-
1
-
-
0015859467
-
Principles that govern folding of protein chains
-
Anfinsen CB. 1973. Principles that govern folding of protein chains. Science 181:223-30
-
(1973)
Science
, vol.181
, pp. 223-230
-
-
Anfinsen, C.B.1
-
2
-
-
0028947257
-
Funnels, pathways, and the energy landscape of protein folding: A synthesis
-
Bryngelson JD, Onuchic JN, Socci ND,Wolynes PG. 1995. Funnels, pathways, and the energy landscape of protein folding: A synthesis. Proteins 21:167-95
-
(1995)
Proteins
, vol.21
, pp. 167-195
-
-
Bryngelson, J.D.1
Onuchic, J.N.2
Socci, N.D.3
Wolynes, P.G.4
-
6
-
-
0020017199
-
High-pressure effects on proteins and other biomolecules
-
Heremans K. 1982. High-pressure effects on proteins and other biomolecules. Annu. Rev. Biophys. Bioeng. 11:1-21
-
(1982)
Annu. Rev. Biophys. Bioeng.
, vol.11
, pp. 1-21
-
-
Heremans, K.1
-
7
-
-
0027310845
-
The control of protein stability and association by weak interactions with water: How do solvents affect these processes?
-
Timasheff SN. 1993. The control of protein stability and association by weak interactions with water: How do solvents affect these processes? Annu. Rev. Biophys. Biomol. Struct. 22:67-97
-
(1993)
Annu. Rev. Biophys. Biomol. Struct.
, vol.22
, pp. 67-97
-
-
Timasheff, S.N.1
-
8
-
-
36849150819
-
Protein stabilization: Thermodynamics of unfolding
-
Kauzmann W. 1987. Protein stabilization: thermodynamics of unfolding. Nature 325:763-64
-
(1987)
Nature
, vol.325
, pp. 763-764
-
-
Kauzmann, W.1
-
9
-
-
0035478292
-
Pressure provides new insights into protein folding, dynamics and structure
-
Silva JL, Foguel D, Royer CA. 2001. Pressure provides new insights into protein folding, dynamics and structure. Trends Biochem. Sci. 26:612-18
-
(2001)
Trends Biochem. Sci.
, vol.26
, pp. 612-618
-
-
Silva, J.L.1
Foguel, D.2
Royer, C.A.3
-
10
-
-
0037171140
-
Revisiting volume changes in pressure-induced protein unfolding
-
Royer CA. 2002. Revisiting volume changes in pressure-induced protein unfolding. Biochim. Biophys. Acta 1595:201-9
-
(2002)
Biochim. Biophys. Acta
, vol.1595
, pp. 201-209
-
-
Royer, C.A.1
-
11
-
-
0032539604
-
The pressure dependence of hydrophobic interactions is consistent with the observed pressure denaturation of proteins
-
HummerG,Garde S, Garcia AE,PaulaitisME,Pratt LR. 1998. The pressure dependence of hydrophobic interactions is consistent with the observed pressure denaturation of proteins. Proc. Natl. Acad. Sci. USA 95:1552-55
-
(1998)
Proc. Natl. Acad. Sci. USA
, vol.95
, pp. 1552-1555
-
-
Hummer, G.1
Garde, S.2
Garcia, A.E.3
Paulaitis, M.E.4
Pratt, L.R.5
-
12
-
-
77951232650
-
Studying pressure denaturation of a protein by molecular dynamics simulations
-
Sarupria S, GhoshT,Garcia AE,Garde S. 2010. Studying pressure denaturation of a protein by molecular dynamics simulations. Proteins 78:1641-51
-
(2010)
Proteins
, vol.78
, pp. 1641-1651
-
-
Sarupria, S.1
Ghosh, T.2
Garcia, A.E.3
Garde, S.4
-
13
-
-
84860829715
-
Cavities determine the pressure unfolding of proteins
-
Roche J, Caro JA, Norberto DR, Barthe P, Roumestand C, et al. 2012. Cavities determine the pressure unfolding of proteins. Proc. Natl. Acad. Sci. USA 109:6945-50
-
(2012)
Proc. Natl. Acad. Sci. USA
, vol.109
, pp. 6945-6950
-
-
Roche, J.1
Caro, J.A.2
Norberto, D.R.3
Barthe, P.4
Roumestand, C.5
-
14
-
-
0014952474
-
Thermodynamics of protein denaturation: Effect of pressure on denaturation of ribonuclease A
-
Brandts JF, Oliveira RJ,Westort C. 1970. Thermodynamics of protein denaturation: effect of pressure on denaturation of ribonuclease A. Biochemistry 9:1038-47
-
(1970)
Biochemistry
, vol.9
, pp. 1038-1047
-
-
Brandts, J.F.1
Oliveira, R.J.2
Westort, C.3
-
15
-
-
0015236387
-
Reversible pressure-temperature denaturation of chymotrypsinogen
-
Hawley SA. 1971. Reversible pressure-temperature denaturation of chymotrypsinogen. Biochemistry 10:2436-42
-
(1971)
Biochemistry
, vol.10
, pp. 2436-2442
-
-
Hawley, S.A.1
-
16
-
-
18744415073
-
Simulations of the pressure and temperature unfolding of an α-helical peptide
-
Paschek D, Gnanakaran S, Garcia AE. 2005. Simulations of the pressure and temperature unfolding of an α-helical peptide. Proc. Natl. Acad. Sci. USA 102:6765-70
-
(2005)
Proc. Natl. Acad. Sci. USA
, vol.102
, pp. 6765-6770
-
-
Paschek, D.1
Gnanakaran, S.2
Garcia, A.E.3
-
17
-
-
56649083699
-
Computing the stability diagram of the Trp-cage miniprotein
-
Paschek D, Hempel S, Garcia AE. 2008. Computing the stability diagram of the Trp-cage miniprotein. Proc. Natl. Acad. Sci. USA 105:17754-59
-
(2008)
Proc. Natl. Acad. Sci. USA
, vol.105
, pp. 17754-17759
-
-
Paschek, D.1
Hempel, S.2
Garcia, A.E.3
-
18
-
-
77953508894
-
Microsecond simulations of the folding/unfolding thermodynamics of the Trp-cage miniprotein
-
Day R, Paschek D, Garcia AE. 2010. Microsecond simulations of the folding/unfolding thermodynamics of the Trp-cage miniprotein. Proteins 78:1889-99
-
(2010)
Proteins
, vol.78
, pp. 1889-1899
-
-
Day, R.1
Paschek, D.2
Garcia, A.E.3
-
19
-
-
0020336190
-
Living with water stress: Evolution of osmolyte systems
-
Yancey PH, Clark ME, Hand SC, Bowlus RD, Somero GN. 1982. Living with water stress: evolution of osmolyte systems. Science 217:1214-22
-
(1982)
Science
, vol.217
, pp. 1214-1222
-
-
Yancey, P.H.1
Clark, M.E.2
Hand, S.C.3
Bowlus, R.D.4
Somero, G.N.5
-
20
-
-
0034681955
-
Vapor pressure osmometry studies of osmolyte-protein interactions: Implications for the action of osmoprotectants in vivo and for the interpretation of "osmotic stress" experiments in vitro
-
Courtenay ES, Capp MW, Anderson CF, Record MT. 2000. Vapor pressure osmometry studies of osmolyte-protein interactions: implications for the action of osmoprotectants in vivo and for the interpretation of "osmotic stress" experiments in vitro. Biochemistry 39:4455-71
-
(2000)
Biochemistry
, vol.39
, pp. 4455-4471
-
-
Courtenay, E.S.1
Capp, M.W.2
Anderson, C.F.3
Record, M.T.4
-
21
-
-
46449109015
-
Structure and energetics of the hydrogen-bonded backbone in protein folding
-
Bolen DW, Rose G. 2008. Structure and energetics of the hydrogen-bonded backbone in protein folding. Annu. Rev. Biochem. 77:339-62
-
(2008)
Annu. Rev. Biochem.
, vol.77
, pp. 339-362
-
-
Bolen, D.W.1
Rose, G.2
-
22
-
-
0030762556
-
A naturally occuring protective system in urea-rich cells: Mechanism of osmolyte protection of proteins against urea denaturation
-
Wang A, Bolen DW. 1997. A naturally occuring protective system in urea-rich cells: mechanism of osmolyte protection of proteins against urea denaturation. Biochemistry 36:9101-8
-
(1997)
Biochemistry
, vol.36
, pp. 9101-9108
-
-
Wang, A.1
Bolen, D.W.2
-
23
-
-
0008863560
-
Some factors in the interpretation of protein denaturation
-
Kauzmann W. 1959. Some factors in the interpretation of protein denaturation. Adv. Protein Chem. 14:1-63
-
(1959)
Adv. Protein Chem.
, vol.14
, pp. 1-63
-
-
Kauzmann, W.1
-
24
-
-
0022555885
-
Determination and analysis of urea and guanidine hydrochloride denaturation curves
-
Pace C. 1986. Determination and analysis of urea and guanidine hydrochloride denaturation curves. Methods Enzymol. 131:266-80
-
(1986)
Methods Enzymol.
, vol.131
, pp. 266-280
-
-
Pace, C.1
-
25
-
-
20544461199
-
Thermodynamics of protein interactions with urea and guanidinium chloride
-
Makhatadze GI. 1999. Thermodynamics of protein interactions with urea and guanidinium chloride. J. Phys. Chem. B 103:4781-85
-
(1999)
J. Phys. Chem. B
, vol.103
, pp. 4781-4785
-
-
Makhatadze, G.I.1
-
26
-
-
33749541104
-
Structural approach to solvent power of water for hydrocarbons: Urea as a structure breaker
-
Frank HS, Franks F. 1968. Structural approach to solvent power of water for hydrocarbons: urea as a structure breaker. J. Chem. Phys. 48:4746-57
-
(1968)
J. Chem. Phys.
, vol.48
, pp. 4746-4757
-
-
Frank, H.S.1
Franks, F.2
-
27
-
-
0025370815
-
Dominant forces in protein folding
-
Dill KA. 1990. Dominant forces in protein folding. Biochemistry 29:7133-55
-
(1990)
Biochemistry
, vol.29
, pp. 7133-7155
-
-
Dill, K.A.1
-
28
-
-
0141560450
-
Impact of urea on water structure: A clue to its properties as a denaturant?
-
Soper AK, Castner EW, Luzar A. 2003. Impact of urea on water structure: A clue to its properties as a denaturant? Biophys. Chem. 105:649-66
-
(2003)
Biophys. Chem.
, vol.105
, pp. 649-666
-
-
Soper, A.K.1
Castner, E.W.2
Luzar, A.3
-
30
-
-
33845488514
-
Effect of urea on the structural dynamics of water
-
Rezus YLA, Bakker HJ. 2006. Effect of urea on the structural dynamics of water. Proc. Natl. Acad. Sci. USA 103:18417-20
-
(2006)
Proc. Natl. Acad. Sci. USA
, vol.103
, pp. 18417-18420
-
-
Yla, R.1
Bakker, H.J.2
-
31
-
-
34249806047
-
Preferential solvation in urea solutions at different concentrations: Properties from simulation studies
-
Kokubo H, Pettitt BM. 2007. Preferential solvation in urea solutions at different concentrations: properties from simulation studies. J. Phys. Chem. B 111:5233-42
-
(2007)
J. Phys. Chem. B
, vol.111
, pp. 5233-5242
-
-
Kokubo, H.1
Pettitt, B.M.2
-
32
-
-
34250723399
-
Aqueous urea solutions: Structure, energetics, and urea aggregation
-
Stumpe MC, Grubmuller H. 2007. Aqueous urea solutions: structure, energetics, and urea aggregation. J. Phys. Chem. B 111:6220-28
-
(2007)
J. Phys. Chem. B
, vol.111
, pp. 6220-6228
-
-
Stumpe, M.C.1
Grubmuller, H.2
-
33
-
-
55949131241
-
Urea denaturation by stronger dispersion interactions with proteins than water implies a two-stage unfolding
-
Hua L, Zhou RH, Thirumalai D, Berne BJ. 2008. Urea denaturation by stronger dispersion interactions with proteins than water implies a two-stage unfolding. Proc. Natl. Acad. Sci. USA 105:16928-33
-
(2008)
Proc. Natl. Acad. Sci. USA
, vol.105
, pp. 16928-16933
-
-
Hua, L.1
Zhou, R.H.2
Thirumalai, D.3
Berne, B.J.4
-
34
-
-
79959992889
-
Can simulations quantitatively predict peptide transfer free energies to urea solutions? Thermodynamic concepts and force field limitations
-
Horinek D, Netz RR. 2011. Can simulations quantitatively predict peptide transfer free energies to urea solutions? Thermodynamic concepts and force field limitations. J. Phys. Chem. A 115:6125-36.
-
(2011)
J. Phys. Chem. A
, vol.115
, pp. 6125-6136
-
-
Horinek, D.1
Netz, R.R.2
-
35
-
-
27244437952
-
Predicting the energetics of osmolyte-induced protein folding/unfolding
-
Auton M, Bolen DW. 2005. Predicting the energetics of osmolyte-induced protein folding/unfolding. Proc. Natl. Acad. Sci. USA 102:15065-68
-
(2005)
Proc. Natl. Acad. Sci. USA
, vol.102
, pp. 15065-15068
-
-
Auton, M.1
Bolen, D.W.2
-
36
-
-
37549043949
-
Interaction of urea with amino acids: Implications for urea-induced protein denaturation
-
Stumpe MC, Grubmuller H. 2007. Interaction of urea with amino acids: implications for urea-induced protein denaturation. J. Am. Chem. Soc. 129:16126-31
-
(2007)
J. Am. Chem. Soc.
, vol.129
, pp. 16126-16131
-
-
Stumpe, M.C.1
Grubmuller, H.2
-
37
-
-
77956142105
-
Urea interactions with protein groups: A volumetric study. amino acids
-
Lee S, Shek YL, Chalikian TV. 2010. Urea interactions with protein groups: A volumetric study. amino acids. Biopolymers 93:866-79
-
(2010)
Biopolymers
, vol.93
, pp. 866-879
-
-
Lee, S.1
Shek, Y.L.2
Chalikian, T.V.3
-
38
-
-
80054717093
-
Quantifying why urea is a protein denaturant, whereas glycine betaine is a protein stabilizer
-
Guinn EJ, Pegram LM, Capp MW, Pollock MN, Record MT. 2011. Quantifying why urea is a protein denaturant, whereas glycine betaine is a protein stabilizer. Proc. Natl. Acad. Sci. USA 108:16932-37
-
(2011)
Proc. Natl. Acad. Sci. USA
, vol.108
, pp. 16932-16937
-
-
Guinn, E.J.1
Pegram, L.M.2
Capp, M.W.3
Pollock, M.N.4
Record, M.T.5
-
39
-
-
55949132427
-
Protein denaturation by urea: Slash and bond
-
Rossky PJ. 2008. Protein denaturation by urea: slash and bond. Proc. Natl. Acad. Sci. USA 105:16825-26
-
(2008)
Proc. Natl. Acad. Sci. USA
, vol.105
, pp. 16825-16826
-
-
Rossky, P.J.1
-
40
-
-
0032554078
-
Hydrophobic interactions in aqueous urea solutions with implications for the mechanism of protein denaturation
-
Wallqvist A, Covell DG, Thirumalai D. 1998. Hydrophobic interactions in aqueous urea solutions with implications for the mechanism of protein denaturation. J. Am. Chem. Soc. 120:427-28
-
(1998)
J. Am. Chem. Soc.
, vol.120
, pp. 427-428
-
-
Wallqvist, A.1
Covell, D.G.2
Thirumalai, D.3
-
41
-
-
0036891682
-
Origins of protein denatured state compactness and hydrophobic clustering in aqueous urea: Inferences from nonpolar potentials of mean force
-
Shimizu S, Chan HS. 2002. Origins of protein denatured state compactness and hydrophobic clustering in aqueous urea: inferences from nonpolar potentials of mean force. Proteins Struct. Funct. Genet. 49:560- 66
-
(2002)
Proteins Struct. Funct. Genet.
, vol.49
, pp. 560-566
-
-
Shimizu, S.1
Chan, H.S.2
-
42
-
-
12444288031
-
Methane clustering in explicit water: Effect of urea on hydrophobic interactions
-
Oostenbrink C, van Gunsteren WF. 2005. Methane clustering in explicit water: effect of urea on hydrophobic interactions. Phys. Chem. Chem. Phys. 7:53-58
-
(2005)
Phys. Chem. Chem. Phys.
, vol.7
, pp. 53-58
-
-
Oostenbrink, C.1
Van Gunsteren, W.F.2
-
43
-
-
33646163934
-
Does urea denature hydrophobic interactions?
-
Lee ME, van der Vegt NFA. 2006. Does urea denature hydrophobic interactions? J. Am. Chem. Soc. 128:4948-49
-
(2006)
J. Am. Chem. Soc.
, vol.128
, pp. 4948-4949
-
-
Lee, M.E.1
Van Der Vegt, N.F.A.2
-
44
-
-
34250869055
-
Interactions between hydrophobic and ionic solutes in aqueous guanidinium chloride and urea solutions: Lessons for protein denaturation mechanism
-
O'BrienEP,DimaRI,BrooksB,Thirumalai D. 2007. Interactions between hydrophobic and ionic solutes in aqueous guanidinium chloride and urea solutions: lessons for protein denaturation mechanism. J. Am. Chem. Soc. 129:7346-53
-
(2007)
J. Am. Chem. Soc.
, vol.129
, pp. 7346-7353
-
-
O'Brien, E.P.1
Dima, R.I.2
Brooks, B.3
Thirumalai, D.4
-
45
-
-
51749109783
-
Chemical denaturants inhibit the onset of dewetting
-
England JL, Pande VS, Haran G. 2008. Chemical denaturants inhibit the onset of dewetting. J. Am. Chem. Soc. 130:11854-55
-
(2008)
J. Am. Chem. Soc.
, vol.130
, pp. 11854-11855
-
-
England, J.L.1
Pande, V.S.2
Haran, G.3
-
47
-
-
74949083228
-
Effects of cosolvents on the hydration of carbon nanotubes
-
Yang LJ, Gao YQ. 2010. Effects of cosolvents on the hydration of carbon nanotubes. J. Am. Chem. Soc. 132:842-48
-
(2010)
J. Am. Chem. Soc.
, vol.132
, pp. 842-848
-
-
Yang, L.J.1
Gao, Y.Q.2
-
48
-
-
77951567662
-
Urea-induced drying of carbon nanotubes suggests existence of a dry globule-like transient state during chemical denaturation of proteins
-
Das P, Zhou RH. 2010. Urea-induced drying of carbon nanotubes suggests existence of a dry globule-like transient state during chemical denaturation of proteins. J. Phys. Chem. B 114:5427-30
-
(2010)
J. Phys. Chem. B
, vol.114
, pp. 5427-5430
-
-
Das, P.1
Zhou, R.H.2
-
49
-
-
0030939289
-
Molecular dynamics simulations of the unfolding of barnase in water and 8 m aqueous urea
-
Tirado-Rives J, Orozco M, Jorgensen WL. 1997. Molecular dynamics simulations of the unfolding of barnase in water and 8 m aqueous urea. Biochemistry 36:7313-29
-
(1997)
Biochemistry
, vol.36
, pp. 7313-7329
-
-
Tirado-Rives, J.1
Orozco, M.2
Jorgensen, W.L.3
-
50
-
-
0038370011
-
The molecular basis for the chemical denaturation of proteins by urea
-
Bennion BJ, Daggett V. 2003. The molecular basis for the chemical denaturation of proteins by urea. Proc. Natl. Acad. Sci. USA 100:5142-47
-
(2003)
Proc. Natl. Acad. Sci. USA
, vol.100
, pp. 5142-5147
-
-
Bennion, B.J.1
Daggett, V.2
-
51
-
-
23244452958
-
Effect of urea on peptide conformation in water: Molecular dynamics and experimental characterization
-
Caballero-Herrera A, Nordstrand K, BerndtKD,NilssonL. 2005. Effect of urea on peptide conformation in water: molecular dynamics and experimental characterization. Biophys. J. 89:842-57
-
(2005)
Biophys. J.
, vol.89
, pp. 842-857
-
-
Caballero-Herrera, A.1
Nordstrand, K.2
Berndt, K.D.3
Nilsson, L.4
-
52
-
-
57149110439
-
Polar or apolar: The role of polarity for urea-induced protein denaturation
-
Stumpe MC, Grubmuller H. 2008. Polar or apolar: The role of polarity for urea-induced protein denaturation. PLoS Comput. Biol. 4:e1000221
-
(2008)
PLoS Comput. Biol.
, vol.4
-
-
Stumpe, M.C.1
Grubmuller, H.2
-
53
-
-
11344259541
-
Characterization of the denaturation of human α- Lactalbumin in urea by molecular dynamics simulations
-
Smith LJ, Jones RM, van Gunsteren WF. 2005. Characterization of the denaturation of human α- lactalbumin in urea by molecular dynamics simulations. Proteins Struct. Funct. Genet. 58:439-49
-
(2005)
Proteins Struct. Funct. Genet.
, vol.58
, pp. 439-449
-
-
Smith, L.J.1
Jones, R.M.2
Van Gunsteren, W.F.3
-
54
-
-
0037343333
-
The dominant interaction between peptide and urea is electrostatic in nature: A molecular dynamics simulation study
-
Tobi D, ElberR,Thirumalai D. 2003. The dominant interaction between peptide and urea is electrostatic in nature: A molecular dynamics simulation study. Biopolymers 68:359-69
-
(2003)
Biopolymers
, vol.68
, pp. 359-369
-
-
Tobi, D.1
Elber, R.2
Thirumalai, D.3
-
56
-
-
77749285768
-
Equilibrium study of protein denaturation by urea
-
Canchi DR, Paschek D, García A. 2010. Equilibrium study of protein denaturation by urea. J. Am. Chem. Soc. 132:2338-44
-
(2010)
J. Am. Chem. Soc.
, vol.132
, pp. 2338-2344
-
-
Canchi, D.R.1
Paschek, D.2
García, A.3
-
57
-
-
79953858621
-
Backbone and side-chain contributions in protein denaturation by urea
-
Canchi DR, García AE. 2011. Backbone and side-chain contributions in protein denaturation by urea. Biophys. J. 100:1526-33
-
(2011)
Biophys. J.
, vol.100
, pp. 1526-1533
-
-
Canchi, D.R.1
García, A.E.2
-
58
-
-
0037997632
-
A Kirkwood-Buff derived force field for mixtures of urea and water
-
Weerasinghe S, Smith PE. 2003. A Kirkwood-Buff derived force field for mixtures of urea and water. J. Phys. Chem. B 107:3891-98
-
(2003)
J. Phys. Chem. B
, vol.107
, pp. 3891-3898
-
-
Weerasinghe, S.1
Smith, P.E.2
-
59
-
-
0346780365
-
A Kirkwood-Buff derived force field for sodium chloride in water
-
Weerasinghe S, Smith PE. 2003. A Kirkwood-Buff derived force field for sodium chloride in water. J. Chem. Phys. 119:11342-49
-
(2003)
J. Chem. Phys.
, vol.119
, pp. 11342-11349
-
-
Weerasinghe, S.1
Smith, P.E.2
-
60
-
-
4043160479
-
A Kirkwood-Buff derived force field for the simulation of aqueous guanidinium chloride solutions
-
Weerasinghe S, Smith PE. 2004. A Kirkwood-Buff derived force field for the simulation of aqueous guanidinium chloride solutions. J. Chem. Phys. 121:2180-86
-
(2004)
J. Chem. Phys.
, vol.121
, pp. 2180-2186
-
-
Weerasinghe, S.1
Smith, P.E.2
-
61
-
-
23844511595
-
AKirkwood-Buff derived force field for methanol and aqueous methanol solutions
-
Weerasinghe S, Smith PE. 2005.AKirkwood-Buff derived force field for methanol and aqueous methanol solutions. J. Phys. Chem. B 109:15080-86
-
(2005)
J. Phys. Chem. B
, vol.109
, pp. 15080-15086
-
-
Weerasinghe, S.1
Smith, P.E.2
-
62
-
-
33751132430
-
The statistical mechanical theory of solutions. 1
-
Kirkwood JG, Buff FP. 1951. The statistical mechanical theory of solutions. 1. J. Chem. Phys. 19:774-77
-
(1951)
J. Chem. Phys.
, vol.19
, pp. 774-777
-
-
Kirkwood, J.G.1
Buff, F.P.2
-
64
-
-
85005481062
-
Urea: Potential functions, log p, and free energy of hydration
-
Duffy E, Severance D, JorgensonW. 1993. Urea: potential functions, log p, and free energy of hydration. Isr. J. Chem. 33:323
-
(1993)
Isr. J. Chem.
, vol.33
, pp. 323
-
-
Duffy, E.1
Severance, D.2
Jorgenson, W.3
-
65
-
-
84876012908
-
Isothermal unfolding of globular proteins in aqueous urea solutions
-
Tanford C. 2004. Isothermal unfolding of globular proteins in aqueous urea solutions. J. Am. Chem. Soc. 126:1958-61
-
(2004)
J. Am. Chem. Soc.
, vol.126
, pp. 1958-1961
-
-
Tanford, C.1
-
66
-
-
34848916114
-
Anatomy of energetic changes accompanying ureainduced protein denaturation
-
Auton M, Holthauzen LMF, Bolen DW. 2007. Anatomy of energetic changes accompanying ureainduced protein denaturation. Proc. Natl. Acad. Sci. USA 104:15317-22
-
(2007)
Proc. Natl. Acad. Sci. USA
, vol.104
, pp. 15317-15322
-
-
Auton, M.1
Lmf, H.2
Bolen, D.W.3
-
67
-
-
33846839535
-
Characterizing the unfolded states of proteins using single-molecule FRET spectroscopy and molecular simulations
-
Merchant KA, Best RB, Louis JM, Gopich IV, Eaton WA. 2007. Characterizing the unfolded states of proteins using single-molecule FRET spectroscopy and molecular simulations. Proc. Natl. Acad. Sci. USA 104:1528-33
-
(2007)
Proc. Natl. Acad. Sci. USA
, vol.104
, pp. 1528-1533
-
-
Merchant, K.A.1
Best, R.B.2
Louis, J.M.3
Gopich, I.V.4
Eaton, W.A.5
-
68
-
-
51649087154
-
Effects of denaturants and osmolytes on proteins are accurately predicted by themolecular transfer model
-
O'Brien EP, Ziv G, Haran G, Brooks BR, Thirumalai D. 2008. Effects of denaturants and osmolytes on proteins are accurately predicted by themolecular transfer model. Proc.Natl. Acad. Sci. USA 105:13403-8
-
(2008)
Proc.Natl. Acad. Sci. USA
, vol.105
, pp. 13403-13408
-
-
O'Brien, E.P.1
Ziv, G.2
Haran, G.3
Brooks, B.R.4
Thirumalai, D.5
-
69
-
-
80054991841
-
Effect of urea on the β-hairpin conformational ensemble and protein denaturation mechanism
-
Berteotti A, Barducci A, Parrinello M. 2011. Effect of urea on the β-hairpin conformational ensemble and protein denaturation mechanism. J. Am. Chem. Soc. 133:17200-6
-
(2011)
J. Am. Chem. Soc.
, vol.133
, pp. 17200-17206
-
-
Berteotti, A.1
Barducci, A.2
Parrinello, M.3
-
70
-
-
67749142097
-
Protein folding, protein collapse, and Tanford's transfer model: Lessons from single-molecule FRET
-
Ziv G, Haran G. 2009. Protein folding, protein collapse, and Tanford's transfer model: lessons from single-molecule FRET. J. Am. Chem. Soc. 131:2942-47
-
(2009)
J. Am. Chem. Soc.
, vol.131
, pp. 2942-2947
-
-
Ziv, G.1
Haran, G.2
-
71
-
-
79953759344
-
Role of solvation effects in protein denaturation: From thermodynamics to single molecules and back
-
England JL, Haran G. 2011. Role of solvation effects in protein denaturation: from thermodynamics to single molecules and back. Annu. Rev. Phys. Chem. 62:257-77
-
(2011)
Annu. Rev. Phys. Chem.
, vol.62
, pp. 257-277
-
-
England, J.L.1
Haran, G.2
-
72
-
-
84859266139
-
Small-angle X-ray scattering and single-molecule FRET spectroscopy produce highly divergent views of the low-denaturant unfolded state
-
Yoo TY, Meisburger SP, Hinshaw J, Pollack L, Haran G, et al. 2012. Small-angle X-ray scattering and single-molecule FRET spectroscopy produce highly divergent views of the low-denaturant unfolded state. J. Mol. Biol. 418:226-36
-
(2012)
J. Mol. Biol.
, vol.418
, pp. 226-236
-
-
Yoo, T.Y.1
Meisburger, S.P.2
Hinshaw, J.3
Pollack, L.4
Haran, G.5
-
73
-
-
0037162456
-
Protein-solvent preferential interactions, protein hydration, and the modulation of biochemical reactions by solvent components
-
Timasheff SN. 2002. Protein-solvent preferential interactions, protein hydration, and the modulation of biochemical reactions by solvent components. Proc. Natl. Acad. Sci. USA 99:9721-26
-
(2002)
Proc. Natl. Acad. Sci. USA
, vol.99
, pp. 9721-9726
-
-
Timasheff, S.N.1
-
74
-
-
0020477047
-
Preferential interactions of proteins with salts in concentrated solutions
-
ArakawaT,Timasheff SN. 1982. Preferential interactions of proteins with salts in concentrated solutions. Biochemistry 21:6545-52
-
(1982)
Biochemistry
, vol.21
, pp. 6545-6552
-
-
Arakawa, T.1
Timasheff, S.N.2
-
75
-
-
0028962012
-
Interpretation of preferential interaction coefficients of nonelectrolytes and of electrolyte ions in terms of a two-domain model
-
Record MT, Anderson CF. 1995. Interpretation of preferential interaction coefficients of nonelectrolytes and of electrolyte ions in terms of a two-domain model. Biophys. J. 68:786-94
-
(1995)
Biophys. J.
, vol.68
, pp. 786-794
-
-
Record, M.T.1
Anderson, C.F.2
-
76
-
-
0034635965
-
Osmotic stress, crowding, preferential hydration and binding: A comparison of perspectives
-
Parsegian VA, Rand RP, Rau DC. 2000. Osmotic stress, crowding, preferential hydration and binding: A comparison of perspectives. Proc. Natl. Acad. Sci. USA 97:3987-92
-
(2000)
Proc. Natl. Acad. Sci. USA
, vol.97
, pp. 3987-3992
-
-
Parsegian, V.A.1
Rand, R.P.2
Rau, D.C.3
-
77
-
-
70349099268
-
Molecular computations of preferential interaction coefficients of proteins
-
Shukla D, Shinde C, Trout BL. 2009. Molecular computations of preferential interaction coefficients of proteins. J. Phys. Chem. B 113:12546-54
-
(2009)
J. Phys. Chem. B
, vol.113
, pp. 12546-12554
-
-
Shukla, D.1
Shinde, C.2
Trout, B.L.3
-
80
-
-
23744503388
-
UV-resonance Raman thermal unfolding study of Trp-cage shows that it is not a simple two-state miniprotein
-
Ahmed Z, Beta IA, Mikhonin AV, Asher SA. 2005. UV-resonance Raman thermal unfolding study of Trp-cage shows that it is not a simple two-state miniprotein. J. Am. Chem. Soc. 127:10943-50
-
(2005)
J. Am. Chem. Soc.
, vol.127
, pp. 10943-10950
-
-
Ahmed, Z.1
Beta, I.A.2
Mikhonin, A.V.3
Asher, S.A.4
-
81
-
-
28044460071
-
A microscopic view of miniprotein folding: Enhanced folding efficiency through formation of an intermediate
-
Neuweiler H, Doose S, Sauer M. 2005. A microscopic view of miniprotein folding: enhanced folding efficiency through formation of an intermediate. Proc. Natl. Acad. Sci. USA 102:16650-55
-
(2005)
Proc. Natl. Acad. Sci. USA
, vol.102
, pp. 16650-16655
-
-
Neuweiler, H.1
Doose, S.2
Sauer, M.3
-
82
-
-
77951243667
-
Thermodynamics of the Trp-cage miniprotein unfolding in urea
-
Wafer LNR, Streicher WW, Makhatadze GI. 2010. Thermodynamics of the Trp-cage miniprotein unfolding in urea. Proteins 78:1376-81
-
(2010)
Proteins
, vol.78
, pp. 1376-1381
-
-
Wafer, L.N.R.1
Streicher, W.W.2
Makhatadze, G.I.3
-
83
-
-
33947209951
-
Unfolding thermodynamics of Trp-cage, a 20 residue miniprotein, studied by differential scanning calorimetry and circular dichroism spectroscopy
-
StreicherWW,Makhatadze GI. 2007. Unfolding thermodynamics of Trp-cage, a 20 residue miniprotein, studied by differential scanning calorimetry and circular dichroism spectroscopy. Biochemistry 46:2876-80
-
(2007)
Biochemistry
, vol.46
, pp. 2876-2880
-
-
Streicher, W.W.1
Makhatadze, G.I.2
-
84
-
-
0029011701
-
A second generation force field for the simulation of proteins, nucleic acids, and organic molecules
-
CornellWD, Cieplak P, Bayly CI, Gould IR, Merz KM Jr, et al. 1995. A second generation force field for the simulation of proteins, nucleic acids, and organic molecules. J. Am. Chem. Soc. 117:5179-97
-
(1995)
J. Am. Chem. Soc.
, vol.117
, pp. 5179-5197
-
-
Cornell, W.D.1
Cieplak, P.2
Bayly, C.I.3
Gould, I.R.4
Merz Jr., K.M.5
-
85
-
-
33748518255
-
Comparison of multiple amber force fields and development of improved protein backbone parameters
-
Hornak V, Abel R, Okur A, Strockbine B, Roitberg A, Simmerling C. 2006. Comparison of multiple amber force fields and development of improved protein backbone parameters. Proteins 65:712-25
-
(2006)
Proteins
, vol.65
, pp. 712-725
-
-
Hornak, V.1
Abel, R.2
Okur, A.3
Strockbine, B.4
Roitberg, A.5
Simmerling, C.6
-
86
-
-
0004016501
-
Comparison of simple potential functions for simulating liquid water
-
Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML. 1983. Comparison of simple potential functions for simulating liquid water. J. Chem. Phys. 79:926-35
-
(1983)
J. Chem. Phys.
, vol.79
, pp. 926-935
-
-
Jorgensen, W.L.1
Chandrasekhar, J.2
Madura, J.D.3
Impey, R.W.4
Klein, M.L.5
-
87
-
-
0028820703
-
Denaturant m-values and heat-capacity changes: Relation to changes in accessible surface areas of protein unfolding
-
Myers JK, Pace CN, Scholtz JM. 1995. Denaturant m-values and heat-capacity changes: relation to changes in accessible surface areas of protein unfolding. Protein Sci. 4:2138-48
-
(1995)
Protein Sci
, vol.4
, pp. 2138-2148
-
-
Myers, J.K.1
Pace, C.N.2
Scholtz, J.M.3
-
88
-
-
0000293654
-
Structural analysis ofmolecular solutions based on quasi-component distribution functions: Application to [H2CO]aq at 25C
-
Mehrotra PK, Beveridge DL. 1980. Structural analysis ofmolecular solutions based on quasi-component distribution functions: application to [H2CO]aq at 25C. J. Am. Chem. Soc. 102:4287-94
-
(1980)
J. Am. Chem. Soc.
, vol.102
, pp. 4287-4294
-
-
Mehrotra, P.K.1
Beveridge, D.L.2
-
89
-
-
62449341938
-
Urea, but not guanidinium, destabilizes proteins by forming hydrogen bonds to the peptide group
-
LimWK, Rosgen J, Englander SW. 2009. Urea, but not guanidinium, destabilizes proteins by forming hydrogen bonds to the peptide group. Proc. Natl. Acad. Sci. USA 106:2595-600
-
(2009)
Proc. Natl. Acad. Sci. USA
, vol.106
, pp. 2595-2600
-
-
Lim, W.K.1
Rosgen, J.2
Englander, S.W.3
-
90
-
-
0032570873
-
Forcing thermodynamically unfolded proteins to fold
-
Baskakov I, Bolen DW. 1998. Forcing thermodynamically unfolded proteins to fold. J. Biol. Chem. 273:4831-34
-
(1998)
J. Biol. Chem.
, vol.273
, pp. 4831-4834
-
-
Baskakov, I.1
Bolen, D.W.2
-
92
-
-
0037633978
-
Measuring the stability of partly folded proteins using TMAO
-
Mello CC, Barrick D. 2003. Measuring the stability of partly folded proteins using TMAO. Protein Sci. 12:1522-29
-
(2003)
Protein Sci
, vol.12
, pp. 1522-1529
-
-
Mello, C.C.1
Barrick, D.2
-
93
-
-
76249129238
-
Influence of osmolytes and denaturants on the structure and enzyme activity of α-chymotrypsin
-
Attri P, Venkatesu P, LeeMJ. 2010. Influence of osmolytes and denaturants on the structure and enzyme activity of α-chymotrypsin. J. Phys. Chem. B 114:1471-78
-
(2010)
J. Phys. Chem. B
, vol.114
, pp. 1471-1478
-
-
Attri, P.1
Venkatesu, P.2
Lee, M.J.3
-
94
-
-
0028150954
-
Why do some organisms use a urea-methylamine mixture as osmolyte? Thermodynamic compensation of urea and trimethylamine N-oxide interactions with protein
-
Lin TY, Timasheff SN. 1994. Why do some organisms use a urea-methylamine mixture as osmolyte? Thermodynamic compensation of urea and trimethylamine N-oxide interactions with protein. Biochemistry 33:12695-701
-
(1994)
Biochemistry
, vol.33
, pp. 12695-12701
-
-
Lin, T.Y.1
Timasheff, S.N.2
-
95
-
-
58049184362
-
Effect of osmolytes on pressure-induced unfolding of proteins: A high-pressure SAXS study
-
Krywka C, Sternemann C, Paulus M, Tolan M, Royer C, Winter R. 2008. Effect of osmolytes on pressure-induced unfolding of proteins: A high-pressure SAXS study. ChemPhysChem 9:2809-15
-
(2008)
ChemPhysChem
, vol.9
, pp. 2809-2815
-
-
Krywka, C.1
Sternemann, C.2
Paulus, M.3
Tolan, M.4
Royer, C.5
Winter, R.6
-
96
-
-
77956091755
-
Self-assembly of TMAO at hydrophobic interfaces and its effect on protein adsorption: Insights from experiments and simulations
-
Anand G, Jamadagni SN, Garde S, Belfort G. 2010. Self-assembly of TMAO at hydrophobic interfaces and its effect on protein adsorption: insights from experiments and simulations. Langmuir 26:9695-702
-
(2010)
Langmuir
, vol.26
, pp. 9695-9702
-
-
Anand, G.1
Jamadagni, S.N.2
Garde, S.3
Belfort, G.4
-
97
-
-
79953051017
-
Trimethylamine N-oxide as a versatile cryoprotective agent in macromolecular crystallography
-
Mueller-Dieckmann C, Kauffman B, Weiss M. 2011. Trimethylamine N-oxide as a versatile cryoprotective agent in macromolecular crystallography. J. Appl. Crystallogr. 44:433-36
-
(2011)
J. Appl. Crystallogr.
, vol.44
, pp. 433-436
-
-
Mueller-Dieckmann, C.1
Kauffman, B.2
Weiss, M.3
-
98
-
-
79952923961
-
Natural osmolytes remodel the aggregation pathway of mutant huntingtin exon 1
-
Borwankar T, Rothlein C, Zhang G, Techen A, Dosche C, Ignatova Z. 2011. Natural osmolytes remodel the aggregation pathway of mutant huntingtin exon 1. Biochemistry 50:2048-60
-
(2011)
Biochemistry
, vol.50
, pp. 2048-2060
-
-
Borwankar, T.1
Rothlein, C.2
Zhang, G.3
Techen, A.4
Dosche, C.5
Ignatova, Z.6
-
99
-
-
0037138672
-
Themolecular mechanism of stabilization of proteins by TMAO and its ability to counteract the effects of urea
-
Zou Q, Bennion BJ,Daggett V, Murphy KP. 2002. Themolecular mechanism of stabilization of proteins by TMAO and its ability to counteract the effects of urea. J. Am. Chem. Soc. 124:1192-202
-
(2002)
J. Am. Chem. Soc.
, vol.124
, pp. 1192-1202
-
-
Zou, Q.1
Bennion, B.J.2
Daggett, V.3
Murphy, K.P.4
-
100
-
-
84860289944
-
Complex formation in aqueous trimethylamine-N-oxide (TMAO) solutions
-
Hunger J, Tielrooij KJ, Buchner R, Bonn M, Bakker HJ. 2012. Complex formation in aqueous trimethylamine-N-oxide (TMAO) solutions. J. Phys. Chem. B 116:4783-95
-
(2012)
J. Phys. Chem. B
, vol.116
, pp. 4783-4795
-
-
Hunger, J.1
Tielrooij, K.J.2
Buchner, R.3
Bonn, M.4
Bakker, H.J.5
-
101
-
-
0035958656
-
The osmophobic effect: Natural selection of a thermodynamic force in protein folding
-
Bolen DW, Baskakov IV. 2001. The osmophobic effect: natural selection of a thermodynamic force in protein folding. J. Mol. Biol. 310:955-63
-
(2001)
J. Mol. Biol.
, vol.310
, pp. 955-963
-
-
Bolen, D.W.1
Baskakov, I.V.2
-
102
-
-
45749111742
-
Assessing the interaction of urea and protein stabilizing osmolytes with the nonpolar surface of hydroxypropylcellulose
-
Stanley C, Rau DC. 2008. Assessing the interaction of urea and protein stabilizing osmolytes with the nonpolar surface of hydroxypropylcellulose. Biochemistry 47:6711-18
-
(2008)
Biochemistry
, vol.47
, pp. 6711-6718
-
-
Stanley, C.1
Rau, D.C.2
-
104
-
-
72249104136
-
Counteraction of urea by trimethylamineN-oxide is due to direct interaction
-
Meersman F, BowronD, Soper AK, Koch MHJ. 2009. Counteraction of urea by trimethylamineN-oxide is due to direct interaction. Biophys. J. 97:2559-66
-
(2009)
Biophys. J.
, vol.97
, pp. 2559-2566
-
-
Meersman, F.1
Bowrond Soper, A.K.2
Koch, M.H.J.3
-
105
-
-
79960940308
-
An X-ray and neutron scattering study of the equilibrium between trimethylamine N-oxide and urea in aqueous solution
-
Meersman F, Bowron D, Soper AK, Koch MHJ. 2011. An X-ray and neutron scattering study of the equilibrium between trimethylamine N-oxide and urea in aqueous solution. Phys. Chem. Chem. Phys. 13:13765-71
-
(2011)
Phys. Chem. Chem. Phys.
, vol.13
, pp. 13765-13771
-
-
Meersman, F.1
Bowron, D.2
Soper, A.K.3
Koch, M.H.J.4
-
106
-
-
79958828867
-
Raman spectroscopic signatures of noncovalent interactions between trimethylamine N-oxide (TMAO) and water
-
Munroe KL, Magers DH, Hammer NI. 2011. Raman spectroscopic signatures of noncovalent interactions between trimethylamine N-oxide (TMAO) and water. J. Phys. Chem. B 115:7699-707
-
(2011)
J. Phys. Chem. B
, vol.115
, pp. 7699-7707
-
-
Munroe, K.L.1
Magers, D.H.2
Hammer, N.I.3
-
107
-
-
83055179393
-
Methyl groups of trimethylamine N-oxide orient away from hydrophobic interfaces
-
Sagle LB, Cimatu K, Litosh VA, Liu Y, Flores SC, et al. 2011. Methyl groups of trimethylamine N-oxide orient away from hydrophobic interfaces. J. Am. Chem. Soc. 133:18707-12
-
(2011)
J. Am. Chem. Soc.
, vol.133
, pp. 18707-18712
-
-
Sagle, L.B.1
Cimatu, K.2
Litosh, V.A.3
Liu, Y.4
Flores, S.C.5
-
108
-
-
79953060825
-
Is a methyl group always hydrophobic? Hydrophilicity of trimethylamine-N-oxide, tetramethyl urea and tetramethylammonium ion
-
Koga Y, Westh P, Nishikawa K, Subramanian S. 2011. Is a methyl group always hydrophobic? Hydrophilicity of trimethylamine-N-oxide, tetramethyl urea and tetramethylammonium ion. J. Phys. Chem. B 115:2995-3002
-
(2011)
J. Phys. Chem. B
, vol.115
, pp. 2995-3002
-
-
Koga, Y.1
Westh, P.2
Nishikawa, K.3
Subramanian, S.4
-
109
-
-
84857393452
-
Volume exclusion and H-bonding dominate the thermodynamics and solvation of trimethylamine-N-oxide in aqueous urea
-
Rosgen J, Jackson-Atogi R. 2012. Volume exclusion and H-bonding dominate the thermodynamics and solvation of trimethylamine-N-oxide in aqueous urea. J. Am. Chem. Soc. 134:3590-97
-
(2012)
J. Am. Chem. Soc.
, vol.134
, pp. 3590-3597
-
-
Rosgen, J.1
Jackson-Atogi, R.2
-
110
-
-
0242408240
-
Molecular dynamics simulation of aqueous solutions of trimethylamine-N-oxide and tert-butyl alcohol
-
Fornili A, Civera M, Sironi M, Fornili SL. 2003. Molecular dynamics simulation of aqueous solutions of trimethylamine-N-oxide and tert-butyl alcohol. Phys. Chem. Chem. Phys. 5:4905-10
-
(2003)
Phys. Chem. Chem. Phys.
, vol.5
, pp. 4905-4910
-
-
Fornili, A.1
Civera, M.2
Sironi, M.3
Fornili, S.L.4
-
111
-
-
33744501033
-
The role of water coordination in binary mixtures: A study of twomodel amphiphilic molecules in aqueous solutions bymolecular dynamics and NMR
-
Sinibaldi R, Casieri C, Melchionna S, Onori G, Segre AL, et al. 2006. The role of water coordination in binary mixtures: A study of twomodel amphiphilic molecules in aqueous solutions bymolecular dynamics and NMR. J. Phys. Chem. B 110:8885-92
-
(2006)
J. Phys. Chem. B
, vol.110
, pp. 8885-8892
-
-
Sinibaldi, R.1
Casieri, C.2
Melchionna, S.3
Onori, G.4
Segre, A.L.5
-
112
-
-
23244459863
-
Osmolyte trimethylamine-N-oxide does not affect the strength of hydrophobic interactions: Origin of osmolyte compatibility
-
Athawale MV, Dordick JS, Garde S. 2005. Osmolyte trimethylamine-N-oxide does not affect the strength of hydrophobic interactions: origin of osmolyte compatibility. Biophys. J. 89:858-66
-
(2005)
Biophys. J.
, vol.89
, pp. 858-866
-
-
Athawale, M.V.1
Dordick, J.S.2
Garde, S.3
-
113
-
-
34547534081
-
The influence of urea and trimethylamine-N-oxide on hydrophobic interactions
-
Paul S, PateyGN. 2007. The influence of urea and trimethylamine-N-oxide on hydrophobic interactions. J. Phys. Chem. B 111:7932-33
-
(2007)
J. Phys. Chem. B
, vol.111
, pp. 7932-7933
-
-
Paul, S.1
Patey, G.N.2
-
114
-
-
52349100015
-
Hydrophobic interactions in urea: Trimethylamine-N-oxide solutions
-
Paul S, Patey GN. 2008. Hydrophobic interactions in urea: trimethylamine-N-oxide solutions. J. Phys. Chem. B 112:11106-11
-
(2008)
J. Phys. Chem. B
, vol.112
, pp. 11106-11111
-
-
Paul, S.1
Patey, G.N.2
-
115
-
-
77949878597
-
Trimethylamine N-oxide influence on the backbone of proteins: An oligoglycine model
-
Hu CY, Lynch GC, Kokubo H, Pettitt BM. 2010. Trimethylamine N-oxide influence on the backbone of proteins: an oligoglycine model. Proteins 78:695-704
-
(2010)
Proteins
, vol.78
, pp. 695-704
-
-
Hu, C.Y.1
Lynch, G.C.2
Kokubo, H.3
Pettitt, B.M.4
-
116
-
-
79951529371
-
Peptide conformational preferences in osmolyte solutions: Transfer free energies of decaalanine
-
Kokubo H, Hu CY, Pettitt BM. 2011. Peptide conformational preferences in osmolyte solutions: transfer free energies of decaalanine. J. Am. Chem. Soc. 133:1849-58
-
(2011)
J. Am. Chem. Soc.
, vol.133
, pp. 1849-1858
-
-
Kokubo, H.1
Hu, C.Y.2
Pettitt, B.M.3
-
117
-
-
2342614722
-
Counteraction of urea-induced protein denaturation by trimethylamine N-oxide: A chemical chaperone at atomic resolution
-
Bennion BJ, Daggett V. 2004. Counteraction of urea-induced protein denaturation by trimethylamine N-oxide: A chemical chaperone at atomic resolution. Proc. Natl. Acad. Sci. USA 101:6433-38
-
(2004)
Proc. Natl. Acad. Sci. USA
, vol.101
, pp. 6433-6438
-
-
Bennion, B.J.1
Daggett, V.2
-
118
-
-
0038717923
-
Binary phases of aliphatic N-oxides and water: Force field development and molecular dynamics simulation
-
Kast KM, Brickmann J, Kast SM, Berry RS. 2003. Binary phases of aliphatic N-oxides and water: force field development and molecular dynamics simulation. J. Phys. Chem. A 107:5342-51
-
(2003)
J. Phys. Chem. A
, vol.107
, pp. 5342-5351
-
-
Kast, K.M.1
Brickmann, J.2
Kast, S.M.3
Berry, R.S.4
-
119
-
-
84868097108
-
Molecular mechanism for the preferential exclusion of TMAO from protein surfaces
-
Canchi DR, Jayasimha P, Rau DC, Makhatadze GI, Garcia AE. 2012. Molecular mechanism for the preferential exclusion of TMAO from protein surfaces. J. Phys. Chem. B 116:12095-104
-
(2012)
J. Phys. Chem. B
, vol.116
, pp. 12095-12104
-
-
Canchi, D.R.1
Jayasimha, P.2
Rau, D.C.3
Makhatadze, G.I.4
Garcia, A.E.5
-
120
-
-
77149136136
-
Simulation of osmotic pressure in concentrated aqueous salt solutions
-
Luo Y, Roux B. 2010. Simulation of osmotic pressure in concentrated aqueous salt solutions. J. Phys. Chem. Lett. 1:183-89
-
(2010)
J. Phys. Chem. Lett.
, vol.1
, pp. 183-189
-
-
Luo, Y.1
Roux, B.2
|