메뉴 건너뛰기




Volumn 16, Issue 6, 2009, Pages 859-873

K-Boost: A scalable algorithm for high-Quality clustering of microarray gene expression data

Author keywords

Algorithms; Gene clusters

Indexed keywords

ARTICLE; CELL CYCLE; CELL PROLIFERATION; DNA MICROARRAY; GENE CLUSTER; GENE EXPRESSION PROFILING; GENE SEQUENCE; GENETIC ALGORITHM; GENETIC IDENTIFICATION; GENETIC STABILITY; GENETIC TRAIT; GENETIC TRANSCRIPTION; GENOME ANALYSIS; MATHEMATICAL COMPUTING; METABOLISM; MICROARRAY ANALYSIS; PRIORITY JOURNAL; QUALITY CONTROL; ALGORITHM; BIOLOGY; CLUSTER ANALYSIS; FIBROBLAST; GENETIC DATABASE; GENETICS; HUMAN; METHODOLOGY; SACCHAROMYCES CEREVISIAE;

EID: 69249203645     PISSN: 10665277     EISSN: None     Source Type: Journal    
DOI: 10.1089/cmb.2008.0201     Document Type: Article
Times cited : (10)

References (44)
  • 1
    • 0347718066 scopus 로고    scopus 로고
    • Fast algorithms for projected clustering
    • Aggarwal, C.C., Wolf, J.L., Yu, P.S., et al. 1999. Fast algorithms for projected clustering. SIGMOD Rec. 28, 61-72.
    • (1999) SIGMOD Rec. , vol.28 , pp. 61-72
    • Aggarwal, C.C.1    Wolf, J.L.2    Yu, P.S.3
  • 2
    • 0033536012 scopus 로고    scopus 로고
    • Broad patterns of gene expression revealed by clustering analysis of tumoral and normal colon tissues probed by oligonucleotide array
    • Alon, U., Barkai, N., Notterman, D., et al. 1999. Broad patterns of gene expression revealed by clustering analysis of tumoral and normal colon tissues probed by oligonucleotide array. Proc. Nat. Acad. Sci. USA 1999, 6745-6750.
    • (1999) Proc. Nat. Acad. Sci. USA 1999 , pp. 6745-6750
    • Alon, U.1    Barkai, N.2    Notterman, D.3
  • 3
    • 8844277626 scopus 로고    scopus 로고
    • Analyzing time series gene expression data
    • Bar-Joseph, Z. 2004. Analyzing time series gene expression data. Bioinformatics 20, 2493-2503.
    • (2004) Bioinformatics , vol.20 , pp. 2493-2503
    • Bar-Joseph, Z.1
  • 4
    • 4444283081 scopus 로고    scopus 로고
    • Fuzzy J-means and VNS methods for clustering genes from microarray data
    • Belacel, N., Cuperlovic-Culf, M., Laflamme, M., et al. 2004. Fuzzy J-means and VNS methods for clustering genes from microarray data. Bioinformatics 20, 1690-1701.
    • (2004) Bioinformatics , vol.20 , pp. 1690-1701
    • Belacel, N.1    Cuperlovic-Culf, M.2    Laflamme, M.3
  • 6
    • 0032112293 scopus 로고    scopus 로고
    • A genome-wide transcriptional analysis of the mitotic cell cycle
    • Cho, R., Campbell, M., Winzeler, E., et al. 1998. A genome-wide transcriptional analysis of the mitotic cell cycle. Molecular Cell 2, 65-73.
    • (1998) Molecular Cell , vol.2 , pp. 65-73
    • Cho, R.1    Campbell, M.2    Winzeler, E.3
  • 7
    • 34248363967 scopus 로고    scopus 로고
    • Nearest-neighbor searching and metric space dimensions
    • Shakhnarovich, G., Darrell, T., Indyk, P. (eds), MIT Press, Cambridge, MA
    • Clarkson, K.L. 2006. Nearest-neighbor searching and metric space dimensions, 15-59. In: Nearest-Neighbor Methods for Learning and Vision: Theory and Practice. Shakhnarovich, G., Darrell, T., Indyk, P. (eds), MIT Press, Cambridge, MA.
    • (2006) Nearest-Neighbor Methods for Learning and Vision: Theory and Practice , pp. 15-59
    • Clarkson, K.L.1
  • 9
    • 2342423128 scopus 로고    scopus 로고
    • Mdclust-Exploratory microarray analysis by multidimensional clustering
    • Dugas, M., Merk, S., Breit, S., et al. 2004. mdclust-Exploratory microarray analysis by multidimensional clustering. Bioinformatics 20, 931-936.
    • (2004) Bioinformatics , vol.20 , pp. 931-936
    • Dugas, M.1    Merk, S.2    Breit, S.3
  • 10
    • 0032441150 scopus 로고    scopus 로고
    • Cluster analysis and display of genome-wide expression patterns
    • Eisen, M., Spellman, P., Brown, P., et al. 1998. Cluster analysis and display of genome-wide expression patterns. Proc. Nat. Acad. Sci. USA 1998, 14863-14868.
    • (1998) Proc. Nat. Acad. Sci. USA 1998 , pp. 14863-14868
    • Eisen, M.1    Spellman, P.2    Brown, P.3
  • 11
    • 28644452470 scopus 로고    scopus 로고
    • Clustering short time series gene expression
    • Ernst, J., Naur, G., and Bar-Joseph, Z. 2005. Clustering short time series gene expression. Bioinformatics 21, i159-i168.
    • (2005) Bioinformatics , vol.21
    • Ernst, J.1    Naur, G.2    Bar-Joseph, Z.3
  • 12
    • 0348143190 scopus 로고    scopus 로고
    • Scoring clustering solutions by their biological relevance
    • Gat-Viks, I., Sharan, R., and Shamir, R. 2003. Scoring clustering solutions by their biological relevance. Bioinformatics 19, 2381-2389.
    • (2003) Bioinformatics , vol.19 , pp. 2381-2389
    • Gat-Viks, I.1    Sharan, R.2    Shamir, R.3
  • 13
    • 38149032751 scopus 로고    scopus 로고
    • FPF-SB: A scalable algorithm for microarray gene expression data clustering
    • Geraci, F., Leoncini, M., Montangero, M., et al. 2007. FPF-SB: a scalable algorithm for microarray gene expression data clustering. Lect. Notes Comput. Sci, 4561, 606-615.
    • (2007) Lect. Notes Comput. Sci , vol.4561 , pp. 606-615
    • Geraci, F.1    Leoncini, M.2    Montangero, M.3
  • 16
    • 0036798238 scopus 로고    scopus 로고
    • Judging the quality of gene expression-based clustering methods using gene annotation
    • Gibbons, F., and Roth, F. 2000. Judging the quality of gene expression-based clustering methods using gene annotation. Genome Res. 12, 1574-1581.
    • (2000) Genome Res. , vol.12 , pp. 1574-1581
    • Gibbons, F.1    Roth, F.2
  • 18
    • 0021938963 scopus 로고
    • Clustering to minimize the maximum intercluster distance
    • Gonzalez, T. 1985. Clustering to minimize the maximum intercluster distance. Theoret. Comput. Sci. 38, 293-306.
    • (1985) Theoret. Comput. Sci. , vol.38 , pp. 293-306
    • Gonzalez, T.1
  • 19
    • 0038014879 scopus 로고    scopus 로고
    • Co-clustering of Biological networks and gene expression data
    • Hanisch, D., Zien, A., Zimmer, R., et al. 2002. Co-clustering of Biological networks and gene expression data. Bioinformatics 18, 145S-154S.
    • (2002) Bioinformatics , vol.18
    • Hanisch, D.1    Zien, A.2    Zimmer, R.3
  • 20
    • 0034568109 scopus 로고    scopus 로고
    • " Gene shaving" as a method for identifying distinct sets of genes with similar expression patterns
    • research00
    • Hastie, T., Tibshirani, R., and Eisen, M.B., et al. 2000. "Gene shaving" as a method for identifying distinct sets of genes with similar expression patterns. Genome Biol. 1, research00.
    • (2000) Genome Biol. , pp. 1
    • Hastie, T.1    Tibshirani, R.2    Eisen, M.B.3
  • 21
    • 33646895693 scopus 로고    scopus 로고
    • Incorporating biological knowledge into distance-based clustering analysis of microarray gene expression data
    • Huang, W.P. 2006. Incorporating biological knowledge into distance-based clustering analysis of microarray gene expression data. Bioinformatics 22, 1259-1268.
    • (2006) Bioinformatics , vol.22 , pp. 1259-1268
    • Huang, W.P.1
  • 22
    • 0032903908 scopus 로고    scopus 로고
    • The transcriptional program in the response of human fibroblasts to serum
    • Iyer, V.R., Eisen, M.B., Ross, D.T., et al. 1999. The transcriptional program in the response of human fibroblasts to serum. Science 283, 83-87.
    • (1999) Science , vol.283 , pp. 83-87
    • Iyer, V.R.1    Eisen, M.B.2    Ross, D.T.3
  • 24
    • 13844276694 scopus 로고    scopus 로고
    • Cluster analysis for gene expression data: A survey
    • Jiang, D., Tang, C., and Zhang, A. 2004. Cluster analysis for gene expression data: a survey. IEEE Trans. Knowledge Data Eng. 16, 1370-1386.
    • (2004) IEEE Trans. Knowledge Data Eng. , vol.16 , pp. 1370-1386
    • Jiang, D.1    Tang, C.2    Zhang, A.3
  • 25
    • 39449097889 scopus 로고    scopus 로고
    • Techniques for clustering gene expression data
    • Kerr, G., Ruskin, H.J., Crane, M., et al. 2008. Techniques for clustering gene expression data. Comput. Biol. Med. 38, 283-293.
    • (2008) Comput. Biol. Med. , vol.38 , pp. 283-293
    • Kerr, G.1    Ruskin, H.J.2    Crane, M.3
  • 26
  • 29
    • 12344302543 scopus 로고    scopus 로고
    • A comprehensive transcript index of the human genome generated using microarrays and computational approaches
    • Schadt, E., Edwards, S., GuhaThakurta, D., et al. 2004. A comprehensive transcript index of the human genome generated using microarrays and computational approaches. Genome Biol. 5, R73.
    • (2004) Genome Biol. , vol.5
    • Schadt, E.1    Edwards, S.2    Guha Thakurta, D.3
  • 30
    • 0141498446 scopus 로고    scopus 로고
    • Algoritmic approaches to clustering gene expression data
    • MIT Press, Cambridge, MA
    • Shamir, R., and Sharan, R. 2002. Algoritmic approaches to clustering gene expression data, 269-299. In: Current Topics in Computational Molecular Biology. MIT Press, Cambridge, MA.
    • (2002) Current Topics in Computational Molecular Biology , pp. 269-299
    • Shamir, R.1    Sharan, R.2
  • 31
    • 0141506116 scopus 로고    scopus 로고
    • CLICK and EXPANDER: A system for clustering and visualizing gene expression data
    • Sharan, R., Maron-Katz, A., and Shamir, R. 2003. CLICK and EXPANDER: a system for clustering and visualizing gene expression data. Bioinformatics 19, 1787-1799.
    • (2003) Bioinformatics , vol.19 , pp. 1787-1799
    • Sharan, R.1    Maron-Katz, A.2    Shamir, R.3
  • 32
    • 0031742022 scopus 로고    scopus 로고
    • Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization
    • Spellman, P., Sherlock, G., Zhang, M., et al. 1998. Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization. Mol. Biol. Cell. 9, 3273-3297.
    • (1998) Mol. Biol. Cell. , vol.9 , pp. 3273-3297
    • Spellman, P.1    Sherlock, G.2    Zhang, M.3
  • 33
    • 0033027794 scopus 로고    scopus 로고
    • Interpreting patterns of gene expression with self-organizing maps: Methods and application to hematopoietic differentiation
    • Tamayo, P., Slonim, D., Mesirov, J., et al. 1999. Interpreting patterns of gene expression with self-organizing maps: methods and application to hematopoietic differentiation. Proc. Nat. Acad. Sci. USA 1999, 2907-2912.
    • (1999) Proc. Nat. Acad. Sci. USA 1999 , pp. 2907-2912
    • Tamayo, P.1    Slonim, D.2    Mesirov, J.3
  • 35
    • 0033028596 scopus 로고    scopus 로고
    • Systematic determination of genetic network architecture
    • Tavazoie, S., Hughes, J., Campbell, M., et al. 1999. Systematic determination of genetic network architecture. Nat. Gene., 22, 281-285.
    • (1999) Nat. Gene. , vol.22 , pp. 281-285
    • Tavazoie, S.1    Hughes, J.2    Campbell, M.3
  • 36
    • 33645556520 scopus 로고    scopus 로고
    • RT: A tail strength measure for assessing the overall univariate significance in a dataset
    • Taylor, J. 2006. RT: a tail strength measure for assessing the overall univariate significance in a dataset. Biostatistics 7, 167-181.
    • (2006) Biostatistics , vol.7 , pp. 167-181
    • Taylor, J.1
  • 37
    • 0035532141 scopus 로고    scopus 로고
    • Estimating the number of clusters in a data set via the gap statistic
    • Tibshirani, R., Walther, G., and Hastie, T. 2001. Estimating the number of clusters in a data set via the gap statistic. J. R. Statist. Soc. Ser. B 63, 411-423.
    • (2001) J. R. Statist. Soc. Ser. B , vol.63 , pp. 411-423
    • Tibshirani, R.1    Walther, G.2    Hastie, T.3
  • 39
    • 38149018847 scopus 로고    scopus 로고
    • Chipping away at genomic medicine
    • Trent, J., and Bexevanis, A. 2002. Chipping away at genomic medicine. Nat. Genet. (Suppl.) 426.
    • (2002) Nat. Genet. , vol.426 , Issue.SUPPL.
    • Trent, J.1    Bexevanis, A.2
  • 40
    • 0031915896 scopus 로고
    • Large-scale temporal gene expression mapping of central nervous system development
    • Wen, X., Fuhrman, S., Michaelsdagger, G.S., et al. 1988. Large-scale temporal gene expression mapping of central nervous system development. Proc. Natl. Acad. Sci. USA 95, 334-349.
    • (1988) Proc. Natl. Acad. Sci. USA , vol.95 , pp. 334-349
    • Wen, X.1    Fuhrman, S.2    Michaelsdagger, G.S.3
  • 41
    • 0000959484 scopus 로고    scopus 로고
    • CLIFF: Clustering of high-dimensional microarray data via iterative feature filtering using normalized cuts
    • Xing, E., and Karp, R. 2001. CLIFF: clustering of high-dimensional microarray data via iterative feature filtering using normalized cuts. Bioinformatics 17, 306-315.
    • (2001) Bioinformatics , vol.17 , pp. 306-315
    • Xing, E.1    Karp, R.2
  • 42
    • 0035999974 scopus 로고    scopus 로고
    • Clustering gene expression data using a graph-theoretic approach: An application of minimum spanning trees
    • Xu, Y., Olman, V., and Xu, D. 2002. Clustering gene expression data using a graph-theoretic approach: an application of minimum spanning trees. Bioinformatics 18, 536-545.
    • (2002) Bioinformatics , vol.18 , pp. 536-545
    • Xu, Y.1    Olman, V.2    Xu, D.3
  • 43
    • 0035024021 scopus 로고    scopus 로고
    • Validating clustering for gene expression data
    • Yeung, K., Haynor, D., and Ruzzo, W. 2001. Validating clustering for gene expression data. Bioinformatics 17, 309-318.
    • (2001) Bioinformatics , vol.17 , pp. 309-318
    • Yeung, K.1    Haynor, D.2    Ruzzo, W.3
  • 44
    • 13844297591 scopus 로고    scopus 로고
    • HARP: A practical projected clustering algorithm
    • Yip, K.Y., and Ng, M.K. 2004. HARP: a practical projected clustering algorithm. IEEE Trans. Knowl. Data Eng. 16, 1387-1397.
    • (2004) IEEE Trans. Knowl. Data Eng. , vol.16 , pp. 1387-1397
    • Yip, K.Y.1    Ng, M.K.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.