메뉴 건너뛰기




Volumn 35, Issue 1, 2013, Pages 111-130

Finding best algorithmic components for clustering microarray data

Author keywords

Bioinformatics; Clustering; Component based algorithms; Microarray data

Indexed keywords

BIOINFORMATICS; DIAGNOSIS;

EID: 84875455161     PISSN: 02191377     EISSN: 02193116     Source Type: Journal    
DOI: 10.1007/s10115-012-0542-5     Document Type: Article
Times cited : (7)

References (73)
  • 1
    • 34447330447 scopus 로고    scopus 로고
    • A k-mean clustering algorithm for mixed numeric and categorical data
    • doi: 10. 1016/j. datak. 2007. 03. 016
    • Ahmad A, Dey L (2007) A k-mean clustering algorithm for mixed numeric and categorical data. Data Knowl Eng. doi: 10. 1016/j. datak. 2007. 03. 016.
    • (2007) Data Knowl Eng
    • Ahmad, A.1    Dey, L.2
  • 2
    • 0016355478 scopus 로고
    • A new look at the statistical model identification
    • doi: 10. 1109/TAC. 1974. 1100705
    • Akaike H (1974) A new look at the statistical model identification. IEEE Trans Autom Control. doi: 10. 1109/TAC. 1974. 1100705.
    • (1974) IEEE Trans Autom Control
    • Akaike, H.1
  • 3
    • 65549104397 scopus 로고    scopus 로고
    • A roadmap of clustering algorithms: finding a match for a biomedical application
    • Andreopoulos B, An A, Wang X et al (2009) A roadmap of clustering algorithms: finding a match for a biomedical application. Br Bioinform 10(3): 297-314.
    • (2009) Br Bioinform , vol.10 , Issue.3 , pp. 297-314
    • Andreopoulos, B.1    An, A.2    Wang, X.3
  • 6
    • 84855611418 scopus 로고    scopus 로고
    • BicFinder: A biclustering algorithm for microarray data analysis
    • doi:10.1007/s10115-011-0383-7
    • Ayadi W, Elloumi M, Hao JK (2012) BicFinder: A biclustering algorithm for microarray data analysis. Knowl Inf Syst 30: 341-358. doi: 10. 1007/s10115-011-0383-7.
    • (2012) Knowl Inf Syst , vol.30 , pp. 341-358
    • Ayadi, W.1    Elloumi, M.2    Hao, J.K.3
  • 7
    • 84865438432 scopus 로고    scopus 로고
    • Interpretable and reconfigurable clustering of document datasets by deriving word-based rules
    • doi: 10. 1007/s10115-011-0446-9
    • Balachandran V, Khemani D (2011) Interpretable and reconfigurable clustering of document datasets by deriving word-based rules. Knowl Inf Syst. doi: 10. 1007/s10115-011-0446-9.
    • (2011) Knowl Inf Syst
    • Balachandran, V.1    Khemani, D.2
  • 8
    • 80053313853 scopus 로고    scopus 로고
    • Measuring gene similarity by means of the classification distance
    • doi:10.1007/s10115-010-0374-0
    • Baralis E, Bruno G, Flori A (2011) Measuring gene similarity by means of the classification distance. Knowl Inf Syst 29: 81-101. doi: 10. 1007/s10115-010-0374-0.
    • (2011) Knowl Inf Syst , vol.29 , pp. 81-101
    • Baralis, E.1    Bruno, G.2    Flori, A.3
  • 9
    • 78650792692 scopus 로고    scopus 로고
    • Clustering gene expression data with a penalized graph-based metric
    • Baya AE, Granitto PM (2011) Clustering gene expression data with a penalized graph-based metric. BMC bioinf 12: 1-18.
    • (2011) BMC Bioinf , vol.12 , pp. 1-18
    • Baya, A.E.1    Granitto, P.M.2
  • 11
    • 33846606051 scopus 로고    scopus 로고
    • Clustering methods for microarray gene expression data
    • doi:10.1089/omi.2006.10.507
    • Belacel N, Wang Q, Cuperlovic-Culf M (2006) Clustering methods for microarray gene expression data. OMICS J Integr Biol 10(4): 507-531. doi: 10. 1089/omi. 2006. 10. 507.
    • (2006) OMICS J Integr Biol , vol.10 , Issue.4 , pp. 507-531
    • Belacel, N.1    Wang, Q.2    Cuperlovic-Culf, M.3
  • 13
    • 85153959666 scopus 로고
    • Convergence properties of the k-means algorithms
    • G. Tesauro and D. Touretzky (Eds.), Cambridge: MIT Press
    • Bottou L, Bengio Y (1995) Convergence properties of the k-means algorithms. In: Tesauro G, Touretzky D (eds) Advances in neural information processing systems 7. MIT Press, Cambridge, pp 585-592.
    • (1995) Advances in Neural Information Processing Systems 7 , pp. 585-592
    • Bottou, L.1    Bengio, Y.2
  • 14
    • 77957752478 scopus 로고    scopus 로고
    • An integration of WordNet and fuzzy association rule mining for multi-label document clustering
    • doi: j. datak. 2010. 08. 003
    • Chen C-L, Tseng FSC (2010) An integration of WordNet and fuzzy association rule mining for multi-label document clustering. Data Knowl Eng 69(11): 1208-1226. doi: j. datak. 2010. 08. 003.
    • (2010) Data Knowl Eng , vol.69 , Issue.11 , pp. 1208-1226
    • Chen, C.-L.1    Tseng, F.S.C.2
  • 15
    • 0041328214 scopus 로고    scopus 로고
    • k*-means: A new generalized k-means clustering algorithm
    • doi:10.1016/S0167-8655(03)00146-6
    • Cheung Y (2003) k*-means: A new generalized k-means clustering algorithm. Pattern Recognit Lett 24(15): 2883-2893. doi: 10. 1016/S0167-8655(03)00146-6.
    • (2003) Pattern Recognit Lett , vol.24 , Issue.15 , pp. 2883-2893
    • Cheung, Y.1
  • 16
    • 84862701443 scopus 로고    scopus 로고
    • A clustering approach for sampling data streams in sensor networks
    • doi: 10. 1007/s10115-011-0448-7
    • Da Silva A, Chiky R, Hébrail G (2011) A clustering approach for sampling data streams in sensor networks. Knowl Inf Syst. doi: 10. 1007/s10115-011-0448-7.
    • (2011) Knowl Inf Syst
    • Da Silva, A.1    Chiky, R.2    Hébrail, G.3
  • 20
    • 75149150690 scopus 로고    scopus 로고
    • Reusable components for partitioning clustering algorithms
    • doi:10.1007/s10462-009-9133-6
    • Delibašić B, Kirchner K, Ruhland J et al (2009) Reusable components for partitioning clustering algorithms. Artif Intell Rev 32: 59-75. doi: 10. 1007/s10462-009-9133-6.
    • (2009) Artif Intell Rev , vol.32 , pp. 59-75
    • Delibašić, B.1    Kirchner, K.2    Ruhland, J.3
  • 21
    • 17944394324 scopus 로고    scopus 로고
    • Fuzzy C-means method for clustering microarray data
    • Dembélé D, Kastner P (2003) Fuzzy C-means method for clustering microarray data. Bioinformatics 19: 973-980.
    • (2003) Bioinformatics , vol.19 , pp. 973-980
    • Dembélé, D.1    Kastner, P.2
  • 26
    • 73049108426 scopus 로고    scopus 로고
    • Collaborative clustering with background knowledge
    • doi:10.1016/j.datak.2009.10.004
    • Forestier G, Gançarski P, Wemmert C (2010) Collaborative clustering with background knowledge. Data Knowl Eng 69(2): 211-228. doi: 10. 1016/j. datak. 2009. 10. 004.
    • (2010) Data Knowl Eng , vol.69 , Issue.2 , pp. 211-228
    • Forestier, G.1    Gançarski, P.2    Wemmert, C.3
  • 27
    • 69249203645 scopus 로고    scopus 로고
    • K-boost: A scalable algorithm for high-quality clustering of microarray gene expression data
    • doi:10.1089/cmb.2008.0201
    • Geraci F, Leoncini M, Montangero M et al (2009) K-boost: A scalable algorithm for high-quality clustering of microarray gene expression data. J Comput Biol J Comput Mol Cell Biol 16(6): 859-873. doi: 10. 1089/cmb. 2008. 0201.
    • (2009) J Comput Biol J Comput Mol Cell Biol , vol.16 , Issue.6 , pp. 859-873
    • Geraci, F.1    Leoncini, M.2    Montangero, M.3
  • 28
    • 78651336872 scopus 로고    scopus 로고
    • Speeding up the consensus clustering methodology for microarray data analysis
    • doi: 10. 1186/1748-7188-6-1
    • Giancarlo R, Utro F (2011) Speeding up the consensus clustering methodology for microarray data analysis. Algorithms Mol Biol AMB 6(1). doi: 10. 1186/1748-7188-6-1.
    • (2011) Algorithms Mol Biol AMB , vol.6 , Issue.1
    • Giancarlo, R.1    Utro, F.2
  • 29
    • 77954619865 scopus 로고    scopus 로고
    • Distance functions, clustering algorithms and microarray data analysis
    • In: Blum C, Battiti R (eds)
    • Giancarlo R, Lo Bosco G, Pinello L (2010) Distance functions, clustering algorithms and microarray data analysis. In: Blum C, Battiti R (eds) Learning and intelligent, optimization, vol 6073, pp 125-138.
    • (2010) Learning and intelligent, optimization , vol.6073 , pp. 125-138
    • Giancarlo, R.1    Lo Bosco, G.2    Pinello, L.3
  • 30
    • 84859336846 scopus 로고    scopus 로고
    • Using principal components analysis and clustering analysis to assess the similarity between conveyor belts
    • Grujic M, Andrejiová M, Marasová D et al (2012) Using principal components analysis and clustering analysis to assess the similarity between conveyor belts. Tech Technol Educ Manag TTEM 7(1): 4-10.
    • (2012) Tech Technol Educ Manag TTEM , vol.7 , Issue.1 , pp. 4-10
    • Grujic, M.1    Andrejiová, M.2    Marasová, D.3
  • 33
    • 0001138328 scopus 로고
    • A K-means clustering algorithm
    • Hartigan JA, Wong MA (1979) A K-means clustering algorithm. Appl Stat 28: 100-108.
    • (1979) Appl Stat , vol.28 , pp. 100-108
    • Hartigan, J.A.1    Wong, M.A.2
  • 34
    • 77954195198 scopus 로고    scopus 로고
    • LCE: A link-based cluster ensemble method for improved gene expression data analysis
    • Iam-on N, Boongoen T, Garrett S (2010) LCE: A link-based cluster ensemble method for improved gene expression data analysis. Bioinformatics 26: 1513-1519.
    • (2010) Bioinformatics , vol.26 , pp. 1513-1519
    • Iam-On, N.1    Boongoen, T.2    Garrett, S.3
  • 37
    • 84874277382 scopus 로고    scopus 로고
    • Comparative analysis of k-mean based algorithms
    • Kumar P, Wasan SK (2010) Comparative analysis of k-mean based algorithms. Intl J Comput Sci Netw Secur 10(4): 314-318.
    • (2010) Intl J Comput Sci Netw Secur , vol.10 , Issue.4 , pp. 314-318
    • Kumar, P.1    Wasan, S.K.2
  • 38
    • 79951676428 scopus 로고    scopus 로고
    • Document clustering using synthetic cluster prototypes
    • doi:j.datak.2010.12.002
    • Kalogeratos A, Likas A (2011) Document clustering using synthetic cluster prototypes. Data Knowl Eng 70(3): 284-306. doi: j. datak. 2010. 12. 002.
    • (2011) Data Knowl Eng , vol.70 , Issue.3 , pp. 284-306
    • Kalogeratos, A.1    Likas, A.2
  • 39
    • 0020102027 scopus 로고
    • Least squares quantization in PCM
    • doi:10.1109/TIT.1982.1056489
    • Lloyd S (1982) Least squares quantization in PCM. IEEE Trans Inf Theory 28(2): 129-137. doi: 10. 1109/TIT. 1982. 1056489.
    • (1982) IEEE Trans Inf Theory , vol.28 , Issue.2 , pp. 129-137
    • Lloyd, S.1
  • 40
    • 84965559165 scopus 로고
    • Methodology review: clustering methods
    • doi:10.1177/014662168701100401
    • Milligan GW, Cooper MC (1987) Methodology review: clustering methods. Appl Psychol Meas 11(4): 329-354. doi: 10. 1177/014662168701100401.
    • (1987) Appl Psychol Meas , vol.11 , Issue.4 , pp. 329-354
    • Milligan, G.W.1    Cooper, M.C.2
  • 41
    • 84861100607 scopus 로고    scopus 로고
    • Wiki as a corporate learning tool: case study for software development company
    • doi: 10. 1080/0144929X. 2011. 642894
    • Milovanović M, Minović M, Štavljanin V et al (2012) Wiki as a corporate learning tool: case study for software development company. Behav Inf Technol. doi: 10. 1080/0144929X. 2011. 642894.
    • (2012) Behav Inf Technol
    • Milovanović, M.1    Minović, M.2    Štavljanin, V.3
  • 43
    • 71949123741 scopus 로고    scopus 로고
    • Subspace and projected clustering: experimental evaluation and analysis
    • doi:10.1007/s10115-009-0226-y
    • Moise G, Zimek A, Kröger P et al (2009) Subspace and projected clustering: experimental evaluation and analysis. Knowl Inf Syst 21(3): 299-326. doi: 10. 1007/s10115-009-0226-y.
    • (2009) Knowl Inf Syst , vol.21 , Issue.3 , pp. 299-326
    • Moise, G.1    Zimek, A.2    Kröger, P.3
  • 44
    • 0038724494 scopus 로고    scopus 로고
    • Consensus clustering: A resampling-based method for class discovery and visualization of gene expression microarray data
    • doi:10.1023/A:1023949509487
    • Monti S, Tamayo P, Mesirov J et al (2003) Consensus clustering: A resampling-based method for class discovery and visualization of gene expression microarray data. Mach Learn 52: 91-118. doi: 10. 1023/A: 1023949509487.
    • (2003) Mach Learn , vol.52 , pp. 91-118
    • Monti, S.1    Tamayo, P.2    Mesirov, J.3
  • 46
    • 73449106435 scopus 로고    scopus 로고
    • Investigation of a new GRASP-based clustering algorithm applied to biological data
    • doi:10.1016/j.cor.2009.02.014
    • Nascimento MCV, Toledo FMB, Carvalho A (2010) Investigation of a new GRASP-based clustering algorithm applied to biological data. Comput Oper Res 37(8): 1381-1388. doi: 10. 1016/j. cor. 2009. 02. 014.
    • (2010) Comput Oper Res , vol.37 , Issue.8 , pp. 1381-1388
    • Nascimento, M.C.V.1    Toledo, F.M.B.2    Carvalho, A.3
  • 48
    • 23944451661 scopus 로고    scopus 로고
    • Microarray data mining: facing the challenges
    • doi:10.1145/980972.980974
    • Piatetsky-Shapiro G, Tamayo P (2003) Microarray data mining: facing the challenges. ACM SIGKDD Explor Newsl 5(2): 1-5. doi: 10. 1145/980972. 980974.
    • (2003) ACM SIGKDD Explor Newsl , vol.5 , Issue.2 , pp. 1-5
    • Piatetsky-Shapiro, G.1    Tamayo, P.2
  • 49
    • 49749128817 scopus 로고    scopus 로고
    • Consensus-based ensembles of soft clusterings
    • Punera K, Ghosh J (2008) Consensus-based ensembles of soft clusterings. Appl Artif Intell 22: 780-810.
    • (2008) Appl Artif Intell , vol.22 , pp. 780-810
    • Punera, K.1    Ghosh, J.2
  • 50
    • 79251523530 scopus 로고    scopus 로고
    • Performance of an ensemble clustering on biological datasets
    • Pirim H, Gautam D, Bhowmik T (2011) Performance of an ensemble clustering on biological datasets. Math Comput Appl 16(1): 87-96.
    • (2011) Math Comput Appl , vol.16 , Issue.1 , pp. 87-96
    • Pirim, H.1    Gautam, D.2    Bhowmik, T.3
  • 51
    • 0035375137 scopus 로고    scopus 로고
    • Computational analysis of microarray data
    • Quackenbush J (2001) Computational analysis of microarray data. Nat Rev Genet 2: 418-427.
    • (2001) Nat Rev Genet , vol.2 , pp. 418-427
    • Quackenbush, J.1
  • 52
    • 80053490675 scopus 로고    scopus 로고
    • Application of density based clustering to microarray data analysis
    • Raczynski L, Wozniak K, Rubel T, Zaremba K (2010) Application of density based clustering to microarray data analysis. Int J Electron Telecommun 56(3): 281-286.
    • (2010) Int J Electron Telecommun , vol.56 , Issue.3 , pp. 281-286
    • Raczynski, L.1    Wozniak, K.2    Rubel, T.3    Zaremba, K.4
  • 53
    • 77958153220 scopus 로고    scopus 로고
    • Educational data mining: A review of the state-of-the-art
    • Romero C, Ventura S (2011) Educational data mining: A review of the state-of-the-art. IEEE Trans Syst Man Cybern C Appl Rev 40(6): 601-618.
    • (2011) IEEE Trans Syst Man Cybern C Appl Rev , vol.40 , Issue.6 , pp. 601-618
    • Romero, C.1    Ventura, S.2
  • 54
    • 0023453329 scopus 로고
    • Silhouettes: A graphical aid to the interpretation and validation of cluster analysis
    • doi:10.1016/0377-0427(87)90125-7
    • Rousseeuw PJ (1987) Silhouettes: A graphical aid to the interpretation and validation of cluster analysis. J Comput Appl Math 20: 53-65. doi: 10. 1016/0377-0427(87)90125-7.
    • (1987) J Comput Appl Math , vol.20 , pp. 53-65
    • Rousseeuw, P.J.1
  • 55
    • 84861092784 scopus 로고    scopus 로고
    • Diversity of specific quantitative, statistical and social methods, techniques and management models in management system
    • Savoiu G, Jaško O, Čudanov M (2010) Diversity of specific quantitative, statistical and social methods, techniques and management models in management system. Management 14(52): 5-13.
    • (2010) Management , vol.14 , Issue.52 , pp. 5-13
    • Savoiu, G.1    Jaško, O.2    Čudanov, M.3
  • 56
    • 22044455069 scopus 로고    scopus 로고
    • Density-based clustering in spatial databases: the algorithm GDBSCAN and its applications
    • Sander J, Ester M, Kriegel H et al (1998) Density-based clustering in spatial databases: the algorithm GDBSCAN and its applications. Data Min Knowl Disc 2(2): 169-194.
    • (1998) Data Min Knowl Disc , vol.2 , Issue.2 , pp. 169-194
    • Sander, J.1    Ester, M.2    Kriegel, H.3
  • 57
    • 0000120766 scopus 로고
    • Estimating the dimension of a model
    • Schwarz G (1978) Estimating the dimension of a model. Ann Stat 6(2): 461-464.
    • (1978) Ann Stat , vol.6 , Issue.2 , pp. 461-464
    • Schwarz, G.1
  • 59
    • 84859896284 scopus 로고    scopus 로고
    • Sleeved co-clustering of lagged data
    • doi: 10. 1007/s10115-011-0420-6
    • Shaham E, Sarne D, Ben-Moshe B (2011) Sleeved co-clustering of lagged data. Knowl Inf Syst. doi: 10. 1007/s10115-011-0420-6.
    • (2011) Knowl Inf Syst
    • Shaham, E.1    Sarne, D.2    Ben-Moshe, B.3
  • 60
    • 78650934307 scopus 로고    scopus 로고
    • Management of family farms-Implementation of fuzzy method in short-term planning
    • Sedlak O, Kocic-Vugdelija V, Kudumovic M et al (2010) Management of family farms-Implementation of fuzzy method in short-term planning. Tech Technol Educ Manag TTEM 5(4): 710-718.
    • (2010) Tech Technol Educ Manag TTEM , vol.5 , Issue.4 , pp. 710-718
    • Sedlak, O.1    Kocic-Vugdelija, V.2    Kudumovic, M.3
  • 62
    • 35748939406 scopus 로고    scopus 로고
    • The need for open source software in machine learning
    • Sonnenburg S, Braun M, Ong CS et al (2007) The need for open source software in machine learning. J Mach Learn Res 8: 2443-2466.
    • (2007) J Mach Learn Res , vol.8 , pp. 2443-2466
    • Sonnenburg, S.1    Braun, M.2    Ong, C.S.3
  • 63
    • 33750021210 scopus 로고    scopus 로고
    • Evaluation and comparison of gene clustering methods in microarray analysis
    • Thalamuthu A, Mukhopadhyay I, Zheng X et al (2006) Evaluation and comparison of gene clustering methods in microarray analysis. Bioinformatics 22: 2405-2412.
    • (2006) Bioinformatics , vol.22 , pp. 2405-2412
    • Thalamuthu, A.1    Mukhopadhyay, I.2    Zheng, X.3
  • 64
    • 78649420560 scopus 로고    scopus 로고
    • Information theoretic measures for clusterings comparison: variants, properties, normalization and correction for chance
    • Vinh NX (2010) Information theoretic measures for clusterings comparison: variants, properties, normalization and correction for chance. J Mach Learn Res 11: 2837-2854.
    • (2010) J Mach Learn Res , vol.11 , pp. 2837-2854
    • Vinh, N.X.1
  • 66
    • 84867097182 scopus 로고    scopus 로고
    • Web user clustering and web prefetching using random indexing with weight functions
    • doi: 10. 1007/s10115-011-0453-x
    • Wan M, Jönsson A, Wang C, Li L, Yang Y (2011) Web user clustering and web prefetching using random indexing with weight functions. Knowl Inf Syst. doi: 10. 1007/s10115-011-0453-x.
    • (2011) Knowl Inf Syst
    • Wan, M.1    Jönsson, A.2    Wang, C.3    Li, L.4    Yang, Y.5
  • 68
    • 0036649020 scopus 로고    scopus 로고
    • Large-scale prediction of Saccharomyces cerevisiae gene function using overlapping transcriptional clusters
    • Wu LF, Hughes TR, Davierwala AP (2002) Large-scale prediction of Saccharomyces cerevisiae gene function using overlapping transcriptional clusters. Nat genet 31: 255-265.
    • (2002) Nat Genet , vol.31 , pp. 255-265
    • Wu, L.F.1    Hughes, T.R.2    Davierwala, A.P.3
  • 69
    • 37549018049 scopus 로고    scopus 로고
    • Top 10 algorithms in data mining
    • doi:10.1007/s10115-007-0114-2
    • Wu X, Kumar V, Quinlan JR et al (2007) Top 10 algorithms in data mining. Knowl Inf Syst 14(1): 1-37. doi: 10. 1007/s10115-007-0114-2.
    • (2007) Knowl Inf Syst , vol.14 , Issue.1 , pp. 1-37
    • Wu, X.1    Kumar, V.2    Quinlan, J.R.3
  • 70
    • 0026204245 scopus 로고
    • A validity measure for fuzzy clustering
    • Xie XL, Beni G (1991) A validity measure for fuzzy clustering. IEEE Trans Patt Anal Mach Intell 13(8): 841-847.
    • (1991) IEEE Trans Patt Anal Mach Intell , vol.13 , Issue.8 , pp. 841-847
    • Xie, X.L.1    Beni, G.2
  • 71
    • 78650121315 scopus 로고    scopus 로고
    • Clustering algorithms in biomedical research: A review
    • doi:10.1109/RBME.2010.2083647
    • Xu R, Wunsch DC (2010) Clustering algorithms in biomedical research: A review. IEEE Rev Biomed Eng 3: 120-154. doi: 10. 1109/RBME. 2010. 2083647.
    • (2010) IEEE Rev Biomed Eng , vol.3 , pp. 120-154
    • Xu, R.1    Wunsch, D.C.2
  • 72
    • 84872326145 scopus 로고    scopus 로고
    • Semi-supervised fuzzy co-clustering algorithm for document classification
    • doi: 10. 1007/s10115-011-0454-9
    • Yan Y, Chen L, Tjhi W-C (2011) Semi-supervised fuzzy co-clustering algorithm for document classification. Knowl Inf Syst. doi: 10. 1007/s10115-011-0454-9.
    • (2011) Knowl Inf Syst
    • Yan, Y.1    Chen, L.2    Tjhi, W.-C.3
  • 73
    • 36448947175 scopus 로고    scopus 로고
    • Graph-based consensus clustering for class discovery from gene expression data
    • Yu Z, Wong H-S, Wang H (2007) Graph-based consensus clustering for class discovery from gene expression data. Bioinformatics 23: 2888-2896.
    • (2007) Bioinformatics , vol.23 , pp. 2888-2896
    • Yu, Z.1    Wong, H.-S.2    Wang, H.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.