메뉴 건너뛰기




Volumn 6, Issue 1, 2011, Pages

Speeding up the Consensus Clustering methodology for microarray data analysis

Author keywords

[No Author keywords available]

Indexed keywords


EID: 78651336872     PISSN: None     EISSN: 17487188     Source Type: Journal    
DOI: 10.1186/1748-7188-6-1     Document Type: Article
Times cited : (19)

References (37)
  • 3
    • 0000950204 scopus 로고    scopus 로고
    • Cluster Analysis and Mathematical Programming
    • Hansen P, Jaumard P. Cluster Analysis and Mathematical Programming. Mathematical Programming 1997, 79:191-215.
    • (1997) Mathematical Programming , vol.79 , pp. 191-215
    • Hansen, P.1    Jaumard, P.2
  • 10
    • 25144456056 scopus 로고    scopus 로고
    • Computational Cluster Validation in Post-genomic Data Analysis
    • 10.1093/bioinformatics/bti517, 15914541
    • Handl J, Knowles J, Kell DB. Computational Cluster Validation in Post-genomic Data Analysis. Bioinformatics 2005, 21(15):3201-3212. 10.1093/bioinformatics/bti517, 15914541.
    • (2005) Bioinformatics , vol.21 , Issue.15 , pp. 3201-3212
    • Handl, J.1    Knowles, J.2    Kell, D.B.3
  • 11
    • 0141498446 scopus 로고    scopus 로고
    • Algorithmic Approaches to Clustering Gene Expression Data
    • Cambridge, Ma.: MIT Press, Jiang T, Smith T, Xu Y, Zhang MQ
    • Shamir R, Sharan R. Algorithmic Approaches to Clustering Gene Expression Data. Current Topics in Computational Biology 2003, 120-161. Cambridge, Ma.: MIT Press, Jiang T, Smith T, Xu Y, Zhang MQ.
    • (2003) Current Topics in Computational Biology , pp. 120-161
    • Shamir, R.1    Sharan, R.2
  • 12
    • 28644449917 scopus 로고    scopus 로고
    • How Does Gene Expression Cluster Work?
    • D'haeseleer P. How Does Gene Expression Cluster Work?. Nature Biotechnology 2006, 23:1499-1501.
    • (2006) Nature Biotechnology , vol.23 , pp. 1499-1501
    • D'haeseleer, P.1
  • 14
    • 10444223920 scopus 로고    scopus 로고
    • An Optimal Hierarchical Clustering Algorithm For Gene Expression Data
    • Seal S, Comarina S, Aluru S. An Optimal Hierarchical Clustering Algorithm For Gene Expression Data. Information Processing Letters 2004, 93:143-147.
    • (2004) Information Processing Letters , vol.93 , pp. 143-147
    • Seal, S.1    Comarina, S.2    Aluru, S.3
  • 15
    • 3142700648 scopus 로고    scopus 로고
    • Subquadratic Approximation Algorithms for Clustering Problems in High Dimensional Space
    • Borodin A, Ostrovsky R, Rabani Y. Subquadratic Approximation Algorithms for Clustering Problems in High Dimensional Space. Machine Learning 2004, 56:153-167.
    • (2004) Machine Learning , vol.56 , pp. 153-167
    • Borodin, A.1    Ostrovsky, R.2    Rabani, Y.3
  • 17
    • 77950541370 scopus 로고    scopus 로고
    • A highly efficient multi-core algorithm for clustering extremely large datasets
    • 10.1186/1471-2105-11-169, 2865495, 20370922
    • Kraus J, Kestler H. A highly efficient multi-core algorithm for clustering extremely large datasets. BMC Bioinformatics 2010, 11. 10.1186/1471-2105-11-169, 2865495, 20370922.
    • (2010) BMC Bioinformatics , vol.11
    • Kraus, J.1    Kestler, H.2
  • 18
    • 34250115918 scopus 로고
    • An Examination of Procedures for Determining the Number of Clusters in a Data Set
    • Milligan G, Cooper M. An Examination of Procedures for Determining the Number of Clusters in a Data Set. Psychometrika 1985, 50:159-179.
    • (1985) Psychometrika , vol.50 , pp. 159-179
    • Milligan, G.1    Cooper, M.2
  • 19
    • 0038724494 scopus 로고    scopus 로고
    • Consensus Clustering: A resampling-based Method for Class Discovery and Visualization of Gene Expression Microarray Data
    • Monti S, Tamayo P, Mesirov J, Golub T. Consensus Clustering: A resampling-based Method for Class Discovery and Visualization of Gene Expression Microarray Data. Machine Learning 2003, 52:91-118.
    • (2003) Machine Learning , vol.52 , pp. 91-118
    • Monti, S.1    Tamayo, P.2    Mesirov, J.3    Golub, T.4
  • 20
    • 62849090487 scopus 로고    scopus 로고
    • Computational cluster validation for microarray data analysis: experimental assessment of Clest, Consensus Clustering, Figure of Merit, Gap Statistics and Model Explorer
    • 10.1186/1471-2105-9-462, 2657801, 18959783
    • Giancarlo R, Scaturro D, Utro F. Computational cluster validation for microarray data analysis: experimental assessment of Clest, Consensus Clustering, Figure of Merit, Gap Statistics and Model Explorer. BMC Bioinformatics 2008, 9:462. 10.1186/1471-2105-9-462, 2657801, 18959783.
    • (2008) BMC Bioinformatics , vol.9 , pp. 462
    • Giancarlo, R.1    Scaturro, D.2    Utro, F.3
  • 22
    • 0037172724 scopus 로고    scopus 로고
    • A Prediction-based Resampling Method for Estimating the Number of Clusters in a Dataset
    • 10.1186/gb-2002-3-7-research0036, 126241, 12184810
    • Dudoit S, Fridlyand J. A Prediction-based Resampling Method for Estimating the Number of Clusters in a Dataset. Genome Biology 2002, 3. 10.1186/gb-2002-3-7-research0036, 126241, 12184810.
    • (2002) Genome Biology , vol.3
    • Dudoit, S.1    Fridlyand, J.2
  • 24
    • 0035024021 scopus 로고    scopus 로고
    • Validating Clustering for Gene Expression Data
    • 10.1093/bioinformatics/17.4.309, 11301299
    • Yeung K, Haynor D, Ruzzo W. Validating Clustering for Gene Expression Data. Bioinformatics 2001, 17:309-318. 10.1093/bioinformatics/17.4.309, 11301299.
    • (2001) Bioinformatics , vol.17 , pp. 309-318
    • Yeung, K.1    Haynor, D.2    Ruzzo, W.3
  • 26
    • 48249151183 scopus 로고    scopus 로고
    • Nonnegative Matrix Factorization: An Analytical and Interpretative Tool in Computational Biology
    • Devarajan K. Nonnegative Matrix Factorization: An Analytical and Interpretative Tool in Computational Biology. PLoS Computational Biology 2008, 4:1-12.
    • (2008) PLoS Computational Biology , vol.4 , pp. 1-12
    • Devarajan, K.1
  • 27
    • 0038391443 scopus 로고    scopus 로고
    • Bagging to improve the accuracy of a clustering procedure
    • 10.1093/bioinformatics/btg038, 12801869
    • Dudoit S, Fridlyand J. Bagging to improve the accuracy of a clustering procedure. Bioinformatics 2003, 19(9):1090-1099. 10.1093/bioinformatics/btg038, 12801869.
    • (2003) Bioinformatics , vol.19 , Issue.9 , pp. 1090-1099
    • Dudoit, S.1    Fridlyand, J.2
  • 28
    • 0035514007 scopus 로고    scopus 로고
    • Resampling Method for Unsupervised Estimation of Cluster Validity
    • 10.1162/089976601753196030, 11674852
    • Levine E, Domany E. Resampling Method for Unsupervised Estimation of Cluster Validity. Neural Computation 2001, 13:2573-2593. 10.1162/089976601753196030, 11674852.
    • (2001) Neural Computation , vol.13 , pp. 2573-2593
    • Levine, E.1    Domany, E.2
  • 30
    • 34249855008 scopus 로고    scopus 로고
    • Model order selection for bio-molecular data clustering
    • 10.1186/1471-2105-8-S2-S7, 1892076, 17493256
    • Bertoni A, Valentini G. Model order selection for bio-molecular data clustering. BMC Bioinformatics 2007, 8. 10.1186/1471-2105-8-S2-S7, 1892076, 17493256.
    • (2007) BMC Bioinformatics , vol.8
    • Bertoni, A.1    Valentini, G.2
  • 31
    • 26444485631 scopus 로고    scopus 로고
    • Loevinger's measures of rule quality for assessing cluster stability
    • Bertrand P, Mufti GB. Loevinger's measures of rule quality for assessing cluster stability. Computational Statistics & Data Analysis 2006, 50:992-1015.
    • (2006) Computational Statistics & Data Analysis , vol.50 , pp. 992-1015
    • Bertrand, P.1    Mufti, G.B.2
  • 32
    • 77952245258 scopus 로고    scopus 로고
    • Biological Cluster Evaluation for Gene Function Prediction
    • 10.1089/cmb.2009.0031, 20078394
    • Klie S, Nikoloski Z, Selbig J. Biological Cluster Evaluation for Gene Function Prediction. Journal of Computational Biology 2010, 17:1-18. 10.1089/cmb.2009.0031, 20078394.
    • (2010) Journal of Computational Biology , vol.17 , pp. 1-18
    • Klie, S.1    Nikoloski, Z.2    Selbig, J.3
  • 33
    • 79651474619 scopus 로고    scopus 로고
    • Supplementary material web site
    • Supplementary material web site. , http://www.math.unipa.it/~raffaele/suppMaterial/speedUp/
  • 34
    • 29244458348 scopus 로고    scopus 로고
    • Genclust: A Genetic Algorithm for Clustering Gene Expression Data
    • 10.1186/1471-2105-6-289, 1343581, 16336639
    • Di Gesú V, Giancarlo R, Lo Bosco G, Raimondi A, Scaturro D. Genclust: A Genetic Algorithm for Clustering Gene Expression Data. BMC Bioinformatics 2005, 6:289. 10.1186/1471-2105-6-289, 1343581, 16336639.
    • (2005) BMC Bioinformatics , vol.6 , pp. 289
    • Di Gesú, V.1    Giancarlo, R.2    Lo Bosco, G.3    Raimondi, A.4    Scaturro, D.5
  • 35
    • 0023905024 scopus 로고
    • A Criterion for Determining the Number of Groups in a Dataset Using Sum of Squares Clustering
    • Krzanowski W, Lai Y. A Criterion for Determining the Number of Groups in a Dataset Using Sum of Squares Clustering. Biometrics 1985, 44:23-34.
    • (1985) Biometrics , vol.44 , pp. 23-34
    • Krzanowski, W.1    Lai, Y.2
  • 36
    • 33744534403 scopus 로고    scopus 로고
    • Randomized maps for assessing the reliability of patients clusters in DNA microarray data analyses
    • 10.1016/j.artmed.2006.03.005, 16720093
    • Bertoni A, Valentini G. Randomized maps for assessing the reliability of patients clusters in DNA microarray data analyses. Artificial Intelligence in Medicine 2006, 37:85-109. 10.1016/j.artmed.2006.03.005, 16720093.
    • (2006) Artificial Intelligence in Medicine , vol.37 , pp. 85-109
    • Bertoni, A.1    Valentini, G.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.