메뉴 건너뛰기




Volumn 22, Issue 7-8, 2008, Pages 780-810

Consensus-based ensembles of soft clusterings

Author keywords

[No Author keywords available]

Indexed keywords

APPLICATIONS.; CLUSTERINGS; CONSENSUS ALGORITHMS; CONSENSUS METHOD; FUZZY C-MEANS; GRAPH PARTITIONING; MAXIMUM-LIKELIHOOD; REAL-LIFE DATASETS;

EID: 49749128817     PISSN: 08839514     EISSN: 10876545     Source Type: Journal    
DOI: 10.1080/08839510802170546     Document Type: Conference Paper
Times cited : (61)

References (38)
  • 1
    • 85016422524 scopus 로고    scopus 로고
    • Aggregating inconsistent information: Ranking and Clustering
    • Baltimore, MD
    • Ailon, N., M. Charikar, and A. Newman. 2005. Aggregating inconsistent information: Ranking and Clustering. In Proc. STOC'05. Baltimore, MD.
    • (2005) Proc. STOC'05
    • Ailon, N.1    Charikar, M.2    Newman, A.3
  • 2
    • 34548691246 scopus 로고    scopus 로고
    • A generalized maximum entropy to Bregman co-clustering and matrix approximation
    • Banerjee, A., I. Dhillon, J. Ghosh, S. Merugu, and D. Modha. 2007. A generalized maximum entropy to Bregman co-clustering and matrix approximation. JMLR 8:1919-1986.
    • (2007) JMLR , vol.8 , pp. 1919-1986
    • Banerjee, A.1    Dhillon, I.2    Ghosh, J.3    Merugu, S.4    Modha, D.5
  • 5
    • 49749122560 scopus 로고    scopus 로고
    • Brelman, L. 1999. Combining predictors. In: Combining Artificial Neural, Nets, 31-50. ed., A. Sharkey, Secaucus, NJ: Springer-Verlag.
    • Brelman, L. 1999. Combining predictors. In: Combining Artificial Neural, Nets, 31-50. ed., A. Sharkey, Secaucus, NJ: Springer-Verlag.
  • 6
    • 49749122923 scopus 로고    scopus 로고
    • Dempster, A. P., N. M. Laird, and D. B. Rubin. 1977. Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society, 39, Series B:1-38.
    • Dempster, A. P., N. M. Laird, and D. B. Rubin. 1977. Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society, 39, Series B:1-38.
  • 8
    • 2942723846 scopus 로고    scopus 로고
    • A divisive information-theoretic feature clustering algorithm for text classification
    • Dhillon, I. S., S. Mallela, and R. Kumar. 2003. A divisive information-theoretic feature clustering algorithm for text classification. Journal of Machine learning Research 3:1265-1287.
    • (2003) Journal of Machine learning Research , vol.3 , pp. 1265-1287
    • Dhillon, I.S.1    Mallela, S.2    Kumar, R.3
  • 9
    • 84958955890 scopus 로고    scopus 로고
    • Voting-merging: An ensemble method for clustering
    • Proceedings of the International Conference on Artificial, Neural Networks ICANN 01, eds. Georg Dorffher, Horst Bischof, and Kurt. Homik, Vienna, Austria
    • Dimitriadou, E., A. Weingessel, and K. Homik. Voting-merging: An ensemble method for clustering. In Proceedings of the International Conference on Artificial, Neural Networks (ICANN 01), eds. Georg Dorffher, Horst Bischof, and Kurt. Homik, Vienna, Austria, LNCS 2130, 217-224.
    • LNCS , vol.2130 , pp. 217-224
    • Dimitriadou, E.1    Weingessel, A.2    Homik, K.3
  • 10
    • 0015644825 scopus 로고
    • A Fuzzy relative of the ISODATA process and its use in detecting compact well-separated clusters
    • Dunn, J. C. 1973. A Fuzzy relative of the ISODATA process and its use in detecting compact well-separated clusters, Journal of Cybernetics 3:32-57.
    • (1973) Journal of Cybernetics , vol.3 , pp. 32-57
    • Dunn, J.C.1
  • 13
    • 84957012677 scopus 로고    scopus 로고
    • Finding consistent clusters in data partitions
    • Proceedings of the Third International Workshop on Multiple Classifier Systems, eds. J. Kittler and F. Roll
    • Fred, A. L. N. and A. K. Jain. 2001. Finding consistent clusters in data partitions. In Proceedings of the Third International Workshop on Multiple Classifier Systems, eds. J. Kittler and F. Roll, LNCS 2364, 309-318.
    • (2001) LNCS , vol.2364 , pp. 309-318
    • Fred, A.L.N.1    Jain, A.K.2
  • 18
    • 84925487039 scopus 로고    scopus 로고
    • Multiclassifier systems: Back to the future
    • Multiple Classifier Systems, eds. F. Roli and J. Kittler, Springer
    • Ghosh, J. 2002. Multiclassifier systems: Back to the future. In Multiple Classifier Systems, eds. F. Roli and J. Kittler, LNCS 2364, Springer, 1-15.
    • (2002) LNCS , vol.2364 , pp. 1-15
    • Ghosh, J.1
  • 25
    • 0032131147 scopus 로고    scopus 로고
    • A fast and high quality multilevel scheme for partitioning irregular graphs
    • Karypis, G. and V. Kumar. 1998. A fast and high quality multilevel scheme for partitioning irregular graphs. SIAM Journal on Scientific Computing 20(1):359-392.
    • (1998) SIAM Journal on Scientific Computing , vol.20 , Issue.1 , pp. 359-392
    • Karypis, G.1    Kumar, V.2
  • 26
    • 0033444769 scopus 로고    scopus 로고
    • A Generalized Rand-Index method for consensus clustering of separate partitions of the same data base
    • Kreiger, A. M. and P. E. Green. 1999. A Generalized Rand-Index method for consensus clustering of separate partitions of the same data base. Journal of Classification 16:63-89.
    • (1999) Journal of Classification , vol.16 , pp. 63-89
    • Kreiger, A.M.1    Green, P.E.2
  • 35
    • 0036885192 scopus 로고    scopus 로고
    • Collaborative fuzzy clustering
    • Pedrycz, W. 2002. Collaborative fuzzy clustering. Pattern Recognition Letters 23:1675-1686.
    • (2002) Pattern Recognition Letters , vol.23 , pp. 1675-1686
    • Pedrycz, W.1
  • 36
    • 0041965980 scopus 로고    scopus 로고
    • Cluster ensembles - A knowledge reuse framework for combining multiple partitions
    • Strehl, A. and J. Ghosh. 2002. Cluster ensembles - A knowledge reuse framework for combining multiple partitions. Journal on Machine Learning Research (JMLR) 3:583-617.
    • (2002) Journal on Machine Learning Research (JMLR) , vol.3 , pp. 583-617
    • Strehl, A.1    Ghosh, J.2
  • 38
    • 0034247206 scopus 로고    scopus 로고
    • Multiboosting: A. technique for combining boosting and wagging
    • Webb, G. I. 2000. Multiboosting: A. technique for combining boosting and wagging. Machine Learning 40:159-196.
    • (2000) Machine Learning , vol.40 , pp. 159-196
    • Webb, G.I.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.