back. Annu. Rev. Phys. Chem. 62:257-77
    • (2011) Annu. Rev. Phys. Chem. , vol.62 , pp. 257-277
    • England, J.L.1    Haran, G.2
  • 72
    • 84859266139 scopus 로고    scopus 로고
    • Small-angle X-ray scattering and single-molecule FRET spectroscopy produce highly divergent views of the low-denaturant unfolded state
    • Yoo TY, Meisburger SP, Hinshaw J, Pollack L, Haran G, et al. 2012. Small-angle X-ray scattering and single-molecule FRET spectroscopy produce highly divergent views of the low-denaturant unfolded state. J. Mol. Biol. 418:226-36
    • (2012) J. Mol. Biol. , vol.418 , pp. 226-236
    • Yoo, T.Y.1    Meisburger, S.P.2    Hinshaw, J.3    Pollack, L.4    Haran, G.5
  • 73
    • 0037162456 scopus 로고    scopus 로고
    • Protein-solvent preferential interactions, protein hydration, and the modulation of biochemical reactions by solvent components
    • Timasheff SN. 2002. Protein-solvent preferential interactions, protein hydration, and the modulation of biochemical reactions by solvent components. Proc. Natl. Acad. Sci. USA 99:9721-26
    • (2002) Proc. Natl. Acad. Sci. USA , vol.99 , pp. 9721-9726
    • Timasheff, S.N.1
  • 74
    • 0020477047 scopus 로고
    • Preferential interactions of proteins with salts in concentrated solutions
    • ArakawaT,Timasheff SN. 1982. Preferential interactions of proteins with salts in concentrated solutions. Biochemistry 21:6545-52
    • (1982) Biochemistry , vol.21 , pp. 6545-6552
    • Arakawa, T.1    Timasheff, S.N.2
  • 75
    • 0028962012 scopus 로고
    • Interpretation of preferential interaction coefficients of nonelectrolytes and of electrolyte ions in terms of a two-domain model
    • Record MT, Anderson CF. 1995. Interpretation of preferential interaction coefficients of nonelectrolytes and of electrolyte ions in terms of a two-domain model. Biophys. J. 68:786-94
    • (1995) Biophys. J. , vol.68 , pp. 786-794
    • Record, M.T.1    Anderson, C.F.2
  • 76
    • 0034635965 scopus 로고    scopus 로고
    • Osmotic stress, crowding, preferential hydration and binding: A comparison of perspectives
    • Parsegian VA, Rand RP, Rau DC. 2000. Osmotic stress, crowding, preferential hydration and binding: A comparison of perspectives. Proc. Natl. Acad. Sci. USA 97:3987-92
    • (2000) Proc. Natl. Acad. Sci. USA , vol.97 , pp. 3987-3992
    • Parsegian, V.A.1    Rand, R.P.2    Rau, D.C.3
  • 77
    • 70349099268 scopus 로고    scopus 로고
    • Molecular computations of preferential interaction coefficients of proteins
    • Shukla D, Shinde C, Trout BL. 2009. Molecular computations of preferential interaction coefficients of proteins. J. Phys. Chem. B 113:12546-54
    • (2009) J. Phys. Chem. B , vol.113 , pp. 12546-12554
    • Shukla, D.1    Shinde, C.2    Trout, B.L.3
  • 79
    • 0037032225 scopus 로고    scopus 로고
    • Smaller and faster: The 20-residue Trp-cage protein folds in 4 μs
    • Qiu LL, Pabit SA, Roitberg AE, Hagen SJ. 2002. Smaller and faster: The 20-residue Trp-cage protein folds in 4 μs. J. Am. Chem. Soc. 124:12952-53
    • (2002) J. Am. Chem. Soc. , vol.124 , pp. 12952-12953
    • Qiu, L.L.1    Pabit, S.A.2    Roitberg, A.E.3    Hagen, S.J.4
  • 80
    • 23744503388 scopus 로고    scopus 로고
    • UV-resonance Raman thermal unfolding study of Trp-cage shows that it is not a simple two-state miniprotein
    • Ahmed Z, Beta IA, Mikhonin AV, Asher SA. 2005. UV-resonance Raman thermal unfolding study of Trp-cage shows that it is not a simple two-state miniprotein. J. Am. Chem. Soc. 127:10943-50
    • (2005) J. Am. Chem. Soc. , vol.127 , pp. 10943-10950
    • Ahmed, Z.1    Beta, I.A.2    Mikhonin, A.V.3    Asher, S.A.4
  • 81
    • 28044460071 scopus 로고    scopus 로고
    • A microscopic view of miniprotein folding: Enhanced folding efficiency through formation of an intermediate
    • Neuweiler H, Doose S, Sauer M. 2005. A microscopic view of miniprotein folding: enhanced folding efficiency through formation of an intermediate. Proc. Natl. Acad. Sci. USA 102:16650-55
    • (2005) Proc. Natl. Acad. Sci. USA , vol.102 , pp. 16650-16655
    • Neuweiler, H.1    Doose, S.2    Sauer, M.3
  • 82
    • 77951243667 scopus 로고    scopus 로고
    • Thermodynamics of the Trp-cage miniprotein unfolding in urea
    • Wafer LNR, Streicher WW, Makhatadze GI. 2010. Thermodynamics of the Trp-cage miniprotein unfolding in urea. Proteins 78:1376-81
    • (2010) Proteins , vol.78 , pp. 1376-1381
    • Wafer, L.N.R.1    Streicher, W.W.2    Makhatadze, G.I.3
  • 83
    • 33947209951 scopus 로고    scopus 로고
    • Unfolding thermodynamics of Trp-cage, a 20 residue miniprotein, studied by differential scanning calorimetry and circular dichroism spectroscopy
    • StreicherWW,Makhatadze GI. 2007. Unfolding thermodynamics of Trp-cage, a 20 residue miniprotein, studied by differential scanning calorimetry and circular dichroism spectroscopy. Biochemistry 46:2876-80
    • (2007) Biochemistry , vol.46 , pp. 2876-2880
    • Streicher, W.W.1    Makhatadze, G.I.2
  • 84
    • 0029011701 scopus 로고
    • A second generation force field for the simulation of proteins, nucleic acids, and organic molecules
    • CornellWD, Cieplak P, Bayly CI, Gould IR, Merz KM Jr, et al. 1995. A second generation force field for the simulation of proteins, nucleic acids, and organic molecules. J. Am. Chem. Soc. 117:5179-97
    • (1995) J. Am. Chem. Soc. , vol.117 , pp. 5179-5197
    • Cornell, W.D.1    Cieplak, P.2    Bayly, C.I.3    Gould, I.R.4    Merz Jr., K.M.5
  • 85
    • 33748518255 scopus 로고    scopus 로고
    • Comparison of multiple amber force fields and development of improved protein backbone parameters
    • Hornak V, Abel R, Okur A, Strockbine B, Roitberg A, Simmerling C. 2006. Comparison of multiple amber force fields and development of improved protein backbone parameters. Proteins 65:712-25
    • (2006) Proteins , vol.65 , pp. 712-725
    • Hornak, V.1    Abel, R.2    Okur, A.3    Strockbine, B.4    Roitberg, A.5    Simmerling, C.6
  • 87
    • 0028820703 scopus 로고
    • Denaturant m-values and heat-capacity changes: Relation to changes in accessible surface areas of protein unfolding
    • Myers JK, Pace CN, Scholtz JM. 1995. Denaturant m-values and heat-capacity changes: relation to changes in accessible surface areas of protein unfolding. Protein Sci. 4:2138-48
    • (1995) Protein Sci , vol.4 , pp. 2138-2148
    • Myers, J.K.1    Pace, C.N.2    Scholtz, J.M.3
  • 88
    • 0000293654 scopus 로고
    • Structural analysis ofmolecular solutions based on quasi-component distribution functions: Application to [H2CO]aq at 25C
    • Mehrotra PK, Beveridge DL. 1980. Structural analysis ofmolecular solutions based on quasi-component distribution functions: application to [H2CO]aq at 25C. J. Am. Chem. Soc. 102:4287-94
    • (1980) J. Am. Chem. Soc. , vol.102 , pp. 4287-4294
    • Mehrotra, P.K.1    Beveridge, D.L.2
  • 89
    • 62449341938 scopus 로고    scopus 로고
    • Urea, but not guanidinium, destabilizes proteins by forming hydrogen bonds to the peptide group
    • LimWK, Rosgen J, Englander SW. 2009. Urea, but not guanidinium, destabilizes proteins by forming hydrogen bonds to the peptide group. Proc. Natl. Acad. Sci. USA 106:2595-600
    • (2009) Proc. Natl. Acad. Sci. USA , vol.106 , pp. 2595-2600
    • Lim, W.K.1    Rosgen, J.2    Englander, S.W.3
  • 90
    • 0032570873 scopus 로고    scopus 로고
    • Forcing thermodynamically unfolded proteins to fold
    • Baskakov I, Bolen DW. 1998. Forcing thermodynamically unfolded proteins to fold. J. Biol. Chem. 273:4831-34
    • (1998) J. Biol. Chem. , vol.273 , pp. 4831-4834
    • Baskakov, I.1    Bolen, D.W.2
  • 92
    • 0037633978 scopus 로고    scopus 로고
    • Measuring the stability of partly folded proteins using TMAO
    • Mello CC, Barrick D. 2003. Measuring the stability of partly folded proteins using TMAO. Protein Sci. 12:1522-29
    • (2003) Protein Sci , vol.12 , pp. 1522-1529
    • Mello, C.C.1    Barrick, D.2
  • 93
    • 76249129238 scopus 로고    scopus 로고
    • Influence of osmolytes and denaturants on the structure and enzyme activity of α-chymotrypsin
    • Attri P, Venkatesu P, LeeMJ. 2010. Influence of osmolytes and denaturants on the structure and enzyme activity of α-chymotrypsin. J. Phys. Chem. B 114:1471-78
    • (2010) J. Phys. Chem. B , vol.114 , pp. 1471-1478
    • Attri, P.1    Venkatesu, P.2    Lee, M.J.3
  • 94
    • 0028150954 scopus 로고
    • Why do some organisms use a urea-methylamine mixture as osmolyte? Thermodynamic compensation of urea and trimethylamine N-oxide interactions with protein
    • Lin TY, Timasheff SN. 1994. Why do some organisms use a urea-methylamine mixture as osmolyte? Thermodynamic compensation of urea and trimethylamine N-oxide interactions with protein. Biochemistry 33:12695-701
    • (1994) Biochemistry , vol.33 , pp. 12695-12701
    • Lin, T.Y.1    Timasheff, S.N.2
  • 95
    • 58049184362 scopus 로고    scopus 로고
    • Effect of osmolytes on pressure-induced unfolding of proteins: A high-pressure SAXS study
    • Krywka C, Sternemann C, Paulus M, Tolan M, Royer C, Winter R. 2008. Effect of osmolytes on pressure-induced unfolding of proteins: A high-pressure SAXS study. ChemPhysChem 9:2809-15
    • (2008) ChemPhysChem , vol.9 , pp. 2809-2815
    • Krywka, C.1    Sternemann, C.2    Paulus, M.3    Tolan, M.4    Royer, C.5    Winter, R.6
  • 96
    • 77956091755 scopus 로고    scopus 로고
    • Self-assembly of TMAO at hydrophobic interfaces and its effect on protein adsorption: Insights from experiments and simulations
    • Anand G, Jamadagni SN, Garde S, Belfort G. 2010. Self-assembly of TMAO at hydrophobic interfaces and its effect on protein adsorption: insights from experiments and simulations. Langmuir 26:9695-702
    • (2010) Langmuir , vol.26 , pp. 9695-9702
    • Anand, G.1    Jamadagni, S.N.2    Garde, S.3    Belfort, G.4
  • 97
    • 79953051017 scopus 로고    scopus 로고
    • Trimethylamine N-oxide as a versatile cryoprotective agent in macromolecular crystallography
    • Mueller-Dieckmann C, Kauffman B, Weiss M. 2011. Trimethylamine N-oxide as a versatile cryoprotective agent in macromolecular crystallography. J. Appl. Crystallogr. 44:433-36
    • (2011) J. Appl. Crystallogr. , vol.44 , pp. 433-436
    • Mueller-Dieckmann, C.1    Kauffman, B.2    Weiss, M.3
  • 99
    • 0037138672 scopus 로고    scopus 로고
    • Themolecular mechanism of stabilization of proteins by TMAO and its ability to counteract the effects of urea
    • Zou Q, Bennion BJ,Daggett V, Murphy KP. 2002. Themolecular mechanism of stabilization of proteins by TMAO and its ability to counteract the effects of urea. J. Am. Chem. Soc. 124:1192-202
    • (2002) J. Am. Chem. Soc. , vol.124 , pp. 1192-1202
    • Zou, Q.1    Bennion, B.J.2    Daggett, V.3    Murphy, K.P.4
  • 101
    • 0035958656 scopus 로고    scopus 로고
    • The osmophobic effect: Natural selection of a thermodynamic force in protein folding
    • Bolen DW, Baskakov IV. 2001. The osmophobic effect: natural selection of a thermodynamic force in protein folding. J. Mol. Biol. 310:955-63
    • (2001) J. Mol. Biol. , vol.310 , pp. 955-963
    • Bolen, D.W.1    Baskakov, I.V.2
  • 102
    • 45749111742 scopus 로고    scopus 로고
    • Assessing the interaction of urea and protein stabilizing osmolytes with the nonpolar surface of hydroxypropylcellulose
    • Stanley C, Rau DC. 2008. Assessing the interaction of urea and protein stabilizing osmolytes with the nonpolar surface of hydroxypropylcellulose. Biochemistry 47:6711-18
    • (2008) Biochemistry , vol.47 , pp. 6711-6718
    • Stanley, C.1    Rau, D.C.2
  • 104
    • 72249104136 scopus 로고    scopus 로고
    • Counteraction of urea by trimethylamineN-oxide is due to direct interaction
    • Meersman F, BowronD, Soper AK, Koch MHJ. 2009. Counteraction of urea by trimethylamineN-oxide is due to direct interaction. Biophys. J. 97:2559-66
    • (2009) Biophys. J. , vol.97 , pp. 2559-2566
    • Meersman, F.1    Bowrond Soper, A.K.2    Koch, M.H.J.3
  • 105
    • 79960940308 scopus 로고    scopus 로고
    • An X-ray and neutron scattering study of the equilibrium between trimethylamine N-oxide and urea in aqueous solution
    • Meersman F, Bowron D, Soper AK, Koch MHJ. 2011. An X-ray and neutron scattering study of the equilibrium between trimethylamine N-oxide and urea in aqueous solution. Phys. Chem. Chem. Phys. 13:13765-71
    • (2011) Phys. Chem. Chem. Phys. , vol.13 , pp. 13765-13771
    • Meersman, F.1    Bowron, D.2    Soper, A.K.3    Koch, M.H.J.4
  • 106
    • 79958828867 scopus 로고    scopus 로고
    • Raman spectroscopic signatures of noncovalent interactions between trimethylamine N-oxide (TMAO) and water
    • Munroe KL, Magers DH, Hammer NI. 2011. Raman spectroscopic signatures of noncovalent interactions between trimethylamine N-oxide (TMAO) and water. J. Phys. Chem. B 115:7699-707
    • (2011) J. Phys. Chem. B , vol.115 , pp. 7699-7707
    • Munroe, K.L.1    Magers, D.H.2    Hammer, N.I.3
  • 107
    • 83055179393 scopus 로고    scopus 로고
    • Methyl groups of trimethylamine N-oxide orient away from hydrophobic interfaces
    • Sagle LB, Cimatu K, Litosh VA, Liu Y, Flores SC, et al. 2011. Methyl groups of trimethylamine N-oxide orient away from hydrophobic interfaces. J. Am. Chem. Soc. 133:18707-12
    • (2011) J. Am. Chem. Soc. , vol.133 , pp. 18707-18712
    • Sagle, L.B.1    Cimatu, K.2    Litosh, V.A.3    Liu, Y.4    Flores, S.C.5
  • 108
    • 79953060825 scopus 로고    scopus 로고
    • Is a methyl group always hydrophobic? Hydrophilicity of trimethylamine-N-oxide, tetramethyl urea and tetramethylammonium ion
    • Koga Y, Westh P, Nishikawa K, Subramanian S. 2011. Is a methyl group always hydrophobic? Hydrophilicity of trimethylamine-N-oxide, tetramethyl urea and tetramethylammonium ion. J. Phys. Chem. B 115:2995-3002
    • (2011) J. Phys. Chem. B , vol.115 , pp. 2995-3002
    • Koga, Y.1    Westh, P.2    Nishikawa, K.3    Subramanian, S.4
  • 109
    • 84857393452 scopus 로고    scopus 로고
    • Volume exclusion and H-bonding dominate the thermodynamics and solvation of trimethylamine-N-oxide in aqueous urea
    • Rosgen J, Jackson-Atogi R. 2012. Volume exclusion and H-bonding dominate the thermodynamics and solvation of trimethylamine-N-oxide in aqueous urea. J. Am. Chem. Soc. 134:3590-97
    • (2012) J. Am. Chem. Soc. , vol.134 , pp. 3590-3597
    • Rosgen, J.1    Jackson-Atogi, R.2
  • 110
    • 0242408240 scopus 로고    scopus 로고
    • Molecular dynamics simulation of aqueous solutions of trimethylamine-N-oxide and tert-butyl alcohol
    • Fornili A, Civera M, Sironi M, Fornili SL. 2003. Molecular dynamics simulation of aqueous solutions of trimethylamine-N-oxide and tert-butyl alcohol. Phys. Chem. Chem. Phys. 5:4905-10
    • (2003) Phys. Chem. Chem. Phys. , vol.5 , pp. 4905-4910
    • Fornili, A.1    Civera, M.2    Sironi, M.3    Fornili, S.L.4
  • 111
    • 33744501033 scopus 로고    scopus 로고
    • The role of water coordination in binary mixtures: A study of twomodel amphiphilic molecules in aqueous solutions bymolecular dynamics and NMR
    • Sinibaldi R, Casieri C, Melchionna S, Onori G, Segre AL, et al. 2006. The role of water coordination in binary mixtures: A study of twomodel amphiphilic molecules in aqueous solutions bymolecular dynamics and NMR. J. Phys. Chem. B 110:8885-92
    • (2006) J. Phys. Chem. B , vol.110 , pp. 8885-8892
    • Sinibaldi, R.1    Casieri, C.2    Melchionna, S.3    Onori, G.4    Segre, A.L.5
  • 112
    • 23244459863 scopus 로고    scopus 로고
    • Osmolyte trimethylamine-N-oxide does not affect the strength of hydrophobic interactions: Origin of osmolyte compatibility
    • Athawale MV, Dordick JS, Garde S. 2005. Osmolyte trimethylamine-N-oxide does not affect the strength of hydrophobic interactions: origin of osmolyte compatibility. Biophys. J. 89:858-66
    • (2005) Biophys. J. , vol.89 , pp. 858-866
    • Athawale, M.V.1    Dordick, J.S.2    Garde, S.3
  • 113
    • 34547534081 scopus 로고    scopus 로고
    • The influence of urea and trimethylamine-N-oxide on hydrophobic interactions
    • Paul S, PateyGN. 2007. The influence of urea and trimethylamine-N-oxide on hydrophobic interactions. J. Phys. Chem. B 111:7932-33
    • (2007) J. Phys. Chem. B , vol.111 , pp. 7932-7933
    • Paul, S.1    Patey, G.N.2
  • 114
    • 52349100015 scopus 로고    scopus 로고
    • Hydrophobic interactions in urea: Trimethylamine-N-oxide solutions
    • Paul S, Patey GN. 2008. Hydrophobic interactions in urea: trimethylamine-N-oxide solutions. J. Phys. Chem. B 112:11106-11
    • (2008) J. Phys. Chem. B , vol.112 , pp. 11106-11111
    • Paul, S.1    Patey, G.N.2
  • 115
    • 77949878597 scopus 로고    scopus 로고
    • Trimethylamine N-oxide influence on the backbone of proteins: An oligoglycine model
    • Hu CY, Lynch GC, Kokubo H, Pettitt BM. 2010. Trimethylamine N-oxide influence on the backbone of proteins: an oligoglycine model. Proteins 78:695-704
    • (2010) Proteins , vol.78 , pp. 695-704
    • Hu, C.Y.1    Lynch, G.C.2    Kokubo, H.3    Pettitt, B.M.4
  • 116
    • 79951529371 scopus 로고    scopus 로고
    • Peptide conformational preferences in osmolyte solutions: Transfer free energies of decaalanine
    • Kokubo H, Hu CY, Pettitt BM. 2011. Peptide conformational preferences in osmolyte solutions: transfer free energies of decaalanine. J. Am. Chem. Soc. 133:1849-58
    • (2011) J. Am. Chem. Soc. , vol.133 , pp. 1849-1858
    • Kokubo, H.1    Hu, C.Y.2    Pettitt, B.M.3
  • 117
    • 2342614722 scopus 로고    scopus 로고
    • Counteraction of urea-induced protein denaturation by trimethylamine N-oxide: A chemical chaperone at atomic resolution
    • Bennion BJ, Daggett V. 2004. Counteraction of urea-induced protein denaturation by trimethylamine N-oxide: A chemical chaperone at atomic resolution. Proc. Natl. Acad. Sci. USA 101:6433-38
    • (2004) Proc. Natl. Acad. Sci. USA , vol.101 , pp. 6433-6438
    • Bennion, B.J.1    Daggett, V.2
  • 118
    • 0038717923 scopus 로고    scopus 로고
    • Binary phases of aliphatic N-oxides and water: Force field development and molecular dynamics simulation
    • Kast KM, Brickmann J, Kast SM, Berry RS. 2003. Binary phases of aliphatic N-oxides and water: force field development and molecular dynamics simulation. J. Phys. Chem. A 107:5342-51
    • (2003) J. Phys. Chem. A , vol.107 , pp. 5342-5351
    • Kast, K.M.1    Brickmann, J.2    Kast, S.M.3    Berry, R.S.4
  • 119
  • 120
    • 77149136136 scopus 로고    scopus 로고
    • Simulation of osmotic pressure in concentrated aqueous salt solutions
    • Luo Y, Roux B. 2010. Simulation of osmotic pressure in concentrated aqueous salt solutions. J. Phys. Chem. Lett. 1:183-89
    • (2010) J. Phys. Chem. Lett. , vol.1 , pp. 183-189
    • Luo, Y.1    Roux, B.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.