-
1
-
-
0000802374
-
The approximation of one matrix by another of lower rank
-
C. Eckart and G. Young, "The approximation of one matrix by another of lower rank," Psychometrika, vol. 1, pp. 211-218, 1936.
-
(1936)
Psychometrika
, vol.1
, pp. 211-218
-
-
Eckart, C.1
Young, G.2
-
2
-
-
0034704229
-
A global geometric framework for nonlinear dimensionality reduction
-
DOI 10.1126/science.290.5500.2319
-
J. B. Tenenbaum, V. de Silva, and J. C. Langford, "A global geometric framework for nonlinear dimensionality reduction," Science, vol. 290, pp. 2319-2323, 2000. (Pubitemid 32041577)
-
(2000)
Science
, vol.290
, Issue.5500
, pp. 2319-2323
-
-
Tenenbaum, J.B.1
De Silva, V.2
Langford, J.C.3
-
3
-
-
33748149588
-
Learning nonlinear image manifolds by global alignment of local linear models
-
DOI 10.1109/TPAMI.2006.166
-
J. Verbeek, "Learning nonlinear image manifolds by global alignment of local linear models," IEEE Trans. Pattern Anal. Mach. Intell., vol. 28, pp. 1236-1250, 2006. (Pubitemid 46405022)
-
(2006)
IEEE Transactions on Pattern Analysis and Machine Intelligence
, vol.28
, Issue.8
, pp. 1236-1250
-
-
Verbeek, J.1
-
4
-
-
82055166923
-
-
Netflix, Inc., The Netflix Prize [Online]. Available
-
Netflix, Inc., The Netflix Prize [Online]. Available: http://www.netflixprize. com/
-
-
-
-
7
-
-
77951291046
-
A singular value thresholding algorithm for matrix completion
-
J.-F. Cai, E. J. Candès, and Z. Shen, "A singular value thresholding algorithm for matrix completion," SIAM J. Optimiz., vol. 20, pp. 1956-1982, 2008.
-
(2008)
SIAM J. Optimiz.
, vol.20
, pp. 1956-1982
-
-
Cai, J.-F.1
Candès, E.J.2
Shen, Z.3
-
9
-
-
77952741387
-
Matrix completion with noise
-
E. Candès and Y. Plan, "Matrix completion with noise," IEEE Proc., vol. 98, no. 6, pp. 925-936, 2010.
-
(2010)
IEEE Proc.
, vol.98
, Issue.6
, pp. 925-936
-
-
Candès, E.1
Plan, Y.2
-
10
-
-
84863367863
-
Robust principal component analysis: Exact recovery of corrupted low-rank matrices by convex optimization
-
J. Wright, Y. Peng, Y. Ma, A. Ganesh, and S. Rao, "Robust principal component analysis: Exact recovery of corrupted low-rank matrices by convex optimization," in Proc. Neural Inf. Process. Syst. (NIPS), 2009.
-
(2009)
Proc. Neural Inf. Process. Syst. (NIPS)
-
-
Wright, J.1
Peng, Y.2
Ma, Y.3
Ganesh, A.4
Rao, S.5
-
11
-
-
80051618405
-
Sparse and low-rank matrix decompositions
-
V. Chandrasekaran, S. Sanghavi, P. A. Parrilo, and A. S. Willsky, "Sparse and low-rank matrix decompositions," in Proc. IFAC Symp. System Identification, 2009.
-
(2009)
Proc. IFAC Symp. System Identification
-
-
Chandrasekaran, V.1
Sanghavi, S.2
Parrilo, P.A.3
Willsky, A.S.4
-
13
-
-
0141742284
-
A framework for robust subspace learning
-
F. D. la Torre and M. J. Black, "A framework for robust subspace learning," Int. J. Comput. Vis., vol. 54, pp. 117-142, 2003.
-
(2003)
Int. J. Comput. Vis.
, vol.54
, pp. 117-142
-
-
La Torre, F.D.1
Black, M.J.2
-
14
-
-
0002954125
-
Robust estimates, residuals, and outlier detection with multiresponse data
-
R. Gnanadesikan and J. R. Kettenring, "Robust estimates, residuals, and outlier detection with multiresponse data," Biometrics, vol. 28, pp. 81-124, 1972.
-
(1972)
Biometrics
, vol.28
, pp. 81-124
-
-
Gnanadesikan, R.1
Kettenring, J.R.2
-
15
-
-
33745179218
-
1 norm factorization in the presence of outliers and missing data by alternative convex programming
-
1467342, Proceedings - 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2005
-
Q. Ke and T. Kanade, "Robust norm factorization in the presence of outliers and missing data by alternative convex programming," in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2005, pp. 739-746. (Pubitemid 43897268)
-
(2005)
Proceedings - 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2005
, vol.I
, pp. 739-746
-
-
Ke, Q.1
Kanade, T.2
-
16
-
-
0019574599
-
Random sample consensus: A paradigm for model fitting with applications to image analysis and automated cartography
-
M. A. Fischler and R. C. Bolles, "Random sample consensus: A paradigm for model fitting with applications to image analysis and automated cartography," Commun. ACM, vol. 24, pp. 381-385, 1981.
-
(1981)
Commun. ACM
, vol.24
, pp. 381-385
-
-
Fischler, M.A.1
Bolles, R.C.2
-
17
-
-
79960675858
-
Robust principal component analysis?
-
E. J. Candès, X. Li, Y. Ma, and J.Wright, "Robust principal component analysis?," J. ACM, vol. 58, no. 1, pp. 1-37, 2009.
-
(2009)
J. ACM
, vol.58
, Issue.1
, pp. 1-37
-
-
Candès, E.J.1
Li, X.2
Ma, Y.3
Wright, J.4
-
18
-
-
77955670622
-
Stable principal component pursuit
-
Z. Zhou, J. Wright, X. Li, E. J. Candès, and Y. Ma, "Stable principal component pursuit," in Proc. Int. Symp. Inf. Theory, 2010.
-
(2010)
Proc. Int. Symp. Inf. Theory
-
-
Zhou, Z.1
Wright, J.2
Li, X.3
Candès, E.J.4
Ma, Y.5
-
19
-
-
0038959172
-
Probabilistic principal component analysis
-
M. E. Tipping and C. M. Bishop, "Probabilistic principal component analysis," J. Royal Stat. Soc. Series B, vol. 61, pp. 611-622, 1999.
-
(1999)
J. Royal Stat. Soc. Series B
, vol.61
, pp. 611-622
-
-
Tipping, M.E.1
Bishop, C.M.2
-
20
-
-
38349073064
-
Robust principal component analysis and its Bayesian variational inference
-
J. Gao, "Robust principal component analysis and its Bayesian variational inference," Neural Comput., vol. 20, pp. 555-578, 2008.
-
(2008)
Neural Comput.
, vol.20
, pp. 555-578
-
-
Gao, J.1
-
21
-
-
67149131576
-
Bayesian robust PCA for incomplete data
-
J. Luttinen, A. Ilin, and J. Karhunen, "Bayesian robust PCA for incomplete data," in Proc. Int. Conf. Independent Compon. Anal. Signal Separation, 2009, pp. 66-73.
-
(2009)
Proc. Int. Conf. Independent Compon. Anal. Signal Separation
, pp. 66-73
-
-
Luttinen, J.1
Ilin, A.2
Karhunen, J.3
-
22
-
-
71049116435
-
Exact matrix completion via convex optimization
-
E. J. Candès and B. Recht, "Exact matrix completion via convex optimization," Found. Comput. Math., vol. 9, pp. 717-772, 2008.
-
(2008)
Found. Comput. Math.
, vol.9
, pp. 717-772
-
-
Candès, E.J.1
Recht, B.2
-
23
-
-
78549288866
-
Guaranteed minimum-rank solutions of linear matrix equations via nuclear norm minimization
-
B. Recht, M. Fazel, and P.A. Parrilo, "Guaranteed minimum-rank solutions of linear matrix equations via nuclear norm minimization," SIAM Rev., vol. 52, no. 3, pp. 471-501, 2008.
-
(2008)
SIAM Rev.
, vol.52
, Issue.3
, pp. 471-501
-
-
Recht, B.1
Fazel, M.2
Parrilo, P.A.3
-
24
-
-
56449131205
-
Bayesian probabilistic matrix factorization using Markov chain Monte Carlo
-
R. Salakhutdinov and A. Mnih, "Bayesian probabilistic matrix factorization using Markov chain Monte Carlo," in Proc. Int. Conf. Mach. Learn., 2008, pp. 880-887.
-
(2008)
Proc. Int. Conf. Mach. Learn.
, pp. 880-887
-
-
Salakhutdinov, R.1
Mnih, A.2
-
25
-
-
48249140327
-
Variational Bayesian approach to movie rating prediction
-
Y. J. Lim and Y. W. Teh, "Variational Bayesian approach to movie rating prediction," in Proc. KDD Cup and Workshop, 2007.
-
(2007)
Proc. KDD Cup and Workshop
-
-
Lim, Y.J.1
Teh, Y.W.2
-
26
-
-
71149088913
-
Large-scale collaborative prediction using a nonparametric random effects model
-
K. Yu, J. Lafferty, S. Zhu, and Y. Gong, "Large-scale collaborative prediction using a nonparametric random effects model," in Proc. Int. Conf. Mach. Learning, 2009, pp. 1185-1192.
-
(2009)
Proc. Int. Conf. Mach. Learning
, pp. 1185-1192
-
-
Yu, K.1
Lafferty, J.2
Zhu, S.3
Gong, Y.4
-
27
-
-
71149119166
-
Non-lineaarmatrix factorization with Gaussian processes
-
N. D. Lawrence and R. Urtasun, "Non-lineaarmatrix factorization with Gaussian processes," in Proc. Int. Conf. Mach. Learning, 2009, pp. 601-608.
-
(2009)
Proc. Int. Conf. Mach. Learning
, pp. 601-608
-
-
Lawrence, N.D.1
Urtasun, R.2
-
28
-
-
44849087307
-
Bayesian compressive sensing
-
DOI 10.1109/TSP.2007.914345
-
S. Ji, Y. Xue, and L. Carin, "Bayesian compressive sensing," IEEE Trans. Signal Processing, vol. 56, no. 6, pp. 2346-2356, Jun. 2008. (Pubitemid 351795888)
-
(2008)
IEEE Transactions on Signal Processing
, vol.56
, Issue.6
, pp. 2346-2356
-
-
Ji, S.1
Xue, Y.2
Carin, L.3
-
30
-
-
33748908922
-
Perspectives on sparse Bayesian learning
-
D. Wipf, J. Palmer, and B. Rao, "Perspectives on sparse Bayesian learning," in Adv. Neural Inf. Process. Syst., 2004, vol. 16.
-
(2004)
Adv. Neural Inf. Process. Syst.
, vol.16
-
-
Wipf, D.1
Palmer, J.2
Rao, B.3
-
31
-
-
69349089478
-
Exploiting structure in wavelet-based Bayesian compressive sensing
-
Sep.
-
L. He and L. Carin, "Exploiting structure in wavelet-based Bayesian compressive sensing," IEEE Trans. Signal Process., vol. 57, no. 9, pp. 3488-3497, Sep. 2009.
-
(2009)
IEEE Trans. Signal Process.
, vol.57
, Issue.9
, pp. 3488-3497
-
-
He, L.1
Carin, L.2
-
32
-
-
51449090779
-
Wavelet-domain compressive signal reconstruction using a hidden Markov tree model
-
M. F. Duarte, M. B.Wakin, and R. G. Baraniuk, "Wavelet-domain compressive signal reconstruction using a hidden Markov tree model," in Proc. ICASSP, 2008.
-
(2008)
Proc. ICASSP
-
-
Duarte, M.F.1
Wakin, M.B.2
Baraniuk, R.G.3
-
33
-
-
0001224048
-
Sparse Bayesian Learning and the Relevance Vector Machine
-
DOI 10.1162/15324430152748236
-
M. E. Tipping, "Sparse Bayesian learning and the relevance vector machine," J. Mach. Learning Res., vol. 1, pp. 211-244, 2001. (Pubitemid 33687203)
-
(2001)
Journal of Machine Learning Research
, vol.1
, Issue.3
, pp. 211-244
-
-
Tipping, M.E.1
-
34
-
-
77950649162
-
Simulation of the matrix Bingham-von Mises-Fisher distribution, with applications to multivariate and relational data
-
P. Hoff, "Simulation of the matrix Bingham-von Mises-Fisher distribution, with applications to multivariate and relational data," J. Comp. Graph. Statistics, vol. 18, no. 2, pp. 211-244, 2009.
-
(2009)
J. Comp. Graph. Statistics
, vol.18
, Issue.2
, pp. 211-244
-
-
Hoff, P.1
-
36
-
-
71149119964
-
Online dictionary learning for sparse coding
-
J.Mairal, F. Bach, J. Ponce, and G. Sapiro, "Online dictionary learning for sparse coding," in Proc. Int. Conf. Mach. Learning, 2009, pp. 689-696.
-
(2009)
Proc. Int. Conf. Mach. Learning
, pp. 689-696
-
-
Mairal, J.1
Bach, F.2
Ponce, J.3
Sapiro, G.4
-
38
-
-
3543081155
-
-
Ph.D. dissertation, Gatsby Computational Neuroscience Unit, University College London, London, U.K.
-
M. J. Beal, "Variational algorithms for approximate Bayesian inference," Ph.D. dissertation, Gatsby Computational Neuroscience Unit, University College London, London, U.K., 2003.
-
(2003)
Variational Algorithms for Approximate Bayesian Inference
-
-
Beal, M.J.1
-
39
-
-
77955690054
-
-
University of Illinois, Urbana-Champaign, Tech. Rep. UILU-ENG-09- 2215
-
Z. Lin, M. Chen, L. Wu, and Y. Ma, "The Augmented Lagrange Multiplier Method for Exact Recovery of Corrupted Low-Rank Matrices University of Illinois, Urbana-Champaign, Tech. Rep. UILU-ENG-09- 2215, 2009.
-
(2009)
The Augmented Lagrange Multiplier Method for Exact Recovery of Corrupted Low-Rank Matrices
-
-
Lin, Z.1
Chen, M.2
Wu, L.3
Ma, Y.4
|