메뉴 건너뛰기




Volumn 91, Issue 7, 2011, Pages 1505-1526

Surveying and comparing simultaneous sparse approximation (or group-lasso) algorithms

Author keywords

Block sparse regression; Group lasso; Iterative reweighted algorithms; Simultaneous sparse approximation

Indexed keywords

APPROXIMATION PROBLEMS; EFFICIENT ALGORITHM; ELEMENTARY FUNCTION; EXPERIMENTAL COMPARISON; GROUP LASSO; ITERATIVE REWEIGHTED ALGORITHMS; MIXED-NORM; OVERCOMPLETE DICTIONARIES; PERFORMANCE MEASURE; SIMULTANEOUS SPARSE APPROXIMATION; SPARSE APPROXIMATIONS; SPARSE REGRESSION; SPARSE SIGNALS; STATISTICAL LEARNING;

EID: 79952039898     PISSN: 01651684     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.sigpro.2011.01.012     Document Type: Review
Times cited : (134)

References (64)
  • 8
    • 23844477225 scopus 로고    scopus 로고
    • Sparse solutions to linear inverse problems with multiple measurement vectors
    • DOI 10.1109/TSP.2005.849172
    • S. Cotter, B. Rao, K. Engan, and K. Kreutz-Delgado Sparse solutions to linear inverse problems with multiple measurement vectors IEEE Transactions on Signal Processing 53 7 2005 2477 2488 (Pubitemid 41174440)
    • (2005) IEEE Transactions on Signal Processing , vol.53 , Issue.7 , pp. 2477-2488
    • Cotter, S.F.1    Rao, B.D.2    Engan, K.3    Kreutz-Delgado, K.4
  • 9
    • 7044231546 scopus 로고    scopus 로고
    • An iterative thresholding algorithm for linear inverse problems with a sparsity constraint
    • I. Daubechies, M. Defrise, and C.D. Mol An iterative thresholding algorithm for linear inverse problems with a sparsity constraint Communication on Pure and Applied Mathematics 57 2004 1413 1541
    • (2004) Communication on Pure and Applied Mathematics , vol.57 , pp. 1413-1541
    • Daubechies, I.1    Defrise, M.2    Mol, C.D.3
  • 12
    • 33947361050 scopus 로고    scopus 로고
    • Why simple shrinkage is still relevant for redundant representations?
    • DOI 10.1109/TIT.2006.885522
    • M. Elad Why simple shrinkage is still relevant for redundant representations? IEEE Transactions on Information Theory 52 12 2006 5559 5569 (Pubitemid 46445399)
    • (2006) IEEE Transactions on Information Theory , vol.52 , Issue.12 , pp. 5559-5569
    • Elad, M.1
  • 13
    • 77952576986 scopus 로고    scopus 로고
    • Compressed sensing of block-sparse signals: Uncertainty relations and efficient recovery
    • Y. Eldar, P. Kuppinger, and H. Blocskei Compressed sensing of block-sparse signals: uncertainty relations and efficient recovery IEEE Transactions on Signal Processing 58 6 2010 3042 3054
    • (2010) IEEE Transactions on Signal Processing , vol.58 , Issue.6 , pp. 3042-3054
    • Eldar, Y.1    Kuppinger, P.2    Blocskei, H.3
  • 14
    • 70350743173 scopus 로고    scopus 로고
    • Robust recovery of signals from a structured union of subspaces
    • Y. Eldar, and M. Mishali Robust recovery of signals from a structured union of subspaces IEEE Transactions on Information Theory 55 11 2009 5302 5316
    • (2009) IEEE Transactions on Information Theory , vol.55 , Issue.11 , pp. 5302-5316
    • Eldar, Y.1    Mishali, M.2
  • 15
    • 1542784498 scopus 로고    scopus 로고
    • Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties
    • J. Fan, and R. Li Variable selection via nonconcave penalized likelihood and its oracle properties Journal of the American Statistical Association 96 456 2001 1348 1360 (Pubitemid 33695585)
    • (2001) Journal of the American Statistical Association , vol.96 , Issue.456 , pp. 1348-1360
    • Fan, J.1    Li, R.2
  • 16
    • 36749072615 scopus 로고    scopus 로고
    • Majorization-minimization algorithms for wavelet-based image restoration
    • DOI 10.1109/TIP.2007.909318
    • M. Figueiredo, J. Bioucas-Dias, R., N., Majorization-minimization algorithms for wavelet-based image for restoration. IEEE Transactions on Image Processing 16(12) (2007) 29802991. (Pubitemid 350201231)
    • (2007) IEEE Transactions on Image Processing , vol.16 , Issue.12 , pp. 2980-2991
    • Figueiredo, M.A.T.1    Bioucas-Dias, J.M.2    Nowak, R.D.3
  • 17
    • 36749019495 scopus 로고    scopus 로고
    • Recovery algorithms for vector valued data with joint sparsity constraints
    • M. Fornasier, and H. Rauhut Recovery algorithms for vector valued data with joint sparsity constraints SIAM Journal of Numerical Analysis 46 2 2008 577 613
    • (2008) SIAM Journal of Numerical Analysis , vol.46 , Issue.2 , pp. 577-613
    • Fornasier, M.1    Rauhut, H.2
  • 18
    • 62549128663 scopus 로고    scopus 로고
    • Sparsest solutions of underdetermined linear systems via ℓq-minimization for 0
    • S. Foucart, and M.-J. Lai Sparsest solutions of underdetermined linear systems via ℓ q -minimization for 0 < q ≤ 1 Applied and Computational Harmonic Analysis 26 3 2009 395 407
    • (2009) Applied and Computational Harmonic Analysis , vol.26 , Issue.3 , pp. 395-407
    • Foucart, S.1    Lai, M.-J.2
  • 20
    • 70450245260 scopus 로고    scopus 로고
    • Recovering sparse signals with a certain family of non-convex penalties and dc programming
    • G. Gasso, A. Rakotomamonjy, and S. Canu Recovering sparse signals with a certain family of non-convex penalties and dc programming IEEE Transactions on Signal Processing 57 12 2009 4686 4698
    • (2009) IEEE Transactions on Signal Processing , vol.57 , Issue.12 , pp. 4686-4698
    • Gasso, G.1    Rakotomamonjy, A.2    Canu, S.3
  • 23
    • 0004123838 scopus 로고    scopus 로고
    • Least absolute shrinkage is equivalent to quadratic penalization
    • Y. Grandvalet Least absolute shrinkage is equivalent to quadratic penalization L. Niklasson, M. Bodn, T. Ziemske, ICANN'98. Perspectives in Neural Computing vol. 1 1998 Springer 201 206
    • (1998) ICANN'98. Perspectives in Neural Computing , vol.1 , pp. 201-206
    • Grandvalet, Y.1
  • 24
    • 30844455598 scopus 로고    scopus 로고
    • Sparse approximations in signal and image processing
    • DOI 10.1016/j.sigpro.2005.07.012, PII S0165168405002112, Sparse Approximations in Signal and Image Processing
    • R. Gribonval, and M. Nielsen Sparse approximations in signal and image processing Signal Processing 86 3 2006 415 416 (Pubitemid 43106561)
    • (2006) Signal Processing , vol.86 , Issue.3 , pp. 415-416
    • Gribonval, R.1    Nielsen, M.2
  • 25
    • 66249102619 scopus 로고    scopus 로고
    • A group bridge approach for variable selection
    • J. Huang, S. Ma, H. Xie, and C. Zhang A group bridge approach for variable selection Biometrika 96 2 2009 339 355
    • (2009) Biometrika , vol.96 , Issue.2 , pp. 339-355
    • Huang, J.1    Ma, S.2    Xie, H.3    Zhang, C.4
  • 26
    • 1342332031 scopus 로고    scopus 로고
    • A Tutorial on MM Algorithms
    • D. Hunter, and K. Lange A tutorial on MM algorithms The American Statistician 58 2004 30 37 (Pubitemid 38260327)
    • (2004) American Statistician , vol.58 , Issue.1 , pp. 30-37
    • Hunter, D.R.1    Lange, K.2
  • 28
    • 33746126624 scopus 로고    scopus 로고
    • Blockwise sparse regression
    • Y. Kim, J. Kim, and Y. Kim Blockwise sparse regression Statistica Sinica 16 2006 375 390 〈 http://www3.stat.sinica.edu.tw/statistica/j16n2/16-2.html 〉 (Pubitemid 44085508)
    • (2006) Statistica Sinica , vol.16 , Issue.2 , pp. 375-390
    • Kim, Y.1    Kim, J.2    Kim, Y.3
  • 29
    • 79952038505 scopus 로고    scopus 로고
    • On the estimation and variable selection consistency of the sum of q-norm regularized regression
    • Department of Statistics, Carnegie Mellon University
    • H. Liu, J. Zhang, On the estimation and variable selection consistency of the sum of q-norm regularized regression, Technical Report, Department of Statistics, Carnegie Mellon University, 2009.
    • (2009) Technical Report
    • Liu, H.1    Zhang, J.2
  • 31
    • 25444450079 scopus 로고    scopus 로고
    • A sparse signal reconstruction perspective for source localization with sensor arrays
    • DOI 10.1109/TSP.2005.850882
    • D. Malioutov, M. Cetin, and A. Willsky Sparse signal reconstruction perspective for source localization with sensor arrays IEEE Transactions on Signal Processing 53 8 2005 3010 3022 (Pubitemid 41372811)
    • (2005) IEEE Transactions on Signal Processing , vol.53 , Issue.8 , pp. 3010-3022
    • Malioutov, D.1    Cetin, M.2    Willsky, A.S.3
  • 32
    • 0027842081 scopus 로고
    • Matching pursuit with timefrequency dictionaries
    • S. Mallat, and Z. Zhang Matching pursuit with timefrequency dictionaries IEEE Transactions on Signal Processing 41 12 1993 3397 3415
    • (1993) IEEE Transactions on Signal Processing , vol.41 , Issue.12 , pp. 3397-3415
    • Mallat, S.1    Zhang, Z.2
  • 33
    • 53149111169 scopus 로고    scopus 로고
    • Reduce and boost: Recovering arbitrary sets of jointly sparse vectors
    • M. Mishali, and Y. Eldar Reduce and boost: recovering arbitrary sets of jointly sparse vectors IEEE Transactions on Signal Processing 56 10 2008 4692 4702
    • (2008) IEEE Transactions on Signal Processing , vol.56 , Issue.10 , pp. 4692-4702
    • Mishali, M.1    Eldar, Y.2
  • 34
    • 62749175137 scopus 로고    scopus 로고
    • CosAmp: Iterative signal recovery from incomplete and inaccurate samples
    • D. Needell, and J. Tropp CosAmp: iterative signal recovery from incomplete and inaccurate samples Applied and Computational Harmonic Analysis 26 3 2009 301 321
    • (2009) Applied and Computational Harmonic Analysis , vol.26 , Issue.3 , pp. 301-321
    • Needell, D.1    Tropp, J.2
  • 35
    • 77953322499 scopus 로고    scopus 로고
    • Joint covariate selection and joint subspace selection for multiple classification problems
    • G. Obozinski, B. Taskar, and M. Jordan Joint covariate selection and joint subspace selection for multiple classification problems Statistics and Computing 20 2 2010 231 252
    • (2010) Statistics and Computing , vol.20 , Issue.2 , pp. 231-252
    • Obozinski, G.1    Taskar, B.2    Jordan, M.3
  • 37
    • 12844268707 scopus 로고    scopus 로고
    • An empirical Bayesian solution to the source reconstruction problem in EEG
    • DOI 10.1016/j.neuroimage.2004.10.030, PII S1053811904006238
    • C. Phillips, J. Mattout, M. Rugg, P. Maquet, and K. Friston An empirical Bayesian solution to the source reconstruction problem in EEG NeuroImage 24 2005 997 1011 (Pubitemid 40164502)
    • (2005) NeuroImage , vol.24 , Issue.4 , pp. 997-1011
    • Phillips, C.1    Mattout, J.2    Rugg, M.D.3    Maquet, P.4    Friston, K.J.5
  • 39
    • 79952036694 scopus 로고    scopus 로고
    • ℓ p- ℓq penalty for sparse linear and sparse multiple kernel multi-task learning
    • submitted for publication, hal-00509608
    • A. Rakotomamonjy, R. Flamary, G. Gasso, S. Canu, ℓ p - ℓ q penalty for sparse linear and sparse multiple kernel multi-task learning, IEEE Transactions on Neural Networks, submitted for publication, hal-00509608 〈 http://hal.archives-ouvertes.fr/hal-00509608/fr/ 〉.
    • IEEE Transactions on Neural Networks
    • Rakotomamonjy, A.1    Flamary, R.2    Gasso, G.3    Canu, S.4
  • 44
    • 34548232392 scopus 로고    scopus 로고
    • Input selection and shrinkage in multiresponse linear regression
    • DOI 10.1016/j.csda.2007.01.025, PII S0167947307000205
    • T. Simila, and J. Tikka Input selection and shrinkage in multiresponse linear regression Computational Statistics and Data analysis 52 1 2007 406 422 (Pubitemid 47331720)
    • (2007) Computational Statistics and Data Analysis , vol.52 , Issue.1 , pp. 406-422
    • Simila, T.1    Tikka, J.2
  • 45
    • 70049111420 scopus 로고    scopus 로고
    • On the reconstruction of block-sparse signals with an optimal number of measurements
    • ArXiv 0804.0041v1, California Institute of Technology
    • M. Stojnic, F. Parvaresh, B. Hassibi, On the reconstruction of block-sparse signals with an optimal number of measurements, Technical Report, ArXiv 0804.0041v1, California Institute of Technology, 2008.
    • (2008) Technical Report
    • Stojnic, M.1    Parvaresh, F.2    Hassibi, B.3
  • 46
    • 0033296299 scopus 로고    scopus 로고
    • Using SeDuMi 1.02 a Matlab toolbox for optimization over symmetric codes
    • J. Sturm Using SeDuMi 1.02 a Matlab toolbox for optimization over symmetric codes Optimization Methods and Software 11 12 1999 625 653
    • (1999) Optimization Methods and Software , vol.11 , Issue.12 , pp. 625-653
    • Sturm, J.1
  • 49
    • 30844446051 scopus 로고    scopus 로고
    • On the use of sparse signal decomposition in the analysis of multi-channel surface electromyograms
    • DOI 10.1016/j.sigpro.2005.05.032, PII S0165168405002240, Sparse Approximations in Signal and Image Processing
    • F. Theis, and G. Garcia On the use of sparse signal decomposition in the analysis of multi-channel surface electromyograms Signal Processing 86 3 2006 603 623 (Pubitemid 43106574)
    • (2006) Signal Processing , vol.86 , Issue.3 , pp. 603-623
    • Theis, F.J.1    Garcia, G.A.2
  • 51
    • 0001224048 scopus 로고    scopus 로고
    • Sparse Bayesian Learning and the Relevance Vector Machine
    • DOI 10.1162/15324430152748236
    • M. Tipping Sparse Bayesian learning and the relevance vector machine Journal of Machine Learning Research 1 2001 211 244 (Pubitemid 33687203)
    • (2001) Journal of Machine Learning Research , vol.1 , Issue.3 , pp. 211-244
    • Tipping, M.E.1
  • 52
    • 30844461481 scopus 로고    scopus 로고
    • Algorithms for simultaneous sparse approximation. Part II: Convex relaxation
    • DOI 10.1016/j.sigpro.2005.05.031, PII S0165168405002239, Sparse Approximations in Signal and Image Processing
    • J. Tropp Algorithms for simultaneous sparse approximation. Part II: convex relaxation Signal Processing 86 2006 589 602 (Pubitemid 43106573)
    • (2006) Signal Processing , vol.86 , Issue.3 , pp. 589-602
    • Tropp, J.A.1
  • 53
    • 64649083745 scopus 로고    scopus 로고
    • Signal recovery from random measurements via orthogonal matching pursuit
    • J. Tropp, and A. Gilbert Signal recovery from random measurements via orthogonal matching pursuit IEEE Transactions on Information Theory 53 12 2007 4655 4666
    • (2007) IEEE Transactions on Information Theory , vol.53 , Issue.12 , pp. 4655-4666
    • Tropp, J.1    Gilbert, A.2
  • 54
    • 30844445842 scopus 로고    scopus 로고
    • Algorithms for simultaneous sparse approximation. Part I: Greedy pursuit
    • DOI 10.1016/j.sigpro.2005.05.030, PII S0165168405002227, Sparse Approximations in Signal and Image Processing
    • J. Tropp, A. Gilbert, and M. Strauss Algorithms for simultaneous sparse approximation. Part I: greedy pursuit Signal Processing 86 2006 572 588 (Pubitemid 43106572)
    • (2006) Signal Processing , vol.86 , Issue.3 , pp. 572-588
    • Tropp, J.A.1    Gilbert, A.C.2    Strauss, M.J.3
  • 55
    • 0035533631 scopus 로고    scopus 로고
    • Convergence of block coordinate descent method for nondifferentiable minimization
    • P. Tseng Convergence of block coordinate descent method for nondifferentiable minimization Journal of Optimization Theory and Application 109 2001 475 494
    • (2001) Journal of Optimization Theory and Application , vol.109 , pp. 475-494
    • Tseng, P.1
  • 56
    • 79952039639 scopus 로고    scopus 로고
    • Group sparsity via linear-time projection University of British Columbia, Department of Computer Science
    • E. van den Berg, M. Schmidt, M. Friedlander, K. Murphy, Group sparsity via linear-time projection, Technical Report TR-2008-09, University of British Columbia, Department of Computer Science, 2008.
    • (2008) Technical Report TR-2008-09
    • Berg Den E.Van1    Schmidt, M.2    Friedlander, M.3    Murphy, K.4
  • 58
    • 77949736709 scopus 로고    scopus 로고
    • Iterative reweighted ℓ 1 and ℓ 2 methods for finding sparse solutions
    • D. Wipf, and S. Nagarajan Iterative reweighted ℓ 1 and ℓ 2 methods for finding sparse solutions Journal of Selected Topics in Signal Processing 4 2 2010 317 320
    • (2010) Journal of Selected Topics in Signal Processing , vol.4 , Issue.2 , pp. 317-320
    • Wipf, D.1    Nagarajan, S.2
  • 59
    • 70349962981 scopus 로고    scopus 로고
    • Robust Bayesian estimation of the location orientation and time course of multiple correlated neural sources using meg
    • D. Wipf, J. Owen, H. Attias, K. Sekihara, and S. Nagarajan Robust Bayesian estimation of the location orientation and time course of multiple correlated neural sources using meg NeuroImage 49 1 2010 641 655
    • (2010) NeuroImage , vol.49 , Issue.1 , pp. 641-655
    • Wipf, D.1    Owen, J.2    Attias, H.3    Sekihara, K.4    Nagarajan, S.5
  • 60
    • 34347400802 scopus 로고    scopus 로고
    • An empirical Bayesian strategy for solving the simultaneous sparse approximation problem
    • DOI 10.1109/TSP.2007.894265
    • D. Wipf, and B. Rao An empirical Bayesian strategy for solving the simultaneous sparse approximation problem IEEE Transactions on Signal Processing 55 7 2007 3704 3716 (Pubitemid 47018850)
    • (2007) IEEE Transactions on Signal Processing , vol.55 , Issue.7 , pp. 3704-3716
    • Wipf, D.P.1    Rao, B.D.2
  • 63
    • 33846114377 scopus 로고    scopus 로고
    • The adaptive lasso and its oracle properties
    • H. Zou The adaptive lasso and its oracle properties Journal of the American Statistical Association 101 476 2006 1418 1429
    • (2006) Journal of the American Statistical Association , vol.101 , Issue.476 , pp. 1418-1429
    • Zou, H.1
  • 64
    • 51049104549 scopus 로고    scopus 로고
    • One-step sparse estimates in nonconcave penalized likelihood models
    • H. Zou, and R. Li One-step sparse estimates in nonconcave penalized likelihood models The Annals of Statistics 36 4 2008 1509 1533
    • (2008) The Annals of Statistics , vol.36 , Issue.4 , pp. 1509-1533
    • Zou, H.1    Li, R.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.