메뉴 건너뛰기




Volumn , Issue , 2011, Pages 1259-1266

Centralized sparse representation for image restoration

Author keywords

[No Author keywords available]

Indexed keywords

CSR MODEL; DEGRADED IMAGES; IMAGE STATISTICS; NONLOCAL; ORIGINAL IMAGES; SPARSE CODING; SPARSE REPRESENTATION; SPARSITY CONSTRAINTS; STATE-OF-THE-ART METHODS; VARIATIONAL FRAMEWORK;

EID: 84863012902     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ICCV.2011.6126377     Document Type: Conference Paper
Times cited : (248)

References (28)
  • 1
    • 33750383209 scopus 로고    scopus 로고
    • K-svd: An algorithm for designing overcomplete dictionaries for sparse representation
    • Nov. 1,4
    • M. Aharon, M. Elad, and A. Bruckstein. K-svd: An algorithm for designing overcomplete dictionaries for sparse representation. IEEE Trans. Signal Process., 54(11):4311- 4322, Nov. 2006. 1, 4
    • (2006) IEEE Trans. Signal Process , vol.54 , Issue.11 , pp. 4311-4322
    • Aharon, M.1    Elad, M.2    Bruckstein, A.3
  • 2
    • 70350593691 scopus 로고    scopus 로고
    • Fast gradient-based algorithms for constrained total variation image denoising and deblurring problems
    • Nov.,5,6,7
    • A. Beck and M. Teboulle. Fast gradient-based algorithms for constrained total variation image denoising and deblurring problems. IEEE Trans. On Image Process., 18(11):2419- 2434, Nov. 2009. 5, 6, 7
    • (2009) IEEE Trans. On Image Process , vol.18 , Issue.11 , pp. 2419-2434
    • Beck, A.1    Teboulle, M.2
  • 5
    • 59749104367 scopus 로고    scopus 로고
    • From sparse solutions of systems of equations to sparse modeling of signals and images
    • Feb.,1
    • A. M. Bruckstein, D. L. Donoho, and M. Elad. From sparse solutions of systems of equations to sparse modeling of signals and images. SIAM Review, 51(1):34-81, Feb. 2009. 1
    • (2009) SIAM Review , vol.51 , Issue.1 , pp. 34-81
    • Bruckstein, A.M.1    Donoho, D.L.2    Elad, M.3
  • 6
    • 24644478715 scopus 로고    scopus 로고
    • A non-local algorithm for image denoising
    • 1,2,3
    • A. Buades, B. Coll, and J. M. Morel. A non-local algorithm for image denoising. In IEEE Int. Conf. on CVPR, volume 2, pages 60-65, 2005. 1, 2, 3
    • (2005) IEEE Int. Conf. on CVPR , vol.2 , pp. 60-65
    • Buades, A.1    Coll, B.2    Morel, J.M.3
  • 8
    • 67649872330 scopus 로고    scopus 로고
    • Clustering-based denoising with locally learned dictionaries
    • July,5
    • P. Chatterjee and P. Milanfar. Clustering-based denoising with locally learned dictionaries. IEEE Trans. Image Processing, 18(7):1438-1451, July 2009. 5
    • (2009) IEEE Trans. Image Processing , vol.18 , Issue.7 , pp. 1438-1451
    • Chatterjee, P.1    Milanfar, P.2
  • 9
    • 0035273106 scopus 로고    scopus 로고
    • Atomic decompositions by basis pursuit
    • 1,2
    • S. Chen, D. Donoho, and M. Saunders. Atomic decompositions by basis pursuit. SIAM Review, 43:129-159, 2001. 1, 2
    • (2001) SIAM Review , vol.43 , pp. 129-159
    • Chen, S.1    Donoho, D.2    Saunders, M.3
  • 10
    • 34547760736 scopus 로고    scopus 로고
    • Image denoising by sparse 3-d transform-domain collaborative filtering
    • Aug. 2,5
    • K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian. Image denoising by sparse 3-d transform-domain collaborative filtering. IEEE Trans. Image Process., 16(8):2080-2095, Aug. 2007. 2, 5
    • (2007) IEEE Trans. Image Process. , vol.16 , Issue.8 , pp. 2080-2095
    • Dabov, K.1    Foi, A.2    Katkovnik, V.3    Egiazarian, K.4
  • 11
    • 43249105786 scopus 로고    scopus 로고
    • Image restoration by sparse 3d transform-domain collaborative filtering
    • 7
    • K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian. Image restoration by sparse 3d transform-domain collaborative filtering. In SPIE Conference Series, 2008. 5, 6, 7
    • (2008) SPIE Conference Series , vol.5 , Issue.6
    • Dabov, K.1    Foi, A.2    Katkovnik, V.3    Egiazarian, K.4
  • 12
    • 65149092220 scopus 로고    scopus 로고
    • Softcuts: A soft edge smoothness prior for color image super-resolution
    • May 1,6,8
    • S. Dai, M. Han,W. Xu, Y.Wu, Y. Gong, and A. K. Katsaggelos. Softcuts: A soft edge smoothness prior for color image super-resolution. IEEE Trans. Image Process., 18(5):969- 981, May 2009. 1, 6, 8
    • (2009) IEEE Trans. Image Process. , vol.18 , Issue.5 , pp. 969-981
    • Dai, S.1    Han, M.2    Xu, W.3    Wu, Y.4    Gong, Y.5    Katsaggelos, A.K.6
  • 13
    • 7044231546 scopus 로고    scopus 로고
    • An iterative thresholding algorithm for linear inverse problems with a sparsity constraint
    • 1,2,5
    • I. Daubechies, M. Defriese, and C. DeMol. An iterative thresholding algorithm for linear inverse problems with a sparsity constraint. Commun. Pure Appl. Math., 57:1413- 1457, 2004. 1, 2, 5
    • (2004) Commun. Pure Appl. Math. , vol.57 , pp. 1413-1457
    • Daubechies, I.1    Defriese, M.2    DeMol, C.3
  • 15
    • 79959594311 scopus 로고    scopus 로고
    • Image deblurring and super-resolution by adaptive sparse domain selection and adaptive regularization
    • July,1,5
    • W. Dong, L. Zhang, G. Shi, and X. Wu. Image deblurring and super-resolution by adaptive sparse domain selection and adaptive regularization. IEEE Trans. Image Processing, 20(7):1838-1857, July 2011. 1, 5
    • (2011) IEEE Trans. Image Processing , vol.20 , Issue.7 , pp. 1838-1857
    • Dong, W.1    Zhang, L.2    Shi, G.3    Wu, X.4
  • 16
    • 33751379736 scopus 로고    scopus 로고
    • Image denoising via sparse and redundant representations over learned dictionaries
    • Dec.,1,2
    • M. Elad and M. Aharon. Image denoising via sparse and redundant representations over learned dictionaries. IEEE Trans. Image Process., 15(12):3736-3745, Dec. 2006. 1, 2
    • (2006) IEEE Trans. Image Process. , vol.15 , Issue.12 , pp. 3736-3745
    • Elad, M.1    Aharon, M.2
  • 18
    • 34247470408 scopus 로고    scopus 로고
    • Pointwise shapeadaptive dct for high-quality denoising and deblocking of grayscale and color images
    • May,5,7
    • A. Foi, V. Katkovnik, and K. Egiazarian. Pointwise shapeadaptive dct for high-quality denoising and deblocking of grayscale and color images. IEEE Trans. Image Process., 16(5):1395-1411, May 2007. 5, 7
    • (2007) IEEE Trans. Image Process. , vol.16 , Issue.5 , pp. 1395-1411
    • Foi, A.1    Katkovnik, V.2    Egiazarian, K.3
  • 21
    • 39149089704 scopus 로고    scopus 로고
    • Sparse representation for color image restoration
    • Jan.,1
    • J. Mairal, M. Elad, and G. Sapiro. Sparse representation for color image restoration. IEEE Trans. on Image Processing, 17(1):53-69, Jan. 2008. 1
    • (2008) IEEE Trans. on Image Processing , vol.17 , Issue.1 , pp. 53-69
    • Mairal, J.1    Elad, M.2    Sapiro, G.3
  • 22
    • 55649094906 scopus 로고    scopus 로고
    • Image super-resolution by tv-regularization and bregman iteration
    • 6,7,8
    • A. Marquina and S. J. Osher. Image super-resolution by tv-regularization and bregman iteration. J. Sci. Comput., 37:367-382, 2008. 6, 7, 8
    • (2008) J. Sci. Comput. , vol.37 , pp. 367-382
    • Marquina, A.1    Osher, S.J.2
  • 23
    • 0029938380 scopus 로고    scopus 로고
    • Emergence of simple-cell receptive field properties by learning a sparse code for natural images
    • 1
    • B. Olshausen and D. Field. Emergence of simple-cell receptive field properties by learning a sparse code for natural images. Nature, 381:607-609, 1996. 1
    • (1996) Nature , vol.381 , pp. 607-609
    • Olshausen, B.1    Field, D.2
  • 24
    • 0030779611 scopus 로고    scopus 로고
    • Sparse coding with an overcomplete basis set: A strategy employed by v1
    • 1
    • B. Olshausen and D. Field. Sparse coding with an overcomplete basis set: A strategy employed by v1? Vision Research, 37:3311-3325, 1997. 1
    • (1997) Vision Research , vol.37 , pp. 3311-3325
    • Olshausen, B.1    Field, D.2
  • 25
    • 44049111982 scopus 로고
    • Nonlinear total variation based noise removal algorithms
    • 1
    • L. Rudin, S. Osher, and E. Fatemi. Nonlinear total variation based noise removal algorithms. Phys. D, 60:259-268, 1992. 1
    • (1992) Phys D , vol.60 , pp. 259-268
    • Rudin, L.1    Osher, S.2    Fatemi, E.3
  • 26
    • 0036844073 scopus 로고    scopus 로고
    • Bivariate shrinkage functions for wavelet-based denoising exploiting interscale dependency
    • Nov.,4
    • L. Sendur and I. W. Selesnick. Bivariate shrinkage functions for wavelet-based denoising exploiting interscale dependency. IEEE Trans. Signal Process., 50(11):2744-2756, Nov. 2002. 4
    • (2002) IEEE Trans. Signal Process , vol.50 , Issue.11 , pp. 2744-2756
    • Sendur, L.1    Selesnick, I.W.2
  • 27
    • 51949105499 scopus 로고    scopus 로고
    • Image superresolution as sparse representation of raw image patches
    • Jun.,1,6,7,8
    • J. Yang, J. Wright, Y. Ma, and T. Huang. Image superresolution as sparse representation of raw image patches. In Proc. of the IEEE CVPR, Jun. 2008. 1, 6, 7, 8
    • (2008) Proc. of the IEEE CVPR
    • Yang, J.1    Wright, J.2    Ma, Y.3    Huang, T.4
  • 28
    • 74449091858 scopus 로고    scopus 로고
    • Two-stage image denoising by principal component analysis with local pixel grouping
    • Apr.,5
    • L. Zhang, W. Dong, D. Zhang, and G. Shi. Two-stage image denoising by principal component analysis with local pixel grouping. Pattern Recognition, 43:1531-1549, Apr. 2010. 5
    • (2010) Pattern Recognition , vol.43 , pp. 1531-1549
    • Zhang, L.1    Dong, W.2    Zhang, D.3    Shi, G.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.