메뉴 건너뛰기




Volumn , Issue , 2008, Pages 63-72

Non-negative matrix factorization on manifold

Author keywords

[No Author keywords available]

Indexed keywords

DATA MATRICES; DATA REPRESENTATIONS; GEOMETRIC STRUCTURE; GEOMETRICAL INFORMATIONS; GRAPH STRUCTURES; GRAPH-BASED; MATRIX; MATRIX FACTORIZATIONS; NON-NEGATIVE MATRIX; NONNEGATIVE MATRIX FACTORIZATION; NOVEL ALGORITHM; REAL-WORLD PROBLEM;

EID: 67049155384     PISSN: 15504786     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ICDM.2008.57     Document Type: Conference Paper
Times cited : (430)

References (32)
  • 2
    • 0043278893 scopus 로고    scopus 로고
    • Laplacian eigenmaps and spectral techniques for embedding and clustering
    • MIT Press, Cambridge, MA
    • M. Belkin and P. Niyogi. Laplacian eigenmaps and spectral techniques for embedding and clustering. In Advances in Neural Information Processing Systems 14, pages 585-591. MIT Press, Cambridge, MA, 2001.
    • (2001) Advances in Neural Information Processing Systems , vol.14 , pp. 585-591
    • Belkin, M.1    Niyogi, P.2
  • 3
    • 33750729556 scopus 로고    scopus 로고
    • Manifold regularization: A geometric framework for learning from examples
    • M. Belkin, P. Niyogi, and V. Sindhwani. Manifold regularization: A geometric framework for learning from examples. Journal of Machine Learning Research, 7:2399-2434, 2006.
    • (2006) Journal of Machine Learning Research , vol.7 , pp. 2399-2434
    • Belkin, M.1    Niyogi, P.2    Sindhwani, V.3
  • 5
    • 30344483178 scopus 로고    scopus 로고
    • Document clustering using locality preserving indexing
    • DOI 10.1109/TKDE.2005.198
    • D. Cai, X. He, and J. Han. Document clustering using locality preserving indexing. IEEE Transactions on Knowledge and Data Engineering, 17(12):1624-1637, December 2005. (Pubitemid 43060413)
    • (2005) IEEE Transactions on Knowledge and Data Engineering , vol.17 , Issue.12 , pp. 1624-1637
    • Cai, D.1    He, X.2    Han, J.3
  • 10
    • 33749568310 scopus 로고    scopus 로고
    • Convex and semi-nonnegative matrix factorizations for clustering and low-dimension representation
    • Lawrence Berkeley National Laboratory
    • C. Ding, T. Li, and M. Jordan. Convex and semi-nonnegative matrix factorizations for clustering and low-dimension representation. Technical report, LBNL-60428, Lawrence Berkeley National Laboratory, 2006.
    • (2006) Technical Report, LBNL-60428
    • Ding, C.1    Li, T.2    Jordan, M.3
  • 12
    • 84900510076 scopus 로고    scopus 로고
    • Non-negative matrix factorizaiton with sparseness constraints
    • P. O. Hoyer. Non-negative matrix factorizaiton with sparseness constraints. Journal of Machine Learning Research, 5:1457-1469, 2004.
    • (2004) Journal of Machine Learning Research , vol.5 , pp. 1457-1469
    • Hoyer, P.O.1
  • 14
    • 0033592606 scopus 로고    scopus 로고
    • Learning the parts of objects by non-negative matrix factorization
    • D. D. Lee and H. S. Seung. Learning the parts of objects by non-negative matrix factorization. Nature, 401:788-791, 1999.
    • (1999) Nature , vol.401 , pp. 788-791
    • Lee, D.D.1    Seung, H.S.2
  • 17
    • 49849097634 scopus 로고    scopus 로고
    • The relationships among various nonnegative matrix factorization methods for clustering
    • T. Li and C. Ding. The relationships among various nonnegative matrix factorization methods for clustering. In Proc. Int. Conf. on Data Mining (ICDM'06), 2006.
    • (2006) Proc. Int. Conf. on Data Mining (ICDM'06)
    • Li, T.1    Ding, C.2
  • 18
    • 35548969471 scopus 로고    scopus 로고
    • Projected gradient methods for nonnegative matrix factorization
    • C.-J. Lin. Projected gradient methods for nonnegative matrix factorization. Neural Computation, 19(10):2756-2779, 2007.
    • (2007) Neural Computation , vol.19 , Issue.10 , pp. 2756-2779
    • Lin, C.-J.1
  • 21
    • 0038363049 scopus 로고
    • Akadémiai Kiadó North Holland Budapest
    • L. Lovasz and M. Plummer. Matching Theory. Akad'emiai Kiad'o, North Holland, Budapest, 1986.
    • (1986) Matching Theory
    • Lovasz, L.1    Plummer, M.2
  • 22
    • 0028561099 scopus 로고
    • Positive matrix factorization: A non-negative factor model with optimal utilization of error estimates of data values
    • P. Paatero and U. Tapper. Positive matrix factorization: A non-negative factor model with optimal utilization of error estimates of data values. Environmetrics, 5(2):111-126, 1994.
    • (1994) Environmetrics , vol.5 , Issue.2 , pp. 111-126
    • Paatero, P.1    Tapper, U.2
  • 23
    • 49449120034 scopus 로고
    • Hierarchical structure in perceptual representation
    • S. E. Palmer. Hierarchical structure in perceptual representation. Cognitive Psychology, 9:441-474, 1977.
    • (1977) Cognitive Psychology , vol.9 , pp. 441-474
    • Palmer, S.E.1
  • 27
    • 0027980942 scopus 로고
    • Recognition of objects and their component parts: Responses of single units in the temporal cortex of the macaque
    • E.Wachsmuth, M.W. Oram, and D. I. Perrett. Recognition of objects and their component parts: Responses of single units in the temporal cortex of the macaque. Cerebral Cortex, 4:509-522, 1994. (Pubitemid 24297014)
    • (1994) Cerebral Cortex , vol.4 , Issue.5 , pp. 509-522
    • Wachsmuth, E.1    Oram, M.W.2    Perrett, D.I.3
  • 32
    • 31844438481 scopus 로고    scopus 로고
    • Harmonic mixtures: Combining mixture models and graph-based methods for inductive and scalable semi-supervised learning
    • X. Zhu and J. Lafferty. Harmonic mixtures: combining mixture models and graph-based methods for inductive and scalable semi-supervised learning. In ICML '05: Proceedings of the 22nd international conference on Machine learning, pages 1052-1059, 2005.
    • (2005) ICML '05: Proceedings of the 22nd international conference on Machine learning , pp. 1052-1059
    • Zhu, X.1    Lafferty, J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.