-
2
-
-
0043278893
-
Laplacian eigenmaps and spectral techniques for embedding and clustering
-
MIT Press, Cambridge, MA
-
M. Belkin and P. Niyogi. Laplacian eigenmaps and spectral techniques for embedding and clustering. In Advances in Neural Information Processing Systems 14, pages 585-591. MIT Press, Cambridge, MA, 2001.
-
(2001)
Advances in Neural Information Processing Systems
, vol.14
, pp. 585-591
-
-
Belkin, M.1
Niyogi, P.2
-
3
-
-
33750729556
-
Manifold regularization: A geometric framework for learning from examples
-
M. Belkin, P. Niyogi, and V. Sindhwani. Manifold regularization: A geometric framework for learning from examples. Journal of Machine Learning Research, 7:2399-2434, 2006.
-
(2006)
Journal of Machine Learning Research
, vol.7
, pp. 2399-2434
-
-
Belkin, M.1
Niyogi, P.2
Sindhwani, V.3
-
4
-
-
1642529511
-
Metagenes and molecular pattern discovery using matrix factorization
-
DOI 10.1073/pnas.0308531101
-
J.-P. Brunet, P. Tamayo, T. R. Golub, and J. P. Mesirov. Metagenes and molecular pattern discovery using matrix factorization. Proceedings of the National Academy of Sciences, 101(12):4164-4169, 2004. (Pubitemid 38405900)
-
(2004)
Proceedings of the National Academy of Sciences of the United States of America
, vol.101
, Issue.12
, pp. 4164-4169
-
-
Brunet, J.-P.1
Tamayo, P.2
Golub, T.R.3
Mesirov, J.P.4
-
5
-
-
30344483178
-
Document clustering using locality preserving indexing
-
DOI 10.1109/TKDE.2005.198
-
D. Cai, X. He, and J. Han. Document clustering using locality preserving indexing. IEEE Transactions on Knowledge and Data Engineering, 17(12):1624-1637, December 2005. (Pubitemid 43060413)
-
(2005)
IEEE Transactions on Knowledge and Data Engineering
, vol.17
, Issue.12
, pp. 1624-1637
-
-
Cai, D.1
He, X.2
Han, J.3
-
6
-
-
33847718849
-
-
October
-
M. Chu, F. Diele, R. Plemmons, and S. Ragni. Optimality, Computation, and Interpretation of Nonnegative Matrix Factoriaztions, October 2004.
-
(2004)
Optimality, Computation, and Interpretation of Nonnegative Matrix Factoriaztions
-
-
Chu, M.1
Diele, F.2
Plemmons, R.3
Ragni, S.4
-
8
-
-
84989525001
-
Indexing by latent semantic analysis
-
S. C. Deerwester, S. T. Dumais, T. K. Landauer, G.W. Furnas, and R. A. harshman. Indexing by latent semantic analysis. Journal of the American Society of Information Science, 41(6):391-407, 1990.
-
(1990)
Journal of the American Society of Information Science
, vol.41
, Issue.6
, pp. 391-407
-
-
Deerwester, S.C.1
Dumais, S.T.2
Landauer, T.K.3
Furnas, G.W.4
Harshman, R.A.5
-
9
-
-
0002629270
-
Maximum likelihood from incomplete data via the em algorithm
-
A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from incomplete data via the em algorithm. Journal of the Royal Statistical Society. Series B (Methodological), 39(1):1-38, 1977.
-
(1977)
Journal of the Royal Statistical Society. Series B (Methodological)
, vol.39
, Issue.1
, pp. 1-38
-
-
Dempster, A.P.1
Laird, N.M.2
Rubin, D.B.3
-
10
-
-
33749568310
-
Convex and semi-nonnegative matrix factorizations for clustering and low-dimension representation
-
Lawrence Berkeley National Laboratory
-
C. Ding, T. Li, and M. Jordan. Convex and semi-nonnegative matrix factorizations for clustering and low-dimension representation. Technical report, LBNL-60428, Lawrence Berkeley National Laboratory, 2006.
-
(2006)
Technical Report, LBNL-60428
-
-
Ding, C.1
Li, T.2
Jordan, M.3
-
12
-
-
84900510076
-
Non-negative matrix factorizaiton with sparseness constraints
-
P. O. Hoyer. Non-negative matrix factorizaiton with sparseness constraints. Journal of Machine Learning Research, 5:1457-1469, 2004.
-
(2004)
Journal of Machine Learning Research
, vol.5
, pp. 1457-1469
-
-
Hoyer, P.O.1
-
14
-
-
0033592606
-
Learning the parts of objects by non-negative matrix factorization
-
D. D. Lee and H. S. Seung. Learning the parts of objects by non-negative matrix factorization. Nature, 401:788-791, 1999.
-
(1999)
Nature
, vol.401
, pp. 788-791
-
-
Lee, D.D.1
Seung, H.S.2
-
16
-
-
0035683536
-
Learning spatially localized, parts-based representation
-
S. Z. Li, X. Hou, H. Zhang, and Q. Cheng. Learning spatially localized, parts-based representation. In 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'01), pages 207-212, 2001.
-
(2001)
2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'01)
, pp. 207-212
-
-
Li, S.Z.1
Hou, X.2
Zhang, H.3
Cheng, Q.4
-
17
-
-
49849097634
-
The relationships among various nonnegative matrix factorization methods for clustering
-
T. Li and C. Ding. The relationships among various nonnegative matrix factorization methods for clustering. In Proc. Int. Conf. on Data Mining (ICDM'06), 2006.
-
(2006)
Proc. Int. Conf. on Data Mining (ICDM'06)
-
-
Li, T.1
Ding, C.2
-
18
-
-
35548969471
-
Projected gradient methods for nonnegative matrix factorization
-
C.-J. Lin. Projected gradient methods for nonnegative matrix factorization. Neural Computation, 19(10):2756-2779, 2007.
-
(2007)
Neural Computation
, vol.19
, Issue.10
, pp. 2756-2779
-
-
Lin, C.-J.1
-
21
-
-
0038363049
-
-
Akadémiai Kiadó North Holland Budapest
-
L. Lovasz and M. Plummer. Matching Theory. Akad'emiai Kiad'o, North Holland, Budapest, 1986.
-
(1986)
Matching Theory
-
-
Lovasz, L.1
Plummer, M.2
-
22
-
-
0028561099
-
Positive matrix factorization: A non-negative factor model with optimal utilization of error estimates of data values
-
P. Paatero and U. Tapper. Positive matrix factorization: A non-negative factor model with optimal utilization of error estimates of data values. Environmetrics, 5(2):111-126, 1994.
-
(1994)
Environmetrics
, vol.5
, Issue.2
, pp. 111-126
-
-
Paatero, P.1
Tapper, U.2
-
23
-
-
49449120034
-
Hierarchical structure in perceptual representation
-
S. E. Palmer. Hierarchical structure in perceptual representation. Cognitive Psychology, 9:441-474, 1977.
-
(1977)
Cognitive Psychology
, vol.9
, pp. 441-474
-
-
Palmer, S.E.1
-
24
-
-
25844488029
-
Document clustering using nonnegative matrix factorization
-
F. Shahnaza, M.W. Berrya, V. Paucab, and R. J. Plemmonsb. Document clustering using nonnegative matrix factorization. Information Processing & Management, 42(2):373-386, 2006.
-
(2006)
Information Processing & Management
, vol.42
, Issue.2
, pp. 373-386
-
-
Shahnaza, F.1
Berrya, M.W.2
Paucab, V.3
Plemmonsb, R.J.4
-
27
-
-
0027980942
-
Recognition of objects and their component parts: Responses of single units in the temporal cortex of the macaque
-
E.Wachsmuth, M.W. Oram, and D. I. Perrett. Recognition of objects and their component parts: Responses of single units in the temporal cortex of the macaque. Cerebral Cortex, 4:509-522, 1994. (Pubitemid 24297014)
-
(1994)
Cerebral Cortex
, vol.4
, Issue.5
, pp. 509-522
-
-
Wachsmuth, E.1
Oram, M.W.2
Perrett, D.I.3
-
29
-
-
1542347778
-
Document clustering based on non-negative matrix factorization
-
Toronto, Canada, Aug.
-
W. Xu, X. Liu, and Y. Gong. Document clustering based on non-negative matrix factorization. In Proc. 2003 Int. Conf. on Research and Development in Information Retrieval (SIGIR'03), pages 267-273, Toronto, Canada, Aug. 2003.
-
(2003)
Proc. 2003 Int. Conf. on Research and Development in Information Retrieval (SIGIR'03)
, pp. 267-273
-
-
Xu, W.1
Liu, X.2
Gong, Y.3
-
30
-
-
0013246766
-
Spectral relaxation for k-means clustering
-
MIT Press, Cambridge, MA
-
H. Zha, C. Ding, M. Gu, X. He, , and H. Simon. Spectral relaxation for k-means clustering. In Advances in Neural Information Processing Systems 14, pages 1057-1064. MIT Press, Cambridge, MA, 2001.
-
(2001)
Advances in Neural Information Processing Systems
, vol.14
, pp. 1057-1064
-
-
Zha, H.1
Ding, C.2
Gu, M.3
He, X.4
Simon, H.5
-
31
-
-
22944492898
-
Learning with local and global consistency
-
D. Zhou, O. Bousquet, T. Lal, J. Weston, and B. Schölkopf. Learning with local and global consistency. In Advances in Neural Information Processing Systems 16, 2003.
-
(2003)
Advances in Neural Information Processing Systems
, vol.16
-
-
Zhou, D.1
Bousquet, O.2
Lal, T.3
Weston, J.4
Schölkopf, B.5
-
32
-
-
31844438481
-
Harmonic mixtures: Combining mixture models and graph-based methods for inductive and scalable semi-supervised learning
-
X. Zhu and J. Lafferty. Harmonic mixtures: combining mixture models and graph-based methods for inductive and scalable semi-supervised learning. In ICML '05: Proceedings of the 22nd international conference on Machine learning, pages 1052-1059, 2005.
-
(2005)
ICML '05: Proceedings of the 22nd international conference on Machine learning
, pp. 1052-1059
-
-
Zhu, X.1
Lafferty, J.2
|