메뉴 건너뛰기




Volumn 10, Issue 6, 1998, Pages 1445-1454

A Sparse Representation for Function Approximation

Author keywords

[No Author keywords available]

Indexed keywords


EID: 0000473139     PISSN: 08997667     EISSN: None     Source Type: Journal    
DOI: 10.1162/089976698300017250     Document Type: Article
Times cited : (58)

References (19)
  • 1
    • 5844297152 scopus 로고
    • Theory of reproducing kernels
    • Aronszajn, N. (1950). Theory of reproducing kernels. Trans. Amer. Math. Soc., 686, 337-404.
    • (1950) Trans. Amer. Math. Soc. , vol.686 , pp. 337-404
    • Aronszajn, N.1
  • 3
    • 0003958737 scopus 로고
    • Unpublished doctoral dissertation, Stanford University
    • Chen, S. (1995). Basis pursuit. Unpublished doctoral dissertation, Stanford University.
    • (1995) Basis Pursuit
    • Chen, S.1
  • 4
    • 0004134624 scopus 로고
    • May, (Tech. Rep. No. 479). Stanford, CA: Department of Statistics, Stanford University
    • Chen, S., Donoho, D., & Saunders, M. (May, 1995). Atomic decomposition by basis pursuit (Tech. Rep. No. 479). Stanford, CA: Department of Statistics, Stanford University.
    • (1995) Atomic Decomposition by Basis Pursuit
    • Chen, S.1    Donoho, D.2    Saunders, M.3
  • 5
    • 34249753618 scopus 로고
    • Support vector networks
    • Cortes, C., & Vapnik, V. (1995). Support vector networks. Machine Learning, 20, 1-25.
    • (1995) Machine Learning , vol.20 , pp. 1-25
    • Cortes, C.1    Vapnik, V.2
  • 6
    • 0000249788 scopus 로고    scopus 로고
    • An equivalence between sparse approximation and support vector machines
    • Girosi, F. (1998). An equivalence between sparse approximation and support vector machines. Neural Computation, 10(6), 1455-1480.
    • (1998) Neural Computation , vol.10 , Issue.6 , pp. 1455-1480
    • Girosi, F.1
  • 7
    • 0001219859 scopus 로고
    • Regularization theory and neural networks architectures
    • Girosi, F., Jones, M., & Poggio, T. (1995). Regularization theory and neural networks architectures. Neural Computation, 7, 219-269.
    • (1995) Neural Computation , vol.7 , pp. 219-269
    • Girosi, F.1    Jones, M.2    Poggio, T.3
  • 8
    • 0002438120 scopus 로고
    • Extensions of a theory of networks for approximation and learning: Outliers and negative examples
    • R. Lippmann, J. Moody, & D. Touretzky (Eds.), San Mateo, CA: Morgan Kaufmann
    • Girosi, F., Poggio, T., & Caprile, B. (1991). Extensions of a theory of networks for approximation and learning: Outliers and negative examples. In R. Lippmann, J. Moody, & D. Touretzky (Eds.), Advances in neural information processings systems 3. San Mateo, CA: Morgan Kaufmann.
    • (1991) Advances in Neural Information Processings Systems , vol.3
    • Girosi, F.1    Poggio, T.2    Caprile, B.3
  • 9
    • 0031375732 scopus 로고    scopus 로고
    • Nonlinear prediction of chaotic time series using support vector machines
    • September, J. Principe, L. Giles, N. Morgan, & E. Wilson (Eds.), Amelia Island, FL
    • Mukherjee, S., Osuna, E., & Girosi, F. (September, 1997). Nonlinear prediction of chaotic time series using support vector machines. In J. Principe, L. Giles, N. Morgan, & E. Wilson (Eds.), IEEE Workshop on Neural Networks and Signal Processing, Amelia Island, FL.
    • (1997) IEEE Workshop on Neural Networks and Signal Processing
    • Mukherjee, S.1    Osuna, E.2    Girosi, F.3
  • 11
    • 0000209334 scopus 로고    scopus 로고
    • Local feature analysis: A general statistical theory for object representation
    • Penev, P. S., & Atick, J. J. (1996). Local feature analysis: A general statistical theory for object representation. Neural Systems, 7, 477, 500.
    • (1996) Neural Systems , vol.7 , pp. 477
    • Penev, P.S.1    Atick, J.J.2
  • 13
    • 84975551912 scopus 로고
    • A low dimensional procedure for identifying human faces
    • Sirovich, L., & Kirby, M. (1987). A low dimensional procedure for identifying human faces. Journal of Optical Society A, 4:519.
    • (1987) Journal of Optical Society A , vol.4 , pp. 519
    • Sirovich, L.1    Kirby, M.2
  • 18
    • 84887252594 scopus 로고    scopus 로고
    • Support vector method for function approximation, regression estimation, and signal processing
    • M. Mozer, M. Jordan, & T. Petsche (Eds.), Cambridge, MA: MIT Press
    • Vapnik, V., Golowich, S. E., & Smola, A. (1997). Support vector method for function approximation, regression estimation, and signal processing. In M. Mozer, M. Jordan, & T. Petsche (Eds.), Advances in neural information processing systems 9 (pp. 281-287). Cambridge, MA: MIT Press.
    • (1997) Advances in Neural Information Processing Systems , vol.9 , pp. 281-287
    • Vapnik, V.1    Golowich, S.E.2    Smola, A.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.