-
2
-
-
3142682233
-
K-means projective clustering
-
P. K. Agarwal and N. H. Mustafa. k-means projective clustering. In PODS, pages 155-165, 2004.
-
(2004)
PODS
, pp. 155-165
-
-
Agarwal, P.K.1
Mustafa, N.H.2
-
3
-
-
84969135721
-
K-means++: The advantages of careful seeding
-
D. Arthur and S. Vassilvitskii. k-means++: the advantages of careful seeding. In SODA, pages 1027-1035, 2007.
-
(2007)
SODA
, pp. 1027-1035
-
-
Arthur, D.1
Vassilvitskii, S.2
-
4
-
-
3142776554
-
Local search heuristics for k-median and facility location problems
-
V. Arya, N. Garg, R. Khandekar, A. Meyerson, K. Munagala, and V. Pandit. Local search heuristics for k-median and facility location problems. SIAM J. Comput., 33(3):544-562, 2004.
-
(2004)
SIAM J. Comput.
, vol.33
, Issue.3
, pp. 544-562
-
-
Arya, V.1
Garg, N.2
Khandekar, R.3
Meyerson, A.4
Munagala, K.5
Pandit, V.6
-
5
-
-
0030393774
-
Probabilistic approximations of metric spaces and its algorithmic applications
-
Y. Bartal. Probabilistic approximations of metric spaces and its algorithmic applications. In FOCS, pages 184-193, 1996.
-
(1996)
FOCS
, pp. 184-193
-
-
Bartal, Y.1
-
6
-
-
0031623888
-
On approximating arbitrary metrices by tree metrics
-
Y. Bartal. On approximating arbitrary metrices by tree metrics. In STOC, pages 161-168, 1998.
-
(1998)
STOC
, pp. 161-168
-
-
Bartal, Y.1
-
8
-
-
77954908015
-
Parallel approximation algorithms for facility-location problems
-
G. E. Blelloch and K. Tangwongsan. Parallel approximation algorithms for facility-location problems. In SPAA, pages 315-324, 2010.
-
(2010)
SPAA
, pp. 315-324
-
-
Blelloch, G.E.1
Tangwongsan, K.2
-
9
-
-
11144328291
-
Incremental clustering and dynamic information retrieval
-
DOI 10.1137/S0097539702418498
-
M. Charikar, C. Chekuri, T. Feder, and R. Motwani. Incremental clustering and dynamic information retrieval. SIAM J. Comput., 33(6):1417-1440, 2004. (Pubitemid 40026770)
-
(2004)
SIAM Journal on Computing
, vol.33
, Issue.6
, pp. 1417-1440
-
-
Charikar, M.1
Chekuri, C.2
Feder, T.3
Motwani, R.4
-
10
-
-
0031641921
-
Rounding via trees: Deterministic approximation algorithms for group steiner trees and k-median
-
M. Charikar, C. Chekuri, A. Goel, and S. Guha. Rounding via trees: Deterministic approximation algorithms for group steiner trees and k-median. In STOC, pages 114-123, 1998.
-
(1998)
STOC
, pp. 114-123
-
-
Charikar, M.1
Chekuri, C.2
Goel, A.3
Guha, S.4
-
12
-
-
23844463259
-
A constant-factor approximation algorithm for the k-median problem
-
M. Charikar, S. Guha, É. Tardos, and D. B. Shmoys. A constant-factor approximation algorithm for the k-median problem. J. Comput. Syst. Sci., 65(1):129-149, 2002.
-
(2002)
J. Comput. Syst. Sci.
, vol.65
, Issue.1
, pp. 129-149
-
-
Charikar, M.1
Guha, S.2
Tardos, É.3
Shmoys, D.B.4
-
14
-
-
51849153520
-
A constant factor approximation algorithm for k-median clustering with outliers
-
K. Chen. A constant factor approximation algorithm for k-median clustering with outliers. In SODA, pages 826-835, 2008.
-
(2008)
SODA
, pp. 826-835
-
-
Chen, K.1
-
16
-
-
85030321143
-
MapReduce: Simplified data processing on large clusters
-
J. Dean and S. Ghemawat. MapReduce: Simplified data processing on large clusters. In Proceedings of OSDI, pages 137-150, 2004.
-
(2004)
Proceedings of OSDI
, pp. 137-150
-
-
Dean, J.1
Ghemawat, S.2
-
17
-
-
0022012617
-
A simple heuristic for the p-centre problem
-
M. E. Dyer and A. M. Frieze. A simple heuristic for the p-centre problem. Operations Research Letters, 3(6):285 - 288, 1985.
-
(1985)
Operations Research Letters
, vol.3
, Issue.6
, pp. 285-288
-
-
Dyer, M.E.1
Frieze, A.M.2
-
18
-
-
77956508106
-
On distributing symmetric streaming computations
-
J. Feldman, S. Muthukrishnan, A. Sidiropoulos, C. Stein, and Z. Svitkina. On distributing symmetric streaming computations. ACM Transactions on Algorithms, 6(4), 2010.
-
(2010)
ACM Transactions on Algorithms
, vol.6
, Issue.4
-
-
Feldman, J.1
Muthukrishnan, S.2
Sidiropoulos, A.3
Stein, C.4
Svitkina, Z.5
-
19
-
-
0021938963
-
Clustering to minimize the maximum intercluster distance
-
T. F. Gonzalez. Clustering to minimize the maximum intercluster distance. Theoretical Computer Science, 38:293 - 306, 1985.
-
(1985)
Theoretical Computer Science
, vol.38
, pp. 293-306
-
-
Gonzalez, T.F.1
-
20
-
-
0038633423
-
Clustering data streams: Theory and practice
-
S. Guha, A. Meyerson, N. Mishra, R. Motwani, and L. O'Callaghan. Clustering data streams: Theory and practice. IEEE Trans. Knowl. Data Eng., 15(3):515-528, 2003.
-
(2003)
IEEE Trans. Knowl. Data Eng.
, vol.15
, Issue.3
, pp. 515-528
-
-
Guha, S.1
Meyerson, A.2
Mishra, N.3
Motwani, R.4
O'callaghan, L.5
-
21
-
-
77954912225
-
Simpler analyses of local search algorithms for facility location
-
abs/0809
-
A. Gupta and K. Tangwongsan. Simpler analyses of local search algorithms for facility location. CoRR, abs/0809.2554, 2008.
-
(2008)
CoRR
, pp. 2554
-
-
Gupta, A.1
Tangwongsan, K.2
-
22
-
-
0345580221
-
Large-Scale Clustering of cDNA-Fingerprinting Data
-
November
-
R. Herwig, A. J. Poustka, C. Müller, C. Bull, H. Lehrach, and J. O'Brien. Large-Scale Clustering of cDNA-Fingerprinting Data. Genome Research, 9(11):1093-1105, November 1999.
-
(1999)
Genome Research
, vol.9
, Issue.11
, pp. 1093-1105
-
-
Herwig, R.1
Poustka, A.J.2
Müller, C.3
Bull, C.4
Lehrach, H.5
O'brien, J.6
-
23
-
-
0022064511
-
A best possible heuristic for the k-center problem
-
May
-
D. S. Hochbaum and D. B. Shmoys. A best possible heuristic for the k-center problem. Mathematics of Operations Research, 10(2):180-184, May 1985.
-
(1985)
Mathematics of Operations Research
, vol.10
, Issue.2
, pp. 180-184
-
-
Hochbaum, D.S.1
Shmoys, D.B.2
-
25
-
-
77949807306
-
Hadi: Fast diameter estimation and mining in massive graphs with hadoop
-
Carnegie Mellon University Pittsburgh, December
-
U. Kang, C. Tsourakakis, A. P. Appel, C. Faloutsos, and J. Leskovec. Hadi: Fast diameter estimation and mining in massive graphs with hadoop. Technical report, School of Computer Science, Carnegie Mellon University Pittsburgh, December 2008.
-
(2008)
Technical Report, School of Computer Science
-
-
Kang, U.1
Tsourakakis, C.2
Appel, A.P.3
Faloutsos, C.4
Leskovec, J.5
-
26
-
-
77951678492
-
A model of computation for mapreduce
-
H. J. Karloff, S. Suri, and S. Vassilvitskii. A model of computation for mapreduce. In SODA, pages 938-948, 2010.
-
(2010)
SODA
, pp. 938-948
-
-
Karloff, H.J.1
Suri, S.2
Vassilvitskii, S.3
-
29
-
-
58149264820
-
Distributed k-median clustering with application to image clustering
-
A. Ma and I. K. Sethi. Distributed k-median clustering with application to image clustering. In PRIS, pages 215-220, 2007.
-
(2007)
PRIS
, pp. 215-220
-
-
Ma, A.1
Sethi, I.K.2
-
30
-
-
77954723629
-
Pregel: A system for large-scale graph processing
-
G. Malewicz, M. H. Austern, A. J. C. Bik, J. C. Dehnert, I. Horn, N. Leiser, and G. Czajkowski. Pregel: a system for large-scale graph processing. In SIGMOD Conference, pages 135-146, 2010.
-
(2010)
SIGMOD Conference
, pp. 135-146
-
-
Malewicz, G.1
Austern, M.H.2
Bik, A.J.C.3
Dehnert, J.C.4
Horn, I.5
Leiser, N.6
Czajkowski, G.7
-
31
-
-
51849117754
-
Streaming algorithms for k-center clustering with outliers and with anonymity
-
R. M. McCutchen and S. Khuller. Streaming algorithms for k-center clustering with outliers and with anonymity. In APPROX-RANDOM, pages 165-178, 2008.
-
(2008)
APPROX-RANDOM
, pp. 165-178
-
-
Mccutchen, R.M.1
Khuller, S.2
-
32
-
-
18444414341
-
Quick k-median, k-center, and facility location for sparse graphs
-
M. Thorup. Quick k-median, k-center, and facility location for sparse graphs. SIAM J. Comput., 34(2):405-432, 2004.
-
(2004)
SIAM J. Comput.
, vol.34
, Issue.2
, pp. 405-432
-
-
Thorup, M.1
-
33
-
-
80052665454
-
Hadoop: The definitive guide
-
T. White. Hadoop: The Definitive Guide. O'Reilly Media, 2009.
-
(2009)
O'Reilly Media
-
-
White, T.1
|