-
1
-
-
2142662186
-
Multiple sclerosis
-
Hafler D.A. Multiple sclerosis. J. Clin. Invest. 2004, 113:788-794.
-
(2004)
J. Clin. Invest.
, vol.113
, pp. 788-794
-
-
Hafler, D.A.1
-
2
-
-
34548299105
-
Risk alleles for multiple sclerosis identified by a genomewide study
-
Hafler D.A., et al. Risk alleles for multiple sclerosis identified by a genomewide study. N. Engl. J. Med. 2007, 357:851-862.
-
(2007)
N. Engl. J. Med.
, vol.357
, pp. 851-862
-
-
Hafler, D.A.1
-
3
-
-
80051684615
-
Genetic risk and a primary role for cell-mediated immune mechanisms in multiple sclerosis
-
Sawcer S., et al. Genetic risk and a primary role for cell-mediated immune mechanisms in multiple sclerosis. Nature 2011, 476:214-219.
-
(2011)
Nature
, vol.476
, pp. 214-219
-
-
Sawcer, S.1
-
4
-
-
34248137873
-
APC-derived cytokines and T cell polarization in autoimmune inflammation
-
Gutcher I., Becher B. APC-derived cytokines and T cell polarization in autoimmune inflammation. J. Clin. Invest. 2007, 117:1119-1127.
-
(2007)
J. Clin. Invest.
, vol.117
, pp. 1119-1127
-
-
Gutcher, I.1
Becher, B.2
-
5
-
-
16244417773
-
Epitope spreading initiates in the CNS in two mouse models of multiple sclerosis
-
McMahon E.J., et al. Epitope spreading initiates in the CNS in two mouse models of multiple sclerosis. Nat. Med. 2005, 11:335-339.
-
(2005)
Nat. Med.
, vol.11
, pp. 335-339
-
-
McMahon, E.J.1
-
6
-
-
16244380177
-
Dendritic cells permit immune invasion of the CNS in an animal model of multiple sclerosis
-
Greter M., et al. Dendritic cells permit immune invasion of the CNS in an animal model of multiple sclerosis. Nat. Med. 2005, 11:328-334.
-
(2005)
Nat. Med.
, vol.11
, pp. 328-334
-
-
Greter, M.1
-
7
-
-
0035157253
-
CCR1+/CCR5+mononuclear phagocytes accumulate in the central nervous system of patients with multiple sclerosis
-
Trebst C., et al. CCR1+/CCR5+mononuclear phagocytes accumulate in the central nervous system of patients with multiple sclerosis. Am. J. Pathol. 2001, 159:1701-1710.
-
(2001)
Am. J. Pathol.
, vol.159
, pp. 1701-1710
-
-
Trebst, C.1
-
8
-
-
0032193213
-
Immune invasion of the central nervous system parenchyma and experimental allergic encephalomyelitis, but not leukocyte extravasation from blood, are prevented in macrophage-depleted mice
-
Tran E.H., et al. Immune invasion of the central nervous system parenchyma and experimental allergic encephalomyelitis, but not leukocyte extravasation from blood, are prevented in macrophage-depleted mice. J. Immunol. 1998, 161:3767-3775.
-
(1998)
J. Immunol.
, vol.161
, pp. 3767-3775
-
-
Tran, E.H.1
-
9
-
-
0025015655
-
Suppression of experimental allergic encephalomyelitis in Lewis rats after elimination of macrophages
-
Huitinga I., et al. Suppression of experimental allergic encephalomyelitis in Lewis rats after elimination of macrophages. J. Exp. Med. 1990, 172:1025-1033.
-
(1990)
J. Exp. Med.
, vol.172
, pp. 1025-1033
-
-
Huitinga, I.1
-
10
-
-
79953761792
-
A reversible form of axon damage in experimental autoimmune encephalomyelitis and multiple sclerosis
-
Nikic I., et al. A reversible form of axon damage in experimental autoimmune encephalomyelitis and multiple sclerosis. Nat. Med. 2011, 17:495-499.
-
(2011)
Nat. Med.
, vol.17
, pp. 495-499
-
-
Nikic, I.1
-
11
-
-
0029142819
-
Plaque-associated expression of human herpesvirus 6 in multiple sclerosis
-
Challoner P.B., et al. Plaque-associated expression of human herpesvirus 6 in multiple sclerosis. Proc. Natl. Acad. Sci. U.S.A. 1995, 92:7440-7444.
-
(1995)
Proc. Natl. Acad. Sci. U.S.A.
, vol.92
, pp. 7440-7444
-
-
Challoner, P.B.1
-
12
-
-
0036321307
-
Human herpes virus 6 and multiple sclerosis
-
Moore F.G., Wolfson C. Human herpes virus 6 and multiple sclerosis. Acta Neurol. Scand. 2002, 106:63-83.
-
(2002)
Acta Neurol. Scand.
, vol.106
, pp. 63-83
-
-
Moore, F.G.1
Wolfson, C.2
-
13
-
-
0033868149
-
Association between clinical disease activity and Epstein-Barr virus reactivation in MS
-
Wandinger K., et al. Association between clinical disease activity and Epstein-Barr virus reactivation in MS. Neurology 2000, 55:178-184.
-
(2000)
Neurology
, vol.55
, pp. 178-184
-
-
Wandinger, K.1
-
14
-
-
66249140545
-
Neo-lymphoid aggregates in the adult liver can initiate potent cell-mediated immunity
-
Greter M., et al. Neo-lymphoid aggregates in the adult liver can initiate potent cell-mediated immunity. PLoS Biol. 2009, 7:e1000109.
-
(2009)
PLoS Biol.
, vol.7
-
-
Greter, M.1
-
15
-
-
77950300654
-
B-cells need a proper house, whereas T-cells are happy in a cave: the dependence of lymphocytes on secondary lymphoid tissues during evolution
-
Hofmann J., et al. B-cells need a proper house, whereas T-cells are happy in a cave: the dependence of lymphocytes on secondary lymphoid tissues during evolution. Trends Immunol. 2010, 31:144-153.
-
(2010)
Trends Immunol.
, vol.31
, pp. 144-153
-
-
Hofmann, J.1
-
16
-
-
84862734721
-
T-cell trafficking in the central nervous system
-
Sallusto F., et al. T-cell trafficking in the central nervous system. Immunol. Rev. 2012, 248:216-227.
-
(2012)
Immunol. Rev.
, vol.248
, pp. 216-227
-
-
Sallusto, F.1
-
17
-
-
67349216357
-
Autoimmune T cell responses in the central nervous system
-
Goverman J. Autoimmune T cell responses in the central nervous system. Nat. Rev. Immunol. 2009, 9:393-407.
-
(2009)
Nat. Rev. Immunol.
, vol.9
, pp. 393-407
-
-
Goverman, J.1
-
18
-
-
0021966856
-
T-cell clones specific for myelin basic protein induce chronic relapsing paralysis and demyelination
-
Zamvil S., et al. T-cell clones specific for myelin basic protein induce chronic relapsing paralysis and demyelination. Nature 1985, 317:355-358.
-
(1985)
Nature
, vol.317
, pp. 355-358
-
-
Zamvil, S.1
-
19
-
-
67650966680
-
Microglial physiology: unique stimuli, specialized responses
-
Ransohoff R.M., Perry V.H. Microglial physiology: unique stimuli, specialized responses. Annu. Rev. Immunol. 2009, 27:119-145.
-
(2009)
Annu. Rev. Immunol.
, vol.27
, pp. 119-145
-
-
Ransohoff, R.M.1
Perry, V.H.2
-
20
-
-
0034652416
-
Brain-immune connection: immuno-regulatory properties of CNS-resident cells
-
Becher B., et al. Brain-immune connection: immuno-regulatory properties of CNS-resident cells. Glia 2000, 29:293-304.
-
(2000)
Glia
, vol.29
, pp. 293-304
-
-
Becher, B.1
-
21
-
-
84859717206
-
Innate immunity in the central nervous system
-
Ransohoff R.M., Brown M.A. Innate immunity in the central nervous system. J. Clin. Invest. 2012, 122:1164-1171.
-
(2012)
J. Clin. Invest.
, vol.122
, pp. 1164-1171
-
-
Ransohoff, R.M.1
Brown, M.A.2
-
22
-
-
0029848128
-
Microglia induce CD4 T lymphocyte final effector function and death
-
Ford A.L., et al. Microglia induce CD4 T lymphocyte final effector function and death. J. Exp. Med. 1996, 184:1737-1745.
-
(1996)
J. Exp. Med.
, vol.184
, pp. 1737-1745
-
-
Ford, A.L.1
-
23
-
-
20044376483
-
Experimental autoimmune encephalomyelitis repressed by microglial paralysis
-
Heppner F.L., et al. Experimental autoimmune encephalomyelitis repressed by microglial paralysis. Nat. Med. 2005, 11:146-152.
-
(2005)
Nat. Med.
, vol.11
, pp. 146-152
-
-
Heppner, F.L.1
-
24
-
-
0035896737
-
The clinical course of experimental autoimmune encephalomyelitis and inflammation is controlled by the expression of CD40 within the central nervous system
-
Becher B., et al. The clinical course of experimental autoimmune encephalomyelitis and inflammation is controlled by the expression of CD40 within the central nervous system. J. Exp. Med. 2001, 193:967-974.
-
(2001)
J. Exp. Med.
, vol.193
, pp. 967-974
-
-
Becher, B.1
-
25
-
-
0033594227
-
Distribution and phenotype of dendritic cells and resident tissue macrophages in the dura mater, leptomeninges, and choroid plexus of the rat brain as demonstrated in wholemount preparations
-
McMenamin P.G. Distribution and phenotype of dendritic cells and resident tissue macrophages in the dura mater, leptomeninges, and choroid plexus of the rat brain as demonstrated in wholemount preparations. J. Comp. Neurol. 1999, 405:553-562.
-
(1999)
J. Comp. Neurol.
, vol.405
, pp. 553-562
-
-
McMenamin, P.G.1
-
26
-
-
0141991072
-
Macrophages and dendritic cells in the rat meninges and choroid plexus: three-dimensional localisation by environmental scanning electron microscopy and confocal microscopy
-
McMenamin P.G., et al. Macrophages and dendritic cells in the rat meninges and choroid plexus: three-dimensional localisation by environmental scanning electron microscopy and confocal microscopy. Cell Tissue Res. 2003, 313:259-269.
-
(2003)
Cell Tissue Res.
, vol.313
, pp. 259-269
-
-
McMenamin, P.G.1
-
27
-
-
79953675959
-
CD11c-expressing cells reside in the juxtavascular parenchyma and extend processes into the glia limitans of the mouse nervous system
-
Prodinger C., et al. CD11c-expressing cells reside in the juxtavascular parenchyma and extend processes into the glia limitans of the mouse nervous system. Acta Neuropathol. 2011, 121:445-458.
-
(2011)
Acta Neuropathol.
, vol.121
, pp. 445-458
-
-
Prodinger, C.1
-
28
-
-
84864296761
-
Expression of the zinc finger transcription factor zDC (Zbtb46, Btbd4) defines the classical dendritic cell lineage
-
Meredith M.M., et al. Expression of the zinc finger transcription factor zDC (Zbtb46, Btbd4) defines the classical dendritic cell lineage. J. Exp. Med. 2012, 209:1153-1165.
-
(2012)
J. Exp. Med.
, vol.209
, pp. 1153-1165
-
-
Meredith, M.M.1
-
29
-
-
77349089236
-
Differentiation and function of mouse monocyte-derived dendritic cells in steady state and inflammation
-
Dominguez P.M., Ardavin C. Differentiation and function of mouse monocyte-derived dendritic cells in steady state and inflammation. Immunol. Rev. 2010, 234:90-104.
-
(2010)
Immunol. Rev.
, vol.234
, pp. 90-104
-
-
Dominguez, P.M.1
Ardavin, C.2
-
30
-
-
0037963473
-
Blood monocytes consist of two principal subsets with distinct migratory properties
-
Geissmann F., et al. Blood monocytes consist of two principal subsets with distinct migratory properties. Immunity 2003, 19:71-82.
-
(2003)
Immunity
, vol.19
, pp. 71-82
-
-
Geissmann, F.1
-
31
-
-
65149093082
-
Circulating Ly-6C+ myeloid precursors migrate to the CNS and play a pathogenic role during autoimmune demyelinating disease
-
King I.L., et al. Circulating Ly-6C+ myeloid precursors migrate to the CNS and play a pathogenic role during autoimmune demyelinating disease. Blood 2009, 113:3190-3197.
-
(2009)
Blood
, vol.113
, pp. 3190-3197
-
-
King, I.L.1
-
32
-
-
33846472053
-
CNS myeloid DCs presenting endogenous myelin peptides 'preferentially' polarize CD4+ T(H)-17 cells in relapsing EAE
-
Bailey S.L., et al. CNS myeloid DCs presenting endogenous myelin peptides 'preferentially' polarize CD4+ T(H)-17 cells in relapsing EAE. Nat. Immunol. 2007, 8:172-180.
-
(2007)
Nat. Immunol.
, vol.8
, pp. 172-180
-
-
Bailey, S.L.1
-
33
-
-
40449089827
-
Differential regulation of central nervous system autoimmunity by T(H)1 and T(H)17 cells
-
Stromnes I.M., et al. Differential regulation of central nervous system autoimmunity by T(H)1 and T(H)17 cells. Nat. Med. 2008, 14:337-342.
-
(2008)
Nat. Med.
, vol.14
, pp. 337-342
-
-
Stromnes, I.M.1
-
34
-
-
46949104323
-
IL-12- and IL-23-modulated T cells induce distinct types of EAE based on histology, CNS chemokine profile, and response to cytokine inhibition
-
Kroenke M.A., et al. IL-12- and IL-23-modulated T cells induce distinct types of EAE based on histology, CNS chemokine profile, and response to cytokine inhibition. J. Exp. Med. 2008, 205:1535-1541.
-
(2008)
J. Exp. Med.
, vol.205
, pp. 1535-1541
-
-
Kroenke, M.A.1
-
35
-
-
70249100293
-
Heterogeneity of CD4+ memory T cells: functional modules for tailored immunity
-
Sallusto F., Lanzavecchia A. Heterogeneity of CD4+ memory T cells: functional modules for tailored immunity. Eur. J. Immunol. 2009, 39:2076-2082.
-
(2009)
Eur. J. Immunol.
, vol.39
, pp. 2076-2082
-
-
Sallusto, F.1
Lanzavecchia, A.2
-
36
-
-
82955228112
-
T(H)17 cytokines in autoimmune neuro-inflammation
-
Becher B., Segal B.M. T(H)17 cytokines in autoimmune neuro-inflammation. Curr. Opin. Immunol. 2011, 23:707-712.
-
(2011)
Curr. Opin. Immunol.
, vol.23
, pp. 707-712
-
-
Becher, B.1
Segal, B.M.2
-
37
-
-
0030472449
-
Manipulation of the Th1/Th2 balance in autoimmune disease
-
Nicholson L.B., Kuchroo V.K. Manipulation of the Th1/Th2 balance in autoimmune disease. Curr. Opin. Immunol. 1996, 8:837-842.
-
(1996)
Curr. Opin. Immunol.
, vol.8
, pp. 837-842
-
-
Nicholson, L.B.1
Kuchroo, V.K.2
-
38
-
-
77951951889
-
Cytokine networks in multiple sclerosis: lost in translation
-
Codarri L., et al. Cytokine networks in multiple sclerosis: lost in translation. Curr. Opin. Neurol. 2010, 23:205-211.
-
(2010)
Curr. Opin. Neurol.
, vol.23
, pp. 205-211
-
-
Codarri, L.1
-
39
-
-
34547699396
-
Type II monocytes modulate T cell-mediated central nervous system autoimmune disease
-
Weber M.S., et al. Type II monocytes modulate T cell-mediated central nervous system autoimmune disease. Nat. Med. 2007, 13:935-943.
-
(2007)
Nat. Med.
, vol.13
, pp. 935-943
-
-
Weber, M.S.1
-
40
-
-
0033544319
-
Interferon beta induces T-helper 2 immune deviation in MS
-
Kozovska M.E., et al. Interferon beta induces T-helper 2 immune deviation in MS. Neurology 1999, 53:1692-1697.
-
(1999)
Neurology
, vol.53
, pp. 1692-1697
-
-
Kozovska, M.E.1
-
41
-
-
0035957307
-
Mechanisms of action of glatiramer acetate in multiple sclerosis
-
Neuhaus O., et al. Mechanisms of action of glatiramer acetate in multiple sclerosis. Neurology 2001, 56:702-708.
-
(2001)
Neurology
, vol.56
, pp. 702-708
-
-
Neuhaus, O.1
-
42
-
-
43049177588
-
Distinct and nonredundant in vivo functions of IFNAR on myeloid cells limit autoimmunity in the central nervous system
-
Prinz M., et al. Distinct and nonredundant in vivo functions of IFNAR on myeloid cells limit autoimmunity in the central nervous system. Immunity 2008, 28:675-686.
-
(2008)
Immunity
, vol.28
, pp. 675-686
-
-
Prinz, M.1
-
43
-
-
0028966091
-
Prevention of experimental autoimmune encephalomyelitis by antibodies against interleukin 12
-
Leonard J.P., et al. Prevention of experimental autoimmune encephalomyelitis by antibodies against interleukin 12. J. Exp. Med. 1995, 181:381-386.
-
(1995)
J. Exp. Med.
, vol.181
, pp. 381-386
-
-
Leonard, J.P.1
-
44
-
-
0034665289
-
IL-18 directs autoreactive T cells and promotes autodestruction in the central nervous system via induction of IFN-gamma by NK cells
-
Shi F.D., et al. IL-18 directs autoreactive T cells and promotes autodestruction in the central nervous system via induction of IFN-gamma by NK cells. J. Immunol. 2000, 165:3099-3104.
-
(2000)
J. Immunol.
, vol.165
, pp. 3099-3104
-
-
Shi, F.D.1
-
45
-
-
33747623280
-
Interleukin 18-independent engagement of interleukin 18 receptor-alpha is required for autoimmune inflammation
-
Gutcher I., et al. Interleukin 18-independent engagement of interleukin 18 receptor-alpha is required for autoimmune inflammation. Nat. Immunol. 2006, 7:946-953.
-
(2006)
Nat. Immunol.
, vol.7
, pp. 946-953
-
-
Gutcher, I.1
-
46
-
-
0034601012
-
Failure to suppress the expansion of the activated CD4 T cell population in interferon gamma-deficient mice leads to exacerbation of experimental autoimmune encephalomyelitis
-
Chu C.Q., et al. Failure to suppress the expansion of the activated CD4 T cell population in interferon gamma-deficient mice leads to exacerbation of experimental autoimmune encephalomyelitis. J. Exp. Med. 2000, 192:123-128.
-
(2000)
J. Exp. Med.
, vol.192
, pp. 123-128
-
-
Chu, C.Q.1
-
47
-
-
0030918326
-
Tumor necrosis factor alpha and lymphotoxin alpha are not required for induction of acute experimental autoimmune encephalomyelitis
-
Frei K., et al. Tumor necrosis factor alpha and lymphotoxin alpha are not required for induction of acute experimental autoimmune encephalomyelitis. J. Exp. Med. 1997, 185:2177-2182.
-
(1997)
J. Exp. Med.
, vol.185
, pp. 2177-2182
-
-
Frei, K.1
-
48
-
-
0037434789
-
Interleukin-23 rather than interleukin-12 is the critical cytokine for autoimmune inflammation of the brain
-
Cua D.J., et al. Interleukin-23 rather than interleukin-12 is the critical cytokine for autoimmune inflammation of the brain. Nature 2003, 421:744-748.
-
(2003)
Nature
, vol.421
, pp. 744-748
-
-
Cua, D.J.1
-
49
-
-
13244283212
-
IL-23 drives a pathogenic T cell population that induces autoimmune inflammation
-
Langrish C.L., et al. IL-23 drives a pathogenic T cell population that induces autoimmune inflammation. J. Exp. Med. 2005, 201:233-240.
-
(2005)
J. Exp. Med.
, vol.201
, pp. 233-240
-
-
Langrish, C.L.1
-
50
-
-
0037449737
-
Interleukin-23 promotes a distinct CD4 T cell activation state characterized by the production of interleukin-17
-
Aggarwal S., et al. Interleukin-23 promotes a distinct CD4 T cell activation state characterized by the production of interleukin-17. J. Biol. Chem. 2003, 278:1910-1914.
-
(2003)
J. Biol. Chem.
, vol.278
, pp. 1910-1914
-
-
Aggarwal, S.1
-
51
-
-
27544465354
-
A distinct lineage of CD4 T cells regulates tissue inflammation by producing interleukin 17
-
Park H., et al. A distinct lineage of CD4 T cells regulates tissue inflammation by producing interleukin 17. Nat. Immunol. 2005, 6:1133-1141.
-
(2005)
Nat. Immunol.
, vol.6
, pp. 1133-1141
-
-
Park, H.1
-
52
-
-
34247555353
-
Differentiation and function of Th17 T cells
-
Stockinger B., Veldhoen M. Differentiation and function of Th17 T cells. Curr. Opin. Immunol. 2007, 19:281-286.
-
(2007)
Curr. Opin. Immunol.
, vol.19
, pp. 281-286
-
-
Stockinger, B.1
Veldhoen, M.2
-
53
-
-
27544490377
-
Interleukin 17-producing CD4+ effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages
-
Harrington L.E., et al. Interleukin 17-producing CD4+ effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages. Nat. Immunol. 2005, 6:1123-1132.
-
(2005)
Nat. Immunol.
, vol.6
, pp. 1123-1132
-
-
Harrington, L.E.1
-
54
-
-
60749107176
-
The interleukin 23 receptor is essential for the terminal differentiation of interleukin 17-producing effector T helper cells in vivo
-
McGeachy M.J., et al. The interleukin 23 receptor is essential for the terminal differentiation of interleukin 17-producing effector T helper cells in vivo. Nat. Immunol. 2009, 10:314-324.
-
(2009)
Nat. Immunol.
, vol.10
, pp. 314-324
-
-
McGeachy, M.J.1
-
55
-
-
69249134656
-
IL-23-driven encephalo-tropism and Th17 polarization during CNS-inflammation in vivo
-
Gyulveszi G., et al. IL-23-driven encephalo-tropism and Th17 polarization during CNS-inflammation in vivo. Eur. J. Immunol. 2009, 39:1864-1869.
-
(2009)
Eur. J. Immunol.
, vol.39
, pp. 1864-1869
-
-
Gyulveszi, G.1
-
56
-
-
77950349016
-
Th17 and regulatory T cells in mediating and restraining inflammation
-
Littman D.R., Rudensky A.Y. Th17 and regulatory T cells in mediating and restraining inflammation. Cell 2010, 140:845-858.
-
(2010)
Cell
, vol.140
, pp. 845-858
-
-
Littman, D.R.1
Rudensky, A.Y.2
-
57
-
-
34248572345
-
T(H)-17 cells in the circle of immunity and autoimmunity
-
Bettelli E., et al. T(H)-17 cells in the circle of immunity and autoimmunity. Nat. Immunol. 2007, 8:345-350.
-
(2007)
Nat. Immunol.
, vol.8
, pp. 345-350
-
-
Bettelli, E.1
-
58
-
-
40049103352
-
IL-22 is expressed by Th17 cells in an IL-23-dependent fashion, but not required for the development of autoimmune encephalomyelitis
-
Kreymborg K., et al. IL-22 is expressed by Th17 cells in an IL-23-dependent fashion, but not required for the development of autoimmune encephalomyelitis. J. Immunol. 2007, 179:8098-8104.
-
(2007)
J. Immunol.
, vol.179
, pp. 8098-8104
-
-
Kreymborg, K.1
-
59
-
-
61749093508
-
IL-17A and IL-17F do not contribute vitally to autoimmune neuro-inflammation in mice
-
Haak S., et al. IL-17A and IL-17F do not contribute vitally to autoimmune neuro-inflammation in mice. J. Clin. Invest. 2009, 119:61-69.
-
(2009)
J. Clin. Invest.
, vol.119
, pp. 61-69
-
-
Haak, S.1
-
60
-
-
46749133961
-
IL-21 and IL-21R are not required for development of Th17 cells and autoimmunity in vivo
-
Sonderegger I., et al. IL-21 and IL-21R are not required for development of Th17 cells and autoimmunity in vivo. Eur. J. Immunol. 2008, 38:1833-1838.
-
(2008)
Eur. J. Immunol.
, vol.38
, pp. 1833-1838
-
-
Sonderegger, I.1
-
61
-
-
68649090645
-
Cutting edge: IL-23 receptor gfp reporter mice reveal distinct populations of IL-17-producing cells
-
Awasthi A., et al. Cutting edge: IL-23 receptor gfp reporter mice reveal distinct populations of IL-17-producing cells. J. Immunol. 2009, 182:5904-5908.
-
(2009)
J. Immunol.
, vol.182
, pp. 5904-5908
-
-
Awasthi, A.1
-
62
-
-
79956116032
-
RORgammat drives production of the cytokine GM-CSF in helper T cells, which is essential for the effector phase of autoimmune neuroinflammation
-
Codarri L., et al. RORgammat drives production of the cytokine GM-CSF in helper T cells, which is essential for the effector phase of autoimmune neuroinflammation. Nat. Immunol. 2011, 12:560-567.
-
(2011)
Nat. Immunol.
, vol.12
, pp. 560-567
-
-
Codarri, L.1
-
63
-
-
79956152607
-
The encephalitogenicity of T(H)17 cells is dependent on IL-1- and IL-23-induced production of the cytokine GM-CSF
-
El-Behi M., et al. The encephalitogenicity of T(H)17 cells is dependent on IL-1- and IL-23-induced production of the cytokine GM-CSF. Nat. Immunol. 2011, 12:568-575.
-
(2011)
Nat. Immunol.
, vol.12
, pp. 568-575
-
-
El-Behi, M.1
-
64
-
-
0026481133
-
Generation of large numbers of dendritic cells from mouse bone marrow cultures supplemented with granulocyte/macrophage colony-stimulating factor
-
Inaba K., et al. Generation of large numbers of dendritic cells from mouse bone marrow cultures supplemented with granulocyte/macrophage colony-stimulating factor. J. Exp. Med. 1992, 176:1693-1702.
-
(1992)
J. Exp. Med.
, vol.176
, pp. 1693-1702
-
-
Inaba, K.1
-
65
-
-
0028289244
-
Efficient presentation of soluble antigen by cultured human dendritic cells is maintained by granulocyte/macrophage colony-stimulating factor plus interleukin 4 and downregulated by tumor necrosis factor alpha
-
Sallusto F., Lanzavecchia A. Efficient presentation of soluble antigen by cultured human dendritic cells is maintained by granulocyte/macrophage colony-stimulating factor plus interleukin 4 and downregulated by tumor necrosis factor alpha. J. Exp. Med. 1994, 179:1109-1118.
-
(1994)
J. Exp. Med.
, vol.179
, pp. 1109-1118
-
-
Sallusto, F.1
Lanzavecchia, A.2
-
66
-
-
10144260007
-
CD34+ hematopoietic progenitors from human cord blood differentiate along two independent dendritic cell pathways in response to GM-CSF+TNF alpha
-
Caux C., et al. CD34+ hematopoietic progenitors from human cord blood differentiate along two independent dendritic cell pathways in response to GM-CSF+TNF alpha. J. Exp. Med. 1996, 184:695-706.
-
(1996)
J. Exp. Med.
, vol.184
, pp. 695-706
-
-
Caux, C.1
-
67
-
-
0031013082
-
The influence of granulocyte/macrophage colony-stimulating factor on dendritic cell levels in mouse lymphoid organs
-
Vremec D., et al. The influence of granulocyte/macrophage colony-stimulating factor on dendritic cell levels in mouse lymphoid organs. Eur. J. Immunol. 1997, 27:40-44.
-
(1997)
Eur. J. Immunol.
, vol.27
, pp. 40-44
-
-
Vremec, D.1
-
68
-
-
84863008117
-
GM-CSF controls nonlymphoid tissue dendritic cell homeostasis but is dispensable for the differentiation of inflammatory dendritic cells
-
Greter M., et al. GM-CSF controls nonlymphoid tissue dendritic cell homeostasis but is dispensable for the differentiation of inflammatory dendritic cells. Immunity 2012, 36:1031-1046.
-
(2012)
Immunity
, vol.36
, pp. 1031-1046
-
-
Greter, M.1
-
69
-
-
70049098070
-
Origin of the lamina propria dendritic cell network
-
Bogunovic M., et al. Origin of the lamina propria dendritic cell network. Immunity 2009, 31:513-525.
-
(2009)
Immunity
, vol.31
, pp. 513-525
-
-
Bogunovic, M.1
-
70
-
-
77952310536
-
GM-CSF-dependent, CD103+ dermal dendritic cells play a critical role in Th effector cell differentiation after subcutaneous immunization
-
King I.L., et al. GM-CSF-dependent, CD103+ dermal dendritic cells play a critical role in Th effector cell differentiation after subcutaneous immunization. J. Exp. Med. 2010, 207:953-961.
-
(2010)
J. Exp. Med.
, vol.207
, pp. 953-961
-
-
King, I.L.1
-
71
-
-
46249090513
-
Colony-stimulating factors in inflammation and autoimmunity
-
Hamilton J.A. Colony-stimulating factors in inflammation and autoimmunity. Nat. Rev. Immunol. 2008, 8:533-544.
-
(2008)
Nat. Rev. Immunol.
, vol.8
, pp. 533-544
-
-
Hamilton, J.A.1
-
72
-
-
0035253497
-
Local transgenic expression of granulocyte macrophage-colony stimulating factor initiates autoimmunity
-
Biondo M., et al. Local transgenic expression of granulocyte macrophage-colony stimulating factor initiates autoimmunity. J. Immunol. 2001, 166:2090-2099.
-
(2001)
J. Immunol.
, vol.166
, pp. 2090-2099
-
-
Biondo, M.1
-
73
-
-
0030744451
-
Granulocyte-macrophage colony stimulating factor exacerbates collagen induced arthritis in mice
-
Campbell I.K., et al. Granulocyte-macrophage colony stimulating factor exacerbates collagen induced arthritis in mice. Ann. Rheum. Dis. 1997, 56:364-368.
-
(1997)
Ann. Rheum. Dis.
, vol.56
, pp. 364-368
-
-
Campbell, I.K.1
-
74
-
-
0035476518
-
Granulocyte macrophage colony-stimulating factor: a new putative therapeutic target in multiple sclerosis
-
McQualter J.L., et al. Granulocyte macrophage colony-stimulating factor: a new putative therapeutic target in multiple sclerosis. J. Exp. Med. 2001, 194:873-882.
-
(2001)
J. Exp. Med.
, vol.194
, pp. 873-882
-
-
McQualter, J.L.1
-
75
-
-
53349143503
-
GM-CSF mediates autoimmunity by enhancing IL-6-dependent Th17 cell development and survival
-
Sonderegger I., et al. GM-CSF mediates autoimmunity by enhancing IL-6-dependent Th17 cell development and survival. J. Exp. Med. 2008, 205:2281-2294.
-
(2008)
J. Exp. Med.
, vol.205
, pp. 2281-2294
-
-
Sonderegger, I.1
-
76
-
-
33846018916
-
GM-CSF production by autoreactive T cells is required for the activation of microglial cells and the onset of experimental autoimmune encephalomyelitis
-
Ponomarev E.D., et al. GM-CSF production by autoreactive T cells is required for the activation of microglial cells and the onset of experimental autoimmune encephalomyelitis. J. Immunol. 2007, 178:39-48.
-
(2007)
J. Immunol.
, vol.178
, pp. 39-48
-
-
Ponomarev, E.D.1
-
77
-
-
77952982377
-
Induction of inhibitory central nervous system-derived and stimulatory blood-derived dendritic cells suggests a dual role for granulocyte-macrophage colony-stimulating factor in central nervous system inflammation
-
Hesske L., et al. Induction of inhibitory central nervous system-derived and stimulatory blood-derived dendritic cells suggests a dual role for granulocyte-macrophage colony-stimulating factor in central nervous system inflammation. Brain 2010, 133:1637-1654.
-
(2010)
Brain
, vol.133
, pp. 1637-1654
-
-
Hesske, L.1
-
78
-
-
36248965294
-
TGF-beta and IL-6 drive the production of IL-17 and IL-10 by T cells and restrain T(H)-17 cell-mediated pathology
-
McGeachy M.J., et al. TGF-beta and IL-6 drive the production of IL-17 and IL-10 by T cells and restrain T(H)-17 cell-mediated pathology. Nat. Immunol. 2007, 8:1390-1397.
-
(2007)
Nat. Immunol.
, vol.8
, pp. 1390-1397
-
-
McGeachy, M.J.1
-
79
-
-
33748588423
-
The orphan nuclear receptor RORgammat directs the differentiation program of proinflammatory IL-17+ T helper cells
-
Ivanov I.I., et al. The orphan nuclear receptor RORgammat directs the differentiation program of proinflammatory IL-17+ T helper cells. Cell 2006, 126:1121-1133.
-
(2006)
Cell
, vol.126
, pp. 1121-1133
-
-
Ivanov, I.I.1
-
80
-
-
0023716350
-
Keratinocyte growth regulation by the products of immune cells
-
Hancock G.E., et al. Keratinocyte growth regulation by the products of immune cells. J. Exp. Med. 1988, 168:1395-1402.
-
(1988)
J. Exp. Med.
, vol.168
, pp. 1395-1402
-
-
Hancock, G.E.1
-
81
-
-
0030765536
-
Control of vascular smooth-muscle cell growth by macrophage-colony-stimulating factor
-
Herembert T., et al. Control of vascular smooth-muscle cell growth by macrophage-colony-stimulating factor. Biochem. J. 1997, 325:123-128.
-
(1997)
Biochem. J.
, vol.325
, pp. 123-128
-
-
Herembert, T.1
-
82
-
-
0030948468
-
Activation of JAK2 in human vascular endothelial cells by granulocyte-macrophage colony-stimulating factor
-
Soldi R., et al. Activation of JAK2 in human vascular endothelial cells by granulocyte-macrophage colony-stimulating factor. Blood 1997, 89:863-872.
-
(1997)
Blood
, vol.89
, pp. 863-872
-
-
Soldi, R.1
-
83
-
-
34249807879
-
Signal transduction pathways of GM-CSF in neural cell lines
-
Choi J.K., et al. Signal transduction pathways of GM-CSF in neural cell lines. Neurosci. Lett. 2007, 420:217-222.
-
(2007)
Neurosci. Lett.
, vol.420
, pp. 217-222
-
-
Choi, J.K.1
|