메뉴 건너뛰기




Volumn 91, Issue 12, 2011, Pages 2731-2742

Augmented Lagrangian based reconstruction of non-uniformly sub-Nyquist sampled MRI data

Author keywords

Augmented Lagrangian methods; Compressed sensing; MRI reconstruction; Non uniform Fourier transform; Shearlet

Indexed keywords

AUGMENTED LAGRANGIAN METHODS; COMPRESSED SENSING; MRI RECONSTRUCTION; NON-UNIFORM FOURIER TRANSFORM; SHEARLET;

EID: 80051474348     PISSN: 01651684     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.sigpro.2011.04.033     Document Type: Article
Times cited : (39)

References (53)
  • 1
    • 36849088522 scopus 로고    scopus 로고
    • Sparse MRI: The application of compressed sensing for rapid MR imaging
    • DOI 10.1002/mrm.21391
    • M. Lustig, D. Donoho, and J. Pauly Sparse MRI: the application of compressed sensing for rapid MR imaging Magnetic Resonance in Medicine 58 2007 1182 1195 (Pubitemid 350234205)
    • (2007) Magnetic Resonance in Medicine , vol.58 , Issue.6 , pp. 1182-1195
    • Lustig, M.1    Donoho, D.2    Pauly, J.M.3
  • 3
    • 31744440684 scopus 로고    scopus 로고
    • Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information
    • DOI 10.1109/TIT.2005.862083
    • E. Candès, J. Romberg, and T. Tao Robust uncertainty principles: exact frequency reconstruction from highly incomplete frequency information IEEE Transactions on Information Theory 52 2006 489 509 (Pubitemid 43174093)
    • (2006) IEEE Transactions on Information Theory , vol.52 , Issue.2 , pp. 489-509
    • Candes, E.J.1    Romberg, J.2    Tao, T.3
  • 6
    • 33947416035 scopus 로고    scopus 로고
    • Near-optimal signal recovery from random projections: Universal encoding strategies?
    • DOI 10.1109/TIT.2006.885507
    • E. Candès, and T. Tao Near optimal signal recovery from random projections: Universal encoding strategies? IEEE Transactions on Information Theory 52 2006 5406 5425 (Pubitemid 46445381)
    • (2006) IEEE Transactions on Information Theory , vol.52 , Issue.12 , pp. 5406-5425
    • Candes, E.J.1    Tao, T.2
  • 7
    • 7044231546 scopus 로고    scopus 로고
    • An iterative thresholding algorithm for linear inverse problems with a sparsity constraint
    • DOI 10.1002/cpa.20042
    • I. Daubechies, M. Defrise, and C. De Mol An iterative thresholding algorithm for linear inverse problems with a sparsity constraint Communications on Pure and Applied Mathematics 57 2004 1413 1457 (Pubitemid 39427442)
    • (2004) Communications on Pure and Applied Mathematics , vol.57 , Issue.11 , pp. 1413-1457
    • Daubechies, I.1    Defrise, M.2    De Mol, C.3
  • 10
    • 64649083745 scopus 로고    scopus 로고
    • Signal recovery from random measurements via orthogonal matching pursuit
    • J. Tropp, and A. Gilbert Signal recovery from random measurements via orthogonal matching pursuit IEEE Transactions on Information Theory 53 2007 4655 4666
    • (2007) IEEE Transactions on Information Theory , vol.53 , pp. 4655-4666
    • Tropp, J.1    Gilbert, A.2
  • 11
    • 84977895355 scopus 로고    scopus 로고
    • Bregman iterative algorithms for l1-minimization with applications to compressed sensing
    • W. Yin, S. Osher, D. Goldfarb, and J. Darbon Bregman iterative algorithms for l1-minimization with applications to compressed sensing SIAM Journal on Imaging Sciences 1 1 2008 143 168
    • (2008) SIAM Journal on Imaging Sciences , vol.1 , Issue.1 , pp. 143-168
    • Yin, W.1    Osher, S.2    Goldfarb, D.3    Darbon, J.4
  • 14
    • 33645136947 scopus 로고    scopus 로고
    • Bayesian wavelet-based image deconvolution: A GEM algorithm exploiting a class of heavy-tailed priors
    • J.M. Bioucas-Dias Bayesian wavelet-based image deconvolution: a GEM algorithm exploiting a class of heavy-tailed priors IEEE Transactions on Image Processing 15 2006 937 951
    • (2006) IEEE Transactions on Image Processing , vol.15 , pp. 937-951
    • Bioucas-Dias, J.M.1
  • 16
    • 34548724437 scopus 로고    scopus 로고
    • Exact reconstruction of sparse signals via nonconvex minimization
    • DOI 10.1109/LSP.2007.898300
    • R. Chartrand Exact reconstructions of sparse signals via nonconvex minimization IEEE Signal Processing Letters 14 2007 707 710 (Pubitemid 47434090)
    • (2007) IEEE Signal Processing Letters , vol.14 , Issue.10 , pp. 707-710
    • Chartrand, R.1
  • 18
    • 77955102061 scopus 로고    scopus 로고
    • SPIR-iT: Iterative self-consistent parallel imaging reconstruction from arbitrary k-space
    • M. Lustig, and J. Pauly SPIR-iT: iterative self-consistent parallel imaging reconstruction from arbitrary k-space Magnetic Resonance in Medicine 64 2 2010 457 471
    • (2010) Magnetic Resonance in Medicine , vol.64 , Issue.2 , pp. 457-471
    • Lustig, M.1    Pauly, J.2
  • 19
    • 70449418034 scopus 로고    scopus 로고
    • Practical nonconvex compressive sensing reconstruction of highly-accelerated 3D parallel MR angiograms
    • J. Trzasko, C. Haider, and A. Manduca Practical nonconvex compressive sensing reconstruction of highly-accelerated 3D parallel MR angiograms Proceedings of the Symposium on Biomedical Imaging 2009 1349
    • (2009) Proceedings of the Symposium on Biomedical Imaging , pp. 1349
    • Trzasko, J.1    Haider, C.2    Manduca, A.3
  • 20
    • 85092120577 scopus 로고    scopus 로고
    • Combination of compressed sensing and parallel imaging for highly accelerated first-pass cardiac perfusion MRI
    • in press.
    • R. Otazo, D. Kim, L. Axel, D. Sodickson, Combination of compressed sensing and parallel imaging for highly accelerated first-pass cardiac perfusion MRI, Magnetic Resonance in Medicine, in press.
    • Magnetic Resonance in Medicine
    • Otazo, R.1    Kim, D.2    Axel, L.3    Sodickson, D.4
  • 21
    • 79952030346 scopus 로고    scopus 로고
    • A wavelet-based regularized reconstruction algorithm for SENSE parallel MRI with applications to neuroimaging
    • L. Chaâri, J.-C. Pesquet, A. Benazza-Benyahia, and P. Ciuciu A wavelet-based regularized reconstruction algorithm for SENSE parallel MRI with applications to neuroimaging Medical Image Analysis 10 2010
    • (2010) Medical Image Analysis , vol.10
    • Chaâri, L.1    Pesquet, J.-C.2    Benazza-Benyahia, A.3    Ciuciu, P.4
  • 22
    • 84969334819 scopus 로고    scopus 로고
    • The split Bregman method for L1 regularized problems
    • T. Goldstein, and S. Osher The split Bregman method for L1 regularized problems SIAM Journal on Imaging Sciences 2 2 2009 323 343
    • (2009) SIAM Journal on Imaging Sciences , vol.2 , Issue.2 , pp. 323-343
    • Goldstein, T.1    Osher, S.2
  • 23
    • 44049100077 scopus 로고    scopus 로고
    • Sparse directional image representations using the discrete shearlet transform
    • DOI 10.1016/j.acha.2007.09.003, PII S1063520307000875
    • G. Easley, D. Labate, and W. Lim Sparse directional image representations using the discrete shearlet transform Applied and Computational Harmonic Analysis 25 2008 25 46 (Pubitemid 351713737)
    • (2008) Applied and Computational Harmonic Analysis , vol.25 , Issue.1 , pp. 25-46
    • Easley, G.1    Labate, D.2    Lim, W.-Q.3
  • 25
  • 28
    • 44849087307 scopus 로고    scopus 로고
    • Bayesian compressive sensing
    • DOI 10.1109/TSP.2007.914345
    • S. Ji, Y. Xue, and L. Carin Bayesian compressive sensing IEEE Transactions on Signal Processing 56 2008 2346 2356 (Pubitemid 351795888)
    • (2008) IEEE Transactions on Signal Processing , vol.56 , Issue.6 , pp. 2346-2356
    • Ji, S.1    Xue, Y.2    Carin, L.3
  • 30
    • 85014561619 scopus 로고    scopus 로고
    • A fast iterative shrinkage-thresholding algorithm for linear inverse problems
    • A. Beck, and M. Teboulle A fast iterative shrinkage-thresholding algorithm for linear inverse problems SIAM Journal of Imaging Sciences 2 2009 183 202
    • (2009) SIAM Journal of Imaging Sciences , vol.2 , pp. 183-202
    • Beck, A.1    Teboulle, M.2
  • 31
    • 39449126969 scopus 로고    scopus 로고
    • Gradient projection for sparse reconstruction: Application to compressed sensing and other inverse problems
    • (Special issue on Convex optimization methods for signal processing)
    • M. Figueiredo, R. Nowak, and S. Wright Gradient projection for sparse reconstruction: application to compressed sensing and other inverse problems IEEE Journal of Selected Topics in Signal Processing 1 2007 586 598 (Special issue on Convex optimization methods for signal processing)
    • (2007) IEEE Journal of Selected Topics in Signal Processing , vol.1 , pp. 586-598
    • Figueiredo, M.1    Nowak, R.2    Wright, S.3
  • 33
  • 35
    • 4944230740 scopus 로고    scopus 로고
    • Accelerating the nonuniform fast Fourier transform
    • L. Greengard, and J.-Y. Lee Accelerating the nonuniform fast Fourier transform SIAM Review 46 3 2004 443 454
    • (2004) SIAM Review , vol.46 , Issue.3 , pp. 443-454
    • Greengard, L.1    Lee, J.-Y.2
  • 36
    • 60549094819 scopus 로고    scopus 로고
    • Convolution kernel design and efficient algorithm for sampling density correction
    • K. Johnson, and J. Pipe Convolution kernel design and efficient algorithm for sampling density correction Magnetic Resonance in Medicine 61 2009 439 447
    • (2009) Magnetic Resonance in Medicine , vol.61 , pp. 439-447
    • Johnson, K.1    Pipe, J.2
  • 38
    • 35248890498 scopus 로고    scopus 로고
    • On NUFFT-based gridding for non-Cartesian MRI
    • DOI 10.1016/j.jmr.2007.06.012, PII S1090780707002054
    • J.A. Fessler On NUFFT-based gridding for non-cartesian MRI Journal of Magnetic Resonance 188 2 2007 191 195 doi: 〈 http://dx.doi.org/10.1016/j. jmr.2007.06.012 〉 (Pubitemid 47562805)
    • (2007) Journal of Magnetic Resonance , vol.188 , Issue.2 , pp. 191-195
    • Fessler, J.A.1
  • 41
    • 0035331869 scopus 로고    scopus 로고
    • Complex wavelets for shift invariant analysis and filtering of signals
    • N.G. Kingsbury Complex wavelets for shift invariant analysis and filtering of signals Journal of Applied and Computational Harmonic Analysis 10 3 2001 234 253
    • (2001) Journal of Applied and Computational Harmonic Analysis , vol.10 , Issue.3 , pp. 234-253
    • Kingsbury, N.G.1
  • 43
    • 54949086723 scopus 로고    scopus 로고
    • Complex wavelet bases, steerability, and the Marr-like pyramid
    • D. Van De Ville, and M. Unser Complex wavelet bases, steerability, and the Marr-like pyramid IEEE Transactions on Image Processing 17 11 2008 2063 2080
    • (2008) IEEE Transactions on Image Processing , vol.17 , Issue.11 , pp. 2063-2080
    • Van De Ville, D.1    Unser, M.2
  • 45
    • 0004089243 scopus 로고    scopus 로고
    • Ph.D. Thesis, Department of Statistics, Stanford University
    • E. Candès, Ridgelets: Theory and Applications, Ph.D. Thesis, Department of Statistics, Stanford University, 1998.
    • (1998) Ridgelets: Theory and Applications
    • Candès, E.1
  • 46
    • 0036612499 scopus 로고    scopus 로고
    • The curvelet transform for image denoising
    • DOI 10.1109/TIP.2002.1014998, PII S1057714902017347
    • J.L. Starck, E. Candès, and D.L. Donoho The curvelet transform for image denoising IEEE Transactions on Image Processing 11 2000 670 684 (Pubitemid 34814390)
    • (2002) IEEE Transactions on Image Processing , vol.11 , Issue.6 , pp. 670-684
    • Starck, J.-L.1    Candes, E.J.2    Donoho, D.L.3
  • 48
    • 36148960270 scopus 로고    scopus 로고
    • Optimally sparse multidimensional representation using shearlets
    • DOI 10.1137/060649781
    • K. Guo, and D. Labate Optimally sparse multidimensional representation using shearlets SIAM Journal on Mathematical Analysis 39 2007 298 318 (Pubitemid 351271316)
    • (2007) SIAM Journal on Mathematical Analysis , vol.39 , Issue.1 , pp. 298-318
    • Guo, K.1    Labate, D.2
  • 49
    • 0000929221 scopus 로고
    • What is the goal of sensory coding?
    • D. Field What is the goal of sensory coding? Neural Computation 6 1994 559 601
    • (1994) Neural Computation , vol.6 , pp. 559-601
    • Field, D.1
  • 52


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.