메뉴 건너뛰기




Volumn 34, Issue 1, 2013, Pages 55-74

Semi-supervised fuzzy co-clustering algorithm for document categorization

Author keywords

Document categorization; Fuzzy co clustering; Must link Cannot link constraint; Semi supervised clustering

Indexed keywords

BENCHMARKING; CLUSTER ANALYSIS; COST FUNCTIONS; FUZZY CLUSTERING; ITERATIVE METHODS; LARGE DATASET; SEMI-SUPERVISED LEARNING; STABILITY CRITERIA;

EID: 84872326145     PISSN: 02191377     EISSN: 02193116     Source Type: Journal    
DOI: 10.1007/s10115-011-0454-9     Document Type: Article
Times cited : (17)

References (52)
  • 1
    • 79961211393 scopus 로고    scopus 로고
    • Statistical semantics for enhancing document clustering
    • ADDIN EN.REFLIST
    • ADDIN EN. REFLIST: (2011) Statistical semantics for enhancing document clustering. Knowl Inf Syst 28(2): 365-393.
    • (2011) Knowl Inf Syst , vol.28 , Issue.2 , pp. 365-393
    • Farahat, A.K.1    Kamet, M.S.2
  • 10
    • 57149147265 scopus 로고    scopus 로고
    • Non-negative matrix factorization for semi-supervised data clustering
    • Chen Y, Rege M et al (2008) Non-negative matrix factorization for semi-supervised data clustering. Knowl Inf Syst 17(3): 355-379.
    • (2008) Knowl Inf Syst , vol.17 , Issue.3 , pp. 355-379
    • Chen, Y.1    Rege, M.2
  • 15
    • 0034824884 scopus 로고    scopus 로고
    • Concept decompositions for large sparse text data using clustering
    • Dhillon IS, Modha DS (2001) Concept decompositions for large sparse text data using clustering. Mach Learn 42(1-2): 143-175.
    • (2001) Mach Learn , vol.42 , Issue.1-2 , pp. 143-175
    • Dhillon, I.S.1    Modha, D.S.2
  • 17
    • 79959506150 scopus 로고    scopus 로고
    • Composite kernels for semi-supervised clustering
    • Domeniconi G, Peng J et al (2011) Composite kernels for semi-supervised clustering. Knowl Inf Syst 28(1): 99-116.
    • (2011) Knowl Inf Syst , vol.28 , Issue.1 , pp. 99-116
    • Domeniconi, G.1    Peng, J.2
  • 19
    • 79961208617 scopus 로고    scopus 로고
    • On ontology-driven document clustering using core semantic features
    • Fodeh S, Punch B et al (2011) On ontology-driven document clustering using core semantic features. Knowl Inf Syst 28: 395-421.
    • (2011) Knowl Inf Syst , vol.28 , pp. 395-421
    • Fodeh, S.1    Punch, B.2
  • 20
    • 0036458443 scopus 로고    scopus 로고
    • Simultaneous categorization of text documents and identification of cluster-dependent keywords
    • Frigui H, Nasraoui O (2002) Simultaneous categorization of text documents and identification of cluster-dependent keywords. IEEE international conference on fuzzy systems. pp 1108-1113.
    • (2002) IEEE international conference on fuzzy systems , pp. 1108-1113
    • Frigui, H.1    Nasraoui, O.2
  • 23
    • 38349172078 scopus 로고    scopus 로고
    • Active semi-supervised fuzzy clustering
    • Grira N, Crucianu M et al (2008) Active semi-supervised fuzzy clustering. Pattern Recognit 41(5): 1851-1861.
    • (2008) Pattern Recognit , vol.41 , Issue.5 , pp. 1851-1861
    • Grira, N.1    Crucianu, M.2
  • 26
    • 6344251104 scopus 로고    scopus 로고
    • Text clustering based on background knowledge
    • Hotho A, Staab S, et al (2003) Text clustering based on background knowledge. Technical report: 36.
    • (2003) Technical report: 36
    • Hotho, A.1    Staab, S.2
  • 28
    • 16544376973 scopus 로고    scopus 로고
    • Agglomerative hierarchical clustering of continuous variables based on mutual information
    • Kojadinovic I (2004) Agglomerative hierarchical clustering of continuous variables based on mutual information. Comput Stat Data Anal 46(2): 269-294.
    • (2004) Comput Stat Data Anal , vol.46 , Issue.2 , pp. 269-294
    • Kojadinovic, I.1
  • 31
    • 74549174193 scopus 로고    scopus 로고
    • Semi-supervised nonnegative matrix factorization
    • Lee H, Yoo J et al (2010) Semi-supervised nonnegative matrix factorization. IEEE Signal Process Lett 46(2): 269-294.
    • (2010) IEEE Signal Process Lett , vol.46 , Issue.2 , pp. 269-294
    • Lee, H.1    Yoo, J.2
  • 35
    • 0020102027 scopus 로고
    • Least squares quantization in PCM
    • Lloyd S (1982) LEAST SQUARES QUANTIZATION IN PCM. IEEE Transactions on Information Theory IT-28(2 pt 1): 129-137.
    • (1982) IEEE Transactions on Information Theory , vol.IT-28 , Issue.2 Pt 1 , pp. 129-137
    • Lloyd, S.1
  • 38
    • 79955993118 scopus 로고    scopus 로고
    • Short text clustering by finding core terms
    • Ni X, Quan X et al (2011) Short text clustering by finding core terms. Knowl Inf Syst 27(3): 345-365.
    • (2011) Knowl Inf Syst , vol.27 , Issue.3 , pp. 345-365
    • Ni, X.1    Quan, X.2
  • 42
    • 0014534297 scopus 로고
    • A new approach to clustering
    • Ruspini EH (1969) A new approach to clustering. Inf Control 15(1): 22-32.
    • (1969) Inf Control , vol.15 , Issue.1 , pp. 22-32
    • Ruspini, E.H.1
  • 43
    • 34547676508 scopus 로고    scopus 로고
    • Possibilistic fuzzy co-clustering of large document collections
    • Tjhi WC, Chen L (2007) Possibilistic fuzzy co-clustering of large document collections. Pattern Recognit 40(12): 3452-3466.
    • (2007) Pattern Recognit , vol.40 , Issue.12 , pp. 3452-3466
    • Tjhi, W.C.1    Chen, L.2
  • 44
    • 37349042257 scopus 로고    scopus 로고
    • A heuristic-based fuzzy co-clustering algorithm for categorization of high-dimensional data
    • Tjhi WC, Chen L (2008) A heuristic-based fuzzy co-clustering algorithm for categorization of high-dimensional data. Fuzzy Sets Syst 159(4): 371-389.
    • (2008) Fuzzy Sets Syst , vol.159 , Issue.4 , pp. 371-389
    • Tjhi, W.C.1    Chen, L.2
  • 45
    • 33748997908 scopus 로고    scopus 로고
    • Accelerated EM-based clustering of large data sets
    • Verbeek JJ, Nunnink JRJ et al (2006) Accelerated EM-based clustering of large data sets. Data Min Knowl Discov 13(3): 291-307.
    • (2006) Data Min Knowl Discov , vol.13 , Issue.3 , pp. 291-307
    • Verbeek, J.J.1    Nunnink, J.R.J.2
  • 49
    • 84879571292 scopus 로고    scopus 로고
    • Distance metric learning, with application to clustering with side-information
    • Xing EP, Ng AY et al (2003) Distance metric learning, with application to clustering with side-information. Adv Neural Inf Process Syst 15: 505-512.
    • (2003) Adv Neural Inf Process Syst , vol.15 , pp. 505-512
    • Xing, E.P.1    Ng, A.Y.2
  • 51
    • 74449083176 scopus 로고    scopus 로고
    • Semi-supervised clustering with metric learning: an adaptive kernel method
    • Yin X, Chen S et al (2010) Semi-supervised clustering with metric learning: an adaptive kernel method. Pattern Recognit 43(4): 1320-1333.
    • (2010) Pattern Recognit , vol.43 , Issue.4 , pp. 1320-1333
    • Yin, X.1    Chen, S.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.