-
3
-
-
80053419954
-
-
F. Can, E. Ozkarahan, A dynamic cluster maintenance system for information retrieval, in: Proceedings of the Tenth Annual International ACM SIGIR Conference, 1987, pp. 123-131.
-
-
-
-
4
-
-
0032441150
-
-
M. Eissen, P. Spellman, P. Brown, D. Bostein, Cluster analysis and display of genome- wide expression patterns, in: Proceeding of National Academy of Sciences of USA, vol. 95, 1998, pp. 14863-14868.
-
-
-
-
7
-
-
34447336642
-
-
J.B. MacQuuen, Some methods for classification and analysis of multivariate observation, in: Proceedings of the 5th Berkley Symposium on Mathematical Statistics and Probability, 1967, pp. 281-297.
-
-
-
-
10
-
-
34447328035
-
-
R. Ng, J. Han, Efficient and effective clustering method for spatial data mining, in: Proceedings of the 20th International Conference on Very Large Data Bases, Santiago, Chile, 1994, pp. 144-155.
-
-
-
-
11
-
-
27144536001
-
Extensions to the K-modes algorithm for clustering large data sets with categorical values
-
Huang Z. Extensions to the K-modes algorithm for clustering large data sets with categorical values. Data Mining and Knowledge Discovery 2 3 (1998)
-
(1998)
Data Mining and Knowledge Discovery
, vol.2
, Issue.3
-
-
Huang, Z.1
-
12
-
-
34447330954
-
-
M. Ester, H.-P. Kriegel, J. Sander, X. Xu, A density-based algorithm for discovering clusters in large spatial databases with noise, in: Proceedings of KDD'96, 1996.
-
-
-
-
13
-
-
22044455069
-
Density-based clustering in spatial databases: The algorithm GDBSCAN and its applications
-
Sander J., Ester M., Kriegel H.-P., and Xu X. Density-based clustering in spatial databases: The algorithm GDBSCAN and its applications. Data Mining and Knowledge Discovery 2 2 (1998) 169-194
-
(1998)
Data Mining and Knowledge Discovery
, vol.2
, Issue.2
, pp. 169-194
-
-
Sander, J.1
Ester, M.2
Kriegel, H.-P.3
Xu, X.4
-
14
-
-
0016046280
-
Some recent investigations of a new fuzzy partitional algorithm and its application to pattern classification problems
-
Dunn J.C. Some recent investigations of a new fuzzy partitional algorithm and its application to pattern classification problems. Journal of Cybernetics 4 (1974) 1-15
-
(1974)
Journal of Cybernetics
, vol.4
, pp. 1-15
-
-
Dunn, J.C.1
-
16
-
-
0032595161
-
A fuzzy k-modes algorithm for clustering categorical data
-
Huang Z., and Ng M.K. A fuzzy k-modes algorithm for clustering categorical data. IEEE Transactions on Fuzzy Systems 7 4 (1999) 446-452
-
(1999)
IEEE Transactions on Fuzzy Systems
, vol.7
, Issue.4
, pp. 446-452
-
-
Huang, Z.1
Ng, M.K.2
-
17
-
-
4544378530
-
-
C. Döring, C. Borgelt, R. Kruse, Fuzzy clustering of quantitative and qualitative data, in: Proceedings of NAFIPS, Banff, Alberta, 2004.
-
-
-
-
18
-
-
0343442766
-
Knowledge acquisition via incremental conceptual clustering
-
Fisher D.H. Knowledge acquisition via incremental conceptual clustering. Machine Learning 2 2 (1987) 139-172
-
(1987)
Machine Learning
, vol.2
, Issue.2
, pp. 139-172
-
-
Fisher, D.H.1
-
19
-
-
0000166613
-
Experiments with incremental concept formation
-
Lebowitz M. Experiments with incremental concept formation. Machine Learning 2 2 (1987) 103-138
-
(1987)
Machine Learning
, vol.2
, Issue.2
, pp. 103-138
-
-
Lebowitz, M.1
-
20
-
-
34447304312
-
-
M. Gluck, J. Corter, Information, uncertainty, and the utility of categories, in: Proceedings of Seventh Annual Conference in Cognitive Society, 1985, pp. 283-287.
-
-
-
-
21
-
-
34447339604
-
-
K. McKusick, K. Thomson, COBWEB/3: A portable implementation, Technical Report FIA-90-6-18-2, NASA Ames Research Center, 1990.
-
-
-
-
22
-
-
0002908586
-
The formation and use of abstract concepts in design
-
Fisher D.H., Pazzani M.J., and Langley P. (Eds), Morgan Kaufman, Los Altos, Calif
-
Reich Y., and Fenves S.J. The formation and use of abstract concepts in design. In: Fisher D.H., Pazzani M.J., and Langley P. (Eds). Concept Formation: Knowledge and Experience in Unsupervised Learning (1991), Morgan Kaufman, Los Altos, Calif 323-352
-
(1991)
Concept Formation: Knowledge and Experience in Unsupervised Learning
, pp. 323-352
-
-
Reich, Y.1
Fenves, S.J.2
-
23
-
-
0032070572
-
ITERATE: A conceptual clustering algorithm for data mining
-
Biswas G., Weingberg J., and Fisher D.H. ITERATE: A conceptual clustering algorithm for data mining. IEEE Transactions on Systems, Man, and Cybernetics 28C (1998) 219-230
-
(1998)
IEEE Transactions on Systems, Man, and Cybernetics
, vol.28 C
, pp. 219-230
-
-
Biswas, G.1
Weingberg, J.2
Fisher, D.H.3
-
25
-
-
85175741601
-
-
S. Guha, R. Rastogi, S. Kyuseok, ROCK: A robust clustering algorithm for categorical attributes, in: Proceedings of 15th International Conference on Data Engineering, Sydney, Australia, 23-26 March 1999, pp. 512-521.
-
-
-
-
26
-
-
34447338286
-
-
V. Ganti, J.E. Gekhre, R. Ramakrishnan, CACTUS-clustering categorical data using summaries, in: Proceedings of the Fifth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 1999, pp. 73-83.
-
-
-
-
27
-
-
0042312608
-
Feature weighting in k-mean clustering
-
Modha D.S., and Spangler W.S. Feature weighting in k-mean clustering. Machine Learning 52 3 (2003) 217-237
-
(2003)
Machine Learning
, vol.52
, Issue.3
, pp. 217-237
-
-
Modha, D.S.1
Spangler, W.S.2
-
28
-
-
0030157145
-
-
T. Zhang, R. Ramakrishnan, M. Livny, BIRCH: An efficient data clustering method for very large databases, in: SIGMOD Conference, 1996, pp. 103-114.
-
-
-
-
30
-
-
0032091595
-
-
S. Guha, R. Rastogi, K. Shim, CURE: An efficient clustering algorithm for clustering large databases, in: Proceedings of the Symposium on Management of Data (SIGMOD), 1998.
-
-
-
-
31
-
-
0032686723
-
CHAMELEON: A hierarchical clustering algorithm using dynamic modeling
-
Karypis G., Han E.H., and Kumar V. CHAMELEON: A hierarchical clustering algorithm using dynamic modeling. IEEE Computer 32 8 (1999) 68-75
-
(1999)
IEEE Computer
, vol.32
, Issue.8
, pp. 68-75
-
-
Karypis, G.1
Han, E.H.2
Kumar, V.3
-
32
-
-
0001337675
-
A new similarity index based on probability
-
Goodall D.W. A new similarity index based on probability. Biometric 22 (1966) 882-907
-
(1966)
Biometric
, vol.22
, pp. 882-907
-
-
Goodall, D.W.1
-
35
-
-
34447333064
-
-
H. Luo, F. Kong, Y. Li, Clustering mixed data based on evidence accumulation, in: X. Li, O.R. Zaiane, Z. Li (Eds.), ADMA 2006, Lecture Notes on Artificial Intelligence 4093.
-
-
-
-
36
-
-
27844433509
-
Scalable algorithms for clustering large datasets with mixed type attributes
-
He Z., Xu X., and Deng S. Scalable algorithms for clustering large datasets with mixed type attributes. International Journal of Intelligence Systems 20 (2005) 1077-1089
-
(2005)
International Journal of Intelligence Systems
, vol.20
, pp. 1077-1089
-
-
He, Z.1
Xu, X.2
Deng, S.3
-
37
-
-
0036740348
-
Squeezer: An efficient algorithms for clustering categorical data
-
He Z., Xu X., and Deng S. Squeezer: An efficient algorithms for clustering categorical data. Journal of Computer Science and Technology 17 5 (2002) 611-624
-
(2002)
Journal of Computer Science and Technology
, vol.17
, Issue.5
, pp. 611-624
-
-
He, Z.1
Xu, X.2
Deng, S.3
-
38
-
-
0022909661
-
Toward memory based reasoning
-
Stanfill C., and Waltz D. Toward memory based reasoning. Communication of the ACM 29 12 (1986) 1213-1228
-
(1986)
Communication of the ACM
, vol.29
, Issue.12
, pp. 1213-1228
-
-
Stanfill, C.1
Waltz, D.2
-
40
-
-
35048857464
-
-
P. Andritsos, P. Tsaparas, R.J. Miller, K.C. Sevcik, LIMBO: Scalable clustering of categorical data, in: 9th International Conference on Extending DataBase Technology (EDBT), March 2004.
-
-
-
-
41
-
-
33750473714
-
A method to compute distance between two categorical values of same attributein unsupervised learning for categorical data set
-
Ahmad A., and Dey L. A method to compute distance between two categorical values of same attributein unsupervised learning for categorical data set. Pattern Recognition Letters 28 1 (2007) 110-118
-
(2007)
Pattern Recognition Letters
, vol.28
, Issue.1
, pp. 110-118
-
-
Ahmad, A.1
Dey, L.2
-
42
-
-
9644265275
-
A feature selection technique for classificatory analysis
-
Ahmad A., and Dey L. A feature selection technique for classificatory analysis. Pattern Recognition Letters 26 1 (2005) 43-56
-
(2005)
Pattern Recognition Letters
, vol.26
, Issue.1
, pp. 43-56
-
-
Ahmad, A.1
Dey, L.2
-
43
-
-
0032155316
-
Unsupervised feature selection using a neuro-fuzzy approach
-
Basak J., De R.K., and Pal S.K. Unsupervised feature selection using a neuro-fuzzy approach. Pattern Recognition Letters 19 (1998) 997-1006
-
(1998)
Pattern Recognition Letters
, vol.19
, pp. 997-1006
-
-
Basak, J.1
De, R.K.2
Pal, S.K.3
-
46
-
-
34447339350
-
-
A. Ahmad, L. Dey, A K-mean clustering algorithm for mixed numeric and categorical data set using dynamic distance measure, in: Proceedings of Fifth International Conference on Advances in Pattern Recognition, ICAPR2003, 2003.
-
-
-
-
47
-
-
17444410356
-
A k-populations algorithm for clustering categorical data
-
Won K.D., Lee K., Lee K.D., and Lee K.H. A k-populations algorithm for clustering categorical data. Pattern Recognition 38 7 (2005) 1131-1134
-
(2005)
Pattern Recognition
, vol.38
, Issue.7
, pp. 1131-1134
-
-
Won, K.D.1
Lee, K.2
Lee, K.D.3
Lee, K.H.4
-
48
-
-
0033204902
-
An empirical comparison of four initialization methods for the K-mean algorithm
-
Penã J.M., Lozano J.A., and Larra ñaga P. An empirical comparison of four initialization methods for the K-mean algorithm. Pattern Recognition Letters 20 (1999) 1027-1040
-
(1999)
Pattern Recognition Letters
, vol.20
, pp. 1027-1040
-
-
Penã, J.M.1
Lozano, J.A.2
Larra ñaga, P.3
-
49
-
-
0002550769
-
Refining initial points for K-mean clustering
-
Sharlik J. (Ed), Morgan Kaufman, San Francisco, CA
-
Bradley P.S., and Fayyad U.M. Refining initial points for K-mean clustering. In: Sharlik J. (Ed). Proceedings of 15th International Conference on Machine Learning (ICML'98) (1998), Morgan Kaufman, San Francisco, CA 91-99
-
(1998)
Proceedings of 15th International Conference on Machine Learning (ICML'98)
, pp. 91-99
-
-
Bradley, P.S.1
Fayyad, U.M.2
-
50
-
-
23844528211
-
Cluster center initialization algorithm for K-mean clustering
-
Khan S.S., and Ahmad A. Cluster center initialization algorithm for K-mean clustering. Pattern Recognition Letters 25 (2004) 1293-1302
-
(2004)
Pattern Recognition Letters
, vol.25
, pp. 1293-1302
-
-
Khan, S.S.1
Ahmad, A.2
-
51
-
-
27144441097
-
An evaluation of statistical approaches to text categorization
-
Yang Y. An evaluation of statistical approaches to text categorization. Journal of Information Retrieval 1 1-2 (1999) 67-88
-
(1999)
Journal of Information Retrieval
, vol.1
, Issue.1-2
, pp. 67-88
-
-
Yang, Y.1
|