-
1
-
-
27644533906
-
CD36 involvement in orosensory detection of dietary lipids, spontaneous fat preference, and digestive secretions
-
Laugerette F., et al. CD36 involvement in orosensory detection of dietary lipids, spontaneous fat preference, and digestive secretions. J. Clin. Invest. 2005, 115:3177-3184.
-
(2005)
J. Clin. Invest.
, vol.115
, pp. 3177-3184
-
-
Laugerette, F.1
-
2
-
-
77955443637
-
The cell biology of taste
-
Chaudhari N., et al. The cell biology of taste. J. Cell Biol. 2010, 190:285-296.
-
(2010)
J. Cell Biol.
, vol.190
, pp. 285-296
-
-
Chaudhari, N.1
-
3
-
-
77950114281
-
The molecular receptive ranges of human TAS2R bitter taste receptors
-
Meyerhof W., et al. The molecular receptive ranges of human TAS2R bitter taste receptors. Chem. Senses 2010, 35:157-170.
-
(2010)
Chem. Senses
, vol.35
, pp. 157-170
-
-
Meyerhof, W.1
-
4
-
-
77954134133
-
Taste preference for fatty acids is mediated by GPR40 and GPR120
-
Cartoni C., et al. Taste preference for fatty acids is mediated by GPR40 and GPR120. J. Neurosci. 2010, 30:8376-8382.
-
(2010)
J. Neurosci.
, vol.30
, pp. 8376-8382
-
-
Cartoni, C.1
-
5
-
-
4444262377
-
Umami taste responses are mediated by alpha-transducin and alpha-gustducin
-
He W., et al. Umami taste responses are mediated by alpha-transducin and alpha-gustducin. J. Neurosci. 2004, 24:7674-7680.
-
(2004)
J. Neurosci.
, vol.24
, pp. 7674-7680
-
-
He, W.1
-
6
-
-
0029957779
-
Transduction of bitter and sweet taste by gustducin
-
Wong G.T., et al. Transduction of bitter and sweet taste by gustducin. Nature 1996, 381:796-800.
-
(1996)
Nature
, vol.381
, pp. 796-800
-
-
Wong, G.T.1
-
7
-
-
34247859075
-
Functional characterization of human bitter taste receptors
-
Sainz E., et al. Functional characterization of human bitter taste receptors. Biochem. J. 2007, 403:537-543.
-
(2007)
Biochem. J.
, vol.403
, pp. 537-543
-
-
Sainz, E.1
-
8
-
-
84944484435
-
The mechanism of pancreatic secretion
-
Bayliss W.M., et al. The mechanism of pancreatic secretion. J. Physiol. 1902, 28:325-353.
-
(1902)
J. Physiol.
, vol.28
, pp. 325-353
-
-
Bayliss, W.M.1
-
9
-
-
56749154840
-
A gut feeling for obesity: 7TM sensors on enteroendocrine cells
-
Engelstoft M.S., et al. A gut feeling for obesity: 7TM sensors on enteroendocrine cells. Cell Metab. 2008, 8:447-449.
-
(2008)
Cell Metab.
, vol.8
, pp. 447-449
-
-
Engelstoft, M.S.1
-
10
-
-
0028816742
-
Vagal sensors in the rat duodenal mucosa: distribution and structure as revealed by in vivo DiI-tracing
-
Berthoud H.R., et al. Vagal sensors in the rat duodenal mucosa: distribution and structure as revealed by in vivo DiI-tracing. Anat. Embryol. (Berl.) 1995, 191:203-212.
-
(1995)
Anat. Embryol. (Berl.)
, vol.191
, pp. 203-212
-
-
Berthoud, H.R.1
-
11
-
-
0041806520
-
Solitary chemoreceptor cells in the nasal cavity serve as sentinels of respiration
-
Finger T.E., et al. Solitary chemoreceptor cells in the nasal cavity serve as sentinels of respiration. Proc. Natl. Acad. Sci. U.S.A. 2003, 100:8981-8986.
-
(2003)
Proc. Natl. Acad. Sci. U.S.A.
, vol.100
, pp. 8981-8986
-
-
Finger, T.E.1
-
12
-
-
0029908546
-
Taste receptor-like cells in the rat gut identified by expression of alpha-gustducin
-
Hofer D., et al. Taste receptor-like cells in the rat gut identified by expression of alpha-gustducin. Proc. Natl. Acad. Sci. U.S.A. 1996, 93:6631-6634.
-
(1996)
Proc. Natl. Acad. Sci. U.S.A.
, vol.93
, pp. 6631-6634
-
-
Hofer, D.1
-
13
-
-
33845865790
-
Taste-signaling proteins are coexpressed in solitary intestinal epithelial cells
-
Bezencon C., et al. Taste-signaling proteins are coexpressed in solitary intestinal epithelial cells. Chem. Senses 2007, 32:41-49.
-
(2007)
Chem. Senses
, vol.32
, pp. 41-49
-
-
Bezencon, C.1
-
14
-
-
34347371617
-
Phenotypic characterization of taste cells of the mouse small intestine
-
Sutherland K., et al. Phenotypic characterization of taste cells of the mouse small intestine. Am. J. Physiol. Gastrointest. Liver Physiol. 2007, 292:G1420-G1428.
-
(2007)
Am. J. Physiol. Gastrointest. Liver Physiol.
, vol.292
-
-
Sutherland, K.1
-
15
-
-
36248982575
-
A cluster of gustducin-expressing cells in the mouse stomach associated with two distinct populations of enteroendocrine cells
-
Hass N., et al. A cluster of gustducin-expressing cells in the mouse stomach associated with two distinct populations of enteroendocrine cells. Histochem. Cell Biol. 2007, 128:457-471.
-
(2007)
Histochem. Cell Biol.
, vol.128
, pp. 457-471
-
-
Hass, N.1
-
16
-
-
77949266522
-
T1R3 is expressed in brush cells and ghrelin-producing cells of murine stomach
-
Hass N., et al. T1R3 is expressed in brush cells and ghrelin-producing cells of murine stomach. Cell Tissue Res. 2010, 339:493-504.
-
(2010)
Cell Tissue Res.
, vol.339
, pp. 493-504
-
-
Hass, N.1
-
17
-
-
79952138344
-
Bitter taste receptors and alpha-gustducin regulate the secretion of ghrelin with functional effects on food intake and gastric emptying
-
Janssen S., et al. Bitter taste receptors and alpha-gustducin regulate the secretion of ghrelin with functional effects on food intake and gastric emptying. Proc. Natl. Acad. Sci. U.S.A. 2011, 108:2094-2099.
-
(2011)
Proc. Natl. Acad. Sci. U.S.A.
, vol.108
, pp. 2094-2099
-
-
Janssen, S.1
-
18
-
-
34347236558
-
Sweet taste receptors in rat small intestine stimulate glucose absorption through apical GLUT2
-
Mace O.J., et al. Sweet taste receptors in rat small intestine stimulate glucose absorption through apical GLUT2. J. Physiol. 2007, 582:379-392.
-
(2007)
J. Physiol.
, vol.582
, pp. 379-392
-
-
Mace, O.J.1
-
19
-
-
84862743498
-
Overlap of endocrine hormone expression in the mouse intestine revealed by transcriptional profiling and flow cytometry
-
Habib A.M., et al. Overlap of endocrine hormone expression in the mouse intestine revealed by transcriptional profiling and flow cytometry. Endocrinology 2012, 153:3054-3065.
-
(2012)
Endocrinology
, vol.153
, pp. 3054-3065
-
-
Habib, A.M.1
-
20
-
-
84870225450
-
A major lineage of enteroendocrine cells coexpress CCK, secretin, GIP, GLP-1, PYY, and neurotensin but not somatostatin
-
Egerod K.L., et al. A major lineage of enteroendocrine cells coexpress CCK, secretin, GIP, GLP-1, PYY, and neurotensin but not somatostatin. Endocrinology 2012, 10.1210/en.2012-1595.
-
(2012)
Endocrinology
-
-
Egerod, K.L.1
-
21
-
-
77955051384
-
Bowels control brain: gut hormones and obesity
-
Field B.C., et al. Bowels control brain: gut hormones and obesity. Nat. Rev. Endocrinol. 2010, 6:444-453.
-
(2010)
Nat. Rev. Endocrinol.
, vol.6
, pp. 444-453
-
-
Field, B.C.1
-
22
-
-
84863510503
-
Effects of fat, protein, and carbohydrate and protein load on appetite, plasma cholecystokinin, peptide YY, and ghrelin, and energy intake in lean and obese men
-
Brennan I.M., et al. Effects of fat, protein, and carbohydrate and protein load on appetite, plasma cholecystokinin, peptide YY, and ghrelin, and energy intake in lean and obese men. Am. J. Physiol. Gastrointest. Liver Physiol. 2012, 303:G129-G140.
-
(2012)
Am. J. Physiol. Gastrointest. Liver Physiol.
, vol.303
-
-
Brennan, I.M.1
-
23
-
-
33751100128
-
Colocalization of the alpha-subunit of gustducin with PYY and GLP-1 in L cells of human colon
-
Rozengurt N., et al. Colocalization of the alpha-subunit of gustducin with PYY and GLP-1 in L cells of human colon. Am. J. Physiol. Gastrointest. Liver Physiol. 2006, 291:G792-G802.
-
(2006)
Am. J. Physiol. Gastrointest. Liver Physiol.
, vol.291
-
-
Rozengurt, N.1
-
24
-
-
79960687712
-
The functional involvement of gut-expressed sweet taste receptors in glucose-stimulated secretion of glucagon-like peptide-1 (GLP-1) and peptide YY (PYY)
-
Steinert R.E., et al. The functional involvement of gut-expressed sweet taste receptors in glucose-stimulated secretion of glucagon-like peptide-1 (GLP-1) and peptide YY (PYY). Clin. Nutr. 2011, 30:524-532.
-
(2011)
Clin. Nutr.
, vol.30
, pp. 524-532
-
-
Steinert, R.E.1
-
25
-
-
35448986920
-
Gut-expressed gustducin and taste receptors regulate secretion of glucagon-like peptide-1
-
Jang H.J., et al. Gut-expressed gustducin and taste receptors regulate secretion of glucagon-like peptide-1. Proc. Natl. Acad. Sci. U.S.A. 2007, 104:15069-15074.
-
(2007)
Proc. Natl. Acad. Sci. U.S.A.
, vol.104
, pp. 15069-15074
-
-
Jang, H.J.1
-
26
-
-
64749083079
-
Incretin release from gut is acutely enhanced by sugar but not by sweeteners in vivo
-
Fujita Y., et al. Incretin release from gut is acutely enhanced by sugar but not by sweeteners in vivo. Am. J. Physiol. Endocrinol. Metab. 2009, 296:E473-E479.
-
(2009)
Am. J. Physiol. Endocrinol. Metab.
, vol.296
-
-
Fujita, Y.1
-
27
-
-
84872369928
-
Altered expression of gustatory-signaling elements in gastric tissue of morbidly obese patients
-
Widmayer P., et al. Altered expression of gustatory-signaling elements in gastric tissue of morbidly obese patients. Int. J. Obes. (Lond.) 2011, 36:1353-1359.
-
(2011)
Int. J. Obes. (Lond.)
, vol.36
, pp. 1353-1359
-
-
Widmayer, P.1
-
28
-
-
33745769295
-
Taste receptors in the gastrointestinal tract. I. Bitter taste receptors and alpha-gustducin in the mammalian gut
-
Rozengurt E. Taste receptors in the gastrointestinal tract. I. Bitter taste receptors and alpha-gustducin in the mammalian gut. Am. J. Physiol. Gastrointest. Liver Physiol. 2006, 291:G171-G177.
-
(2006)
Am. J. Physiol. Gastrointest. Liver Physiol.
, vol.291
-
-
Rozengurt, E.1
-
29
-
-
55849136194
-
SREBP-2 regulates gut peptide secretion through intestinal bitter taste receptor signaling in mice
-
Jeon T.I., et al. SREBP-2 regulates gut peptide secretion through intestinal bitter taste receptor signaling in mice. J. Clin. Invest. 2008, 118:3693-3700.
-
(2008)
J. Clin. Invest.
, vol.118
, pp. 3693-3700
-
-
Jeon, T.I.1
-
30
-
-
38149028292
-
Role of CCK1 and Y2 receptors in activation of hindbrain neurons induced by intragastric administration of bitter taste receptor ligands
-
Hao S., et al. Role of CCK1 and Y2 receptors in activation of hindbrain neurons induced by intragastric administration of bitter taste receptor ligands. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2008, 294:R33-R38.
-
(2008)
Am. J. Physiol. Regul. Integr. Comp. Physiol.
, vol.294
-
-
Hao, S.1
-
31
-
-
78149355561
-
Bitter taste receptors on airway smooth muscle bronchodilate by localized calcium signaling and reverse obstruction
-
Deshpande D.A., et al. Bitter taste receptors on airway smooth muscle bronchodilate by localized calcium signaling and reverse obstruction. Nat. Med. 2010, 16:1299-1304.
-
(2010)
Nat. Med.
, vol.16
, pp. 1299-1304
-
-
Deshpande, D.A.1
-
32
-
-
84873157102
-
Intragastric administration of the bitter agonist denatonium benzoate (DB) increases satiation in healthy volunteers
-
Janssen P., et al. Intragastric administration of the bitter agonist denatonium benzoate (DB) increases satiation in healthy volunteers. Appetite 2011, 57S:S20.
-
(2011)
Appetite
, vol.57 S
-
-
Janssen, P.1
-
33
-
-
4043145033
-
Isohumulones, bitter acids derived from hops, activate both peroxisome proliferator-activated receptor alpha and gamma and reduce insulin resistance
-
Yajima H., et al. Isohumulones, bitter acids derived from hops, activate both peroxisome proliferator-activated receptor alpha and gamma and reduce insulin resistance. J. Biol. Chem. 2004, 279:33456-33462.
-
(2004)
J. Biol. Chem.
, vol.279
, pp. 33456-33462
-
-
Yajima, H.1
-
34
-
-
67349257962
-
Isohumulones, the bitter component of beer, improve hyperglycemia and decrease body fat in Japanese subjects with prediabetes
-
Obara K., et al. Isohumulones, the bitter component of beer, improve hyperglycemia and decrease body fat in Japanese subjects with prediabetes. Clin. Nutr. 2009, 28:278-284.
-
(2009)
Clin. Nutr.
, vol.28
, pp. 278-284
-
-
Obara, K.1
-
35
-
-
58049095069
-
Bitter taste receptors influence glucose homeostasis
-
Dotson C.D., et al. Bitter taste receptors influence glucose homeostasis. PLoS ONE 2008, 3:e3974.
-
(2008)
PLoS ONE
, vol.3
-
-
Dotson, C.D.1
-
36
-
-
0026530005
-
+ channels in Necturus taste cells. Modulation by intracellular factors and taste stimuli
-
+ channels in Necturus taste cells. Modulation by intracellular factors and taste stimuli. J. Gen. Physiol. 1992, 99:591-613.
-
(1992)
J. Gen. Physiol.
, vol.99
, pp. 591-613
-
-
Cummings, T.A.1
-
37
-
-
25844528057
-
G-protein-dependent and -independent pathways in denatonium signal transduction
-
Sawano S., et al. G-protein-dependent and -independent pathways in denatonium signal transduction. Biosci. Biotechnol. Biochem. 2005, 69:1643-1651.
-
(2005)
Biosci. Biotechnol. Biochem.
, vol.69
, pp. 1643-1651
-
-
Sawano, S.1
-
38
-
-
84856499826
-
BitterDB: a database of bitter compounds
-
Wiener A., et al. BitterDB: a database of bitter compounds. Nucleic Acids Res. 2011, 40:D413-D419.
-
(2011)
Nucleic Acids Res.
, vol.40
-
-
Wiener, A.1
-
39
-
-
78549246140
-
Generation and characterization of T1R2-LacZ knock-in mouse
-
Iwatsuki K., et al. Generation and characterization of T1R2-LacZ knock-in mouse. Biochem. Biophys. Res. Commun. 2010, 402:495-499.
-
(2010)
Biochem. Biophys. Res. Commun.
, vol.402
, pp. 495-499
-
-
Iwatsuki, K.1
-
41
-
-
84865147548
-
Transformation of postingestive glucose responses after deletion of sweet taste receptor subunits or gastric bypass surgery
-
Geraedts M.C., et al. Transformation of postingestive glucose responses after deletion of sweet taste receptor subunits or gastric bypass surgery. Am. J. Physiol. Endocrinol. Metab. 2012, 303:E464-E474.
-
(2012)
Am. J. Physiol. Endocrinol. Metab.
, vol.303
-
-
Geraedts, M.C.1
-
42
-
-
79960750572
-
The role of the gut sweet taste receptor in regulating GLP-1, PYY, and CCK release in humans
-
Gerspach A.C., et al. The role of the gut sweet taste receptor in regulating GLP-1, PYY, and CCK release in humans. Am. J. Physiol. Endocrinol. Metab. 2011, 301:E317-E325.
-
(2011)
Am. J. Physiol. Endocrinol. Metab.
, vol.301
-
-
Gerspach, A.C.1
-
43
-
-
79953773104
-
Effects of oral ingestion of sucralose on gut hormone response and appetite in healthy normal-weight subjects
-
Ford H.E., et al. Effects of oral ingestion of sucralose on gut hormone response and appetite in healthy normal-weight subjects. Eur. J. Clin. Nutr. 2011, 65:508-513.
-
(2011)
Eur. J. Clin. Nutr.
, vol.65
, pp. 508-513
-
-
Ford, H.E.1
-
44
-
-
79955997980
-
Effects of carbohydrate sugars and artificial sweeteners on appetite and the secretion of gastrointestinal satiety peptides
-
Steinert R.E., et al. Effects of carbohydrate sugars and artificial sweeteners on appetite and the secretion of gastrointestinal satiety peptides. Br. J. Nutr. 2011, 105:1320-1328.
-
(2011)
Br. J. Nutr.
, vol.105
, pp. 1320-1328
-
-
Steinert, R.E.1
-
45
-
-
84867200974
-
A trial of sugar-free or sugar-sweetened beverages and body weight in children
-
de Ruyter J.C., et al. A trial of sugar-free or sugar-sweetened beverages and body weight in children. N. Engl. J. Med. 2012, 367:1397-1406.
-
(2012)
N. Engl. J. Med.
, vol.367
, pp. 1397-1406
-
-
de Ruyter, J.C.1
-
46
-
-
0141532690
-
A novel glucose-sensing mechanism contributing to glucagon-like peptide-1 secretion from the GLUTag cell line
-
Gribble F.M., et al. A novel glucose-sensing mechanism contributing to glucagon-like peptide-1 secretion from the GLUTag cell line. Diabetes 2003, 52:1147-1154.
-
(2003)
Diabetes
, vol.52
, pp. 1147-1154
-
-
Gribble, F.M.1
-
47
-
-
56449093424
-
Glucose sensing in L cells: a primary cell study
-
Reimann F., et al. Glucose sensing in L cells: a primary cell study. Cell Metab. 2008, 8:532-539.
-
(2008)
Cell Metab.
, vol.8
, pp. 532-539
-
-
Reimann, F.1
-
48
-
-
84555186977
-
+-D-glucose cotransporter SGLT1 is pivotal for intestinal glucose absorption and glucose-dependent incretin secretion
-
+-D-glucose cotransporter SGLT1 is pivotal for intestinal glucose absorption and glucose-dependent incretin secretion. Diabetes 2012, 61:187-196.
-
(2012)
Diabetes
, vol.61
, pp. 187-196
-
-
Gorboulev, V.1
-
49
-
-
84862560443
-
The regulation of K- and L-cell activity by GLUT2 and the calcium-sensing receptor CasR in rat small intestine
-
Mace O.J., et al. The regulation of K- and L-cell activity by GLUT2 and the calcium-sensing receptor CasR in rat small intestine. J. Physiol. 2012, 590:2917-2936.
-
(2012)
J. Physiol.
, vol.590
, pp. 2917-2936
-
-
Mace, O.J.1
-
50
-
-
61749098462
-
Expression of taste molecules in the upper gastrointestinal tract in humans with and without type 2 diabetes
-
Young R.L., et al. Expression of taste molecules in the upper gastrointestinal tract in humans with and without type 2 diabetes. Gut 2009, 58:337-346.
-
(2009)
Gut
, vol.58
, pp. 337-346
-
-
Young, R.L.1
-
51
-
-
0000988004
-
New seasonings
-
Ikeda K. New seasonings. J. Tokyo Chem. Soc. 1909, 30:820-836.
-
(1909)
J. Tokyo Chem. Soc.
, vol.30
, pp. 820-836
-
-
Ikeda, K.1
-
52
-
-
70349562019
-
Activation of the gut-brain axis by dietary glutamate and physiologic significance in energy homeostasis
-
Kondoh T., et al. Activation of the gut-brain axis by dietary glutamate and physiologic significance in energy homeostasis. Am. J. Clin. Nutr. 2009, 90:832S-837S.
-
(2009)
Am. J. Clin. Nutr.
, vol.90
-
-
Kondoh, T.1
-
53
-
-
58149488940
-
Monosodium L-glutamate added to a high-energy, high-protein liquid diet promotes gastric emptying
-
Zai H., et al. Monosodium L-glutamate added to a high-energy, high-protein liquid diet promotes gastric emptying. Am. J. Clin. Nutr. 2009, 89:431-435.
-
(2009)
Am. J. Clin. Nutr.
, vol.89
, pp. 431-435
-
-
Zai, H.1
-
54
-
-
77949869008
-
Intragastric monosodium L-glutamate stimulates motility of upper gut via vagus nerve in conscious dogs
-
Toyomasu Y., et al. Intragastric monosodium L-glutamate stimulates motility of upper gut via vagus nerve in conscious dogs. Am. J. Physiol. Gastrointest. Liver Physiol. 2010, 298:R1125-R1135.
-
(2010)
Am. J. Physiol. Gastrointest. Liver Physiol.
, vol.298
-
-
Toyomasu, Y.1
-
55
-
-
0037075555
-
An amino-acid taste receptor
-
Nelson G., et al. An amino-acid taste receptor. Nature 2002, 416:199-202.
-
(2002)
Nature
, vol.416
, pp. 199-202
-
-
Nelson, G.1
-
56
-
-
70349733123
-
Luminal L-glutamate enhances duodenal mucosal defense mechanisms via multiple glutamate receptors in rats
-
Akiba Y., et al. Luminal L-glutamate enhances duodenal mucosal defense mechanisms via multiple glutamate receptors in rats. Am. J. Physiol. Gastrointest. Liver Physiol. 2009, 297:G781-G791.
-
(2009)
Am. J. Physiol. Gastrointest. Liver Physiol.
, vol.297
-
-
Akiba, Y.1
-
57
-
-
0030982633
-
Expression of the calcium-sensing receptor on human antral gastrin cells in culture
-
Ray J.M., et al. Expression of the calcium-sensing receptor on human antral gastrin cells in culture. J. Clin. Invest. 1997, 99:2328-2333.
-
(1997)
J. Clin. Invest.
, vol.99
, pp. 2328-2333
-
-
Ray, J.M.1
-
58
-
-
78049317365
-
Calcium-sensing receptor is a physiologic multimodal chemosensor regulating gastric G-cell growth and gastrin secretion
-
Feng J., et al. Calcium-sensing receptor is a physiologic multimodal chemosensor regulating gastric G-cell growth and gastrin secretion. Proc. Natl. Acad. Sci. U.S.A. 2010, 107:17791-17796.
-
(2010)
Proc. Natl. Acad. Sci. U.S.A.
, vol.107
, pp. 17791-17796
-
-
Feng, J.1
-
59
-
-
80052571011
-
Nutrient sensing receptors in gastric endocrine cells
-
Haid D., et al. Nutrient sensing receptors in gastric endocrine cells. J. Mol. Histol. 2011, 42:355-364.
-
(2011)
J. Mol. Histol.
, vol.42
, pp. 355-364
-
-
Haid, D.1
-
60
-
-
84865137463
-
Receptors responsive to protein breakdown products in G-cells and D-cells of mouse, swine and human
-
Haid D.C., et al. Receptors responsive to protein breakdown products in G-cells and D-cells of mouse, swine and human. Front. Physiol. 2012, 3:65.
-
(2012)
Front. Physiol.
, vol.3
, pp. 65
-
-
Haid, D.C.1
-
62
-
-
79955069352
-
The extracellular calcium-sensing receptor is required for cholecystokinin secretion in response to L-phenylalanine in acutely isolated intestinal I cells
-
Liou A.P., et al. The extracellular calcium-sensing receptor is required for cholecystokinin secretion in response to L-phenylalanine in acutely isolated intestinal I cells. Am. J. Physiol. Gastrointest. Liver Physiol. 2011, 300:G538-G546.
-
(2011)
Am. J. Physiol. Gastrointest. Liver Physiol.
, vol.300
-
-
Liou, A.P.1
-
63
-
-
0028358122
-
L-phenylalanine releases cholecystokinin (CCK) and is associated with reduced food intake in humans: evidence for a physiological role of CCK in control of eating
-
Ballinger A.B., et al. L-phenylalanine releases cholecystokinin (CCK) and is associated with reduced food intake in humans: evidence for a physiological role of CCK in control of eating. Metabolism 1994, 43:735-738.
-
(1994)
Metabolism
, vol.43
, pp. 735-738
-
-
Ballinger, A.B.1
-
64
-
-
50849143802
-
Calcium-sensing receptor mediates phenylalanine-induced cholecystokinin secretion in enteroendocrine STC-1 cells
-
Hira T., et al. Calcium-sensing receptor mediates phenylalanine-induced cholecystokinin secretion in enteroendocrine STC-1 cells. FEBS J. 2008, 275:4620-4626.
-
(2008)
FEBS J.
, vol.275
, pp. 4620-4626
-
-
Hira, T.1
-
65
-
-
67650628028
-
Molecular basis for amino acid sensing by family C G-protein-coupled receptors
-
Wellendorph P., et al. Molecular basis for amino acid sensing by family C G-protein-coupled receptors. Br. J. Pharmacol. 2009, 156:869-884.
-
(2009)
Br. J. Pharmacol.
, vol.156
, pp. 869-884
-
-
Wellendorph, P.1
-
66
-
-
33846180695
-
Identification of a protein hydrolysate responsive G protein-coupled receptor in enterocytes
-
Choi S., et al. Identification of a protein hydrolysate responsive G protein-coupled receptor in enterocytes. Am. J. Physiol. Gastrointest. Liver Physiol. 2007, 292:G98-G112.
-
(2007)
Am. J. Physiol. Gastrointest. Liver Physiol.
, vol.292
-
-
Choi, S.1
-
67
-
-
0029967676
-
Peptone stimulates CCK-releasing peptide secretion by activating intestinal submucosal cholinergic neurons
-
Li Y., et al. Peptone stimulates CCK-releasing peptide secretion by activating intestinal submucosal cholinergic neurons. J. Clin. Invest. 1996, 97:1463-1470.
-
(1996)
J. Clin. Invest.
, vol.97
, pp. 1463-1470
-
-
Li, Y.1
-
68
-
-
0031750108
-
Peptones stimulate both the secretion of the incretin hormone glucagon-like peptide 1 and the transcription of the proglucagon gene
-
Cordier-Bussat M., et al. Peptones stimulate both the secretion of the incretin hormone glucagon-like peptide 1 and the transcription of the proglucagon gene. Diabetes 1998, 47:1038-1045.
-
(1998)
Diabetes
, vol.47
, pp. 1038-1045
-
-
Cordier-Bussat, M.1
-
69
-
-
20444400645
-
Activation of vagal afferents in the rat duodenum by protein digests requires PepT1
-
Darcel N.P., et al. Activation of vagal afferents in the rat duodenum by protein digests requires PepT1. J. Nutr. 2005, 135:1491-1495.
-
(2005)
J. Nutr.
, vol.135
, pp. 1491-1495
-
-
Darcel, N.P.1
-
70
-
-
65649152957
-
Amino acid transceptors: gate keepers of nutrient exchange and regulators of nutrient signaling
-
Hundal H.S., et al. Amino acid transceptors: gate keepers of nutrient exchange and regulators of nutrient signaling. Am. J. Physiol. Endocrinol. Metab. 2009, 296:E603-E613.
-
(2009)
Am. J. Physiol. Endocrinol. Metab.
, vol.296
-
-
Hundal, H.S.1
-
71
-
-
58149312534
-
An energy supply network of nutrient absorption coordinated by calcium and T1R taste receptors in rat small intestine
-
Mace O.J., et al. An energy supply network of nutrient absorption coordinated by calcium and T1R taste receptors in rat small intestine. J. Physiol. 2009, 587:195-210.
-
(2009)
J. Physiol.
, vol.587
, pp. 195-210
-
-
Mace, O.J.1
-
72
-
-
52749098923
-
Gpr40 is expressed in enteroendocrine cells and mediates free fatty acid stimulation of incretin secretion
-
Edfalk S., et al. Gpr40 is expressed in enteroendocrine cells and mediates free fatty acid stimulation of incretin secretion. Diabetes 2008, 57:2280-2287.
-
(2008)
Diabetes
, vol.57
, pp. 2280-2287
-
-
Edfalk, S.1
-
73
-
-
84863084353
-
Sensing of fatty acids for octanoylation of ghrelin involves a gustatory G-protein
-
Janssen S., et al. Sensing of fatty acids for octanoylation of ghrelin involves a gustatory G-protein. PLoS ONE 2012, 7:e40168.
-
(2012)
PLoS ONE
, vol.7
-
-
Janssen, S.1
-
74
-
-
79952315396
-
The G-protein-coupled receptor GPR40 directly mediates long-chain fatty acid-induced secretion of cholecystokinin
-
Liou A.P., et al. The G-protein-coupled receptor GPR40 directly mediates long-chain fatty acid-induced secretion of cholecystokinin. Gastroenterology 2011, 140:903-912.
-
(2011)
Gastroenterology
, vol.140
, pp. 903-912
-
-
Liou, A.P.1
-
75
-
-
0037434991
-
Free fatty acids regulate insulin secretion from pancreatic beta cells through GPR40
-
Itoh Y., et al. Free fatty acids regulate insulin secretion from pancreatic beta cells through GPR40. Nature 2003, 422:173-176.
-
(2003)
Nature
, vol.422
, pp. 173-176
-
-
Itoh, Y.1
-
76
-
-
52249093427
-
The fatty acid receptor GPR40 plays a role in insulin secretion in vivo after high-fat feeding
-
Kebede M., et al. The fatty acid receptor GPR40 plays a role in insulin secretion in vivo after high-fat feeding. Diabetes 2008, 57:2432-2437.
-
(2008)
Diabetes
, vol.57
, pp. 2432-2437
-
-
Kebede, M.1
-
77
-
-
34047177401
-
GPR40 is necessary but not sufficient for fatty acid stimulation of insulin secretion in vivo
-
Latour M.G., et al. GPR40 is necessary but not sufficient for fatty acid stimulation of insulin secretion in vivo. Diabetes 2007, 56:1087-1094.
-
(2007)
Diabetes
, vol.56
, pp. 1087-1094
-
-
Latour, M.G.1
-
78
-
-
20944433543
-
The FFA receptor GPR40 links hyperinsulinemia, hepatic steatosis, and impaired glucose homeostasis in mouse
-
Steneberg P., et al. The FFA receptor GPR40 links hyperinsulinemia, hepatic steatosis, and impaired glucose homeostasis in mouse. Cell Metab. 2005, 1:245-258.
-
(2005)
Cell Metab.
, vol.1
, pp. 245-258
-
-
Steneberg, P.1
-
79
-
-
84872407744
-
Drug discovery opportunities and challenges at G protein coupled receptors for long chain free fatty acids
-
(article 112)
-
Holliday N.D., et al. Drug discovery opportunities and challenges at G protein coupled receptors for long chain free fatty acids. Front. Endocrinol. (Lausanne) 2011, 2. (article 112).
-
(2011)
Front. Endocrinol. (Lausanne)
, vol.2
-
-
Holliday, N.D.1
-
80
-
-
13444263540
-
Free fatty acids regulate gut incretin glucagon-like peptide-1 secretion through GPR120
-
Hirasawa A., et al. Free fatty acids regulate gut incretin glucagon-like peptide-1 secretion through GPR120. Nat. Med. 2005, 11:90-94.
-
(2005)
Nat. Med.
, vol.11
, pp. 90-94
-
-
Hirasawa, A.1
-
81
-
-
45849153782
-
Cloning and characterization of the rat free fatty acid receptor GPR120: in vivo effect of the natural ligand on GLP-1 secretion and proliferation of pancreatic beta cells
-
Tanaka T., et al. Cloning and characterization of the rat free fatty acid receptor GPR120: in vivo effect of the natural ligand on GLP-1 secretion and proliferation of pancreatic beta cells. Naunyn Schmiedebergs Arch. Pharmacol. 2008, 377:515-522.
-
(2008)
Naunyn Schmiedebergs Arch. Pharmacol.
, vol.377
, pp. 515-522
-
-
Tanaka, T.1
-
82
-
-
33846468320
-
The regulation of adipogenesis through GPR120
-
Gotoh C., et al. The regulation of adipogenesis through GPR120. Biochem. Biophys. Res. Commun. 2007, 354:591-597.
-
(2007)
Biochem. Biophys. Res. Commun.
, vol.354
, pp. 591-597
-
-
Gotoh, C.1
-
83
-
-
77956165390
-
GPR120 is an omega-3 fatty acid receptor mediating potent anti-inflammatory and insulin-sensitizing effects
-
Oh D.Y., et al. GPR120 is an omega-3 fatty acid receptor mediating potent anti-inflammatory and insulin-sensitizing effects. Cell 2010, 142:687-698.
-
(2010)
Cell
, vol.142
, pp. 687-698
-
-
Oh, D.Y.1
-
84
-
-
84858285593
-
Dysfunction of lipid sensor GPR120 leads to obesity in both mouse and human
-
Ichimura A., et al. Dysfunction of lipid sensor GPR120 leads to obesity in both mouse and human. Nature 2012, 483:350-354.
-
(2012)
Nature
, vol.483
, pp. 350-354
-
-
Ichimura, A.1
-
85
-
-
0038363378
-
The orphan G protein-coupled receptors GPR41 and GPR43 are activated by propionate and other short chain carboxylic acids
-
Brown A.J., et al. The orphan G protein-coupled receptors GPR41 and GPR43 are activated by propionate and other short chain carboxylic acids. J. Biol. Chem. 2003, 278:11312-11319.
-
(2003)
J. Biol. Chem.
, vol.278
, pp. 11312-11319
-
-
Brown, A.J.1
-
86
-
-
41049090425
-
Expression of the short-chain fatty acid receptor, GPR43, in the human colon
-
Karaki S., et al. Expression of the short-chain fatty acid receptor, GPR43, in the human colon. J. Mol. Histol. 2008, 39:135-142.
-
(2008)
J. Mol. Histol.
, vol.39
, pp. 135-142
-
-
Karaki, S.1
-
87
-
-
70149102106
-
Expression of short-chain fatty acid receptor GPR41 in the human colon
-
Tazoe H., et al. Expression of short-chain fatty acid receptor GPR41 in the human colon. Biomed. Res. 2009, 30:149-156.
-
(2009)
Biomed. Res.
, vol.30
, pp. 149-156
-
-
Tazoe, H.1
-
88
-
-
33646376658
-
Short-chain fatty acid receptor, GPR43, is expressed by enteroendocrine cells and mucosal mast cells in rat intestine
-
Karaki S., et al. Short-chain fatty acid receptor, GPR43, is expressed by enteroendocrine cells and mucosal mast cells in rat intestine. Cell Tissue Res. 2006, 324:353-360.
-
(2006)
Cell Tissue Res.
, vol.324
, pp. 353-360
-
-
Karaki, S.1
-
89
-
-
84856509724
-
Short-chain fatty acids stimulate glucagon-like peptide-1 secretion via the G-protein-coupled receptor FFAR2
-
Tolhurst G., et al. Short-chain fatty acids stimulate glucagon-like peptide-1 secretion via the G-protein-coupled receptor FFAR2. Diabetes 2012, 61:364-371.
-
(2012)
Diabetes
, vol.61
, pp. 364-371
-
-
Tolhurst, G.1
-
90
-
-
55949091259
-
Effects of the gut microbiota on host adiposity are modulated by the short-chain fatty-acid binding G protein-coupled receptor, Gpr41
-
Samuel B.S., et al. Effects of the gut microbiota on host adiposity are modulated by the short-chain fatty-acid binding G protein-coupled receptor, Gpr41. Proc. Natl. Acad. Sci. U.S.A. 2008, 105:16767-16772.
-
(2008)
Proc. Natl. Acad. Sci. U.S.A.
, vol.105
, pp. 16767-16772
-
-
Samuel, B.S.1
-
91
-
-
84862654709
-
GPR119 as a fat sensor
-
Hansen H.S., et al. GPR119 as a fat sensor. Trends Pharmacol. Sci. 2012, 33:374-381.
-
(2012)
Trends Pharmacol. Sci.
, vol.33
, pp. 374-381
-
-
Hansen, H.S.1
-
92
-
-
65549142522
-
GPR119 is essential for oleoylethanolamide-induced glucagon-like peptide-1 secretion from the intestinal enteroendocrine L-cell
-
Lauffer L.M., et al. GPR119 is essential for oleoylethanolamide-induced glucagon-like peptide-1 secretion from the intestinal enteroendocrine L-cell. Diabetes 2009, 58:1058-1066.
-
(2009)
Diabetes
, vol.58
, pp. 1058-1066
-
-
Lauffer, L.M.1
-
93
-
-
77956397360
-
Peptide YY is critical for acylethanolamine receptor Gpr119-induced activation of gastrointestinal mucosal responses
-
Cox H.M., et al. Peptide YY is critical for acylethanolamine receptor Gpr119-induced activation of gastrointestinal mucosal responses. Cell Metab. 2010, 11:532-542.
-
(2010)
Cell Metab.
, vol.11
, pp. 532-542
-
-
Cox, H.M.1
-
94
-
-
80052521074
-
2-Oleoyl glycerol is a GPR119 agonist and signals GLP-1 release in humans
-
Hansen K.B., et al. 2-Oleoyl glycerol is a GPR119 agonist and signals GLP-1 release in humans. J. Clin. Endocrinol. Metab. 2011, 96:E1409-E1417.
-
(2011)
J. Clin. Endocrinol. Metab.
, vol.96
-
-
Hansen, K.B.1
-
95
-
-
42449126696
-
A role for intestinal endocrine cell-expressed G protein-coupled receptor 119 in glycemic control by enhancing glucagon-like peptide-1 and glucose-dependent insulinotropic peptide release
-
Chu Z.L., et al. A role for intestinal endocrine cell-expressed G protein-coupled receptor 119 in glycemic control by enhancing glucagon-like peptide-1 and glucose-dependent insulinotropic peptide release. Endocrinology 2008, 149:2038-2047.
-
(2008)
Endocrinology
, vol.149
, pp. 2038-2047
-
-
Chu, Z.L.1
-
96
-
-
33644627958
-
Deorphanization of a G protein-coupled receptor for oleoylethanolamide and its use in the discovery of small-molecule hypophagic agents
-
Overton H.A., et al. Deorphanization of a G protein-coupled receptor for oleoylethanolamide and its use in the discovery of small-molecule hypophagic agents. Cell Metab. 2006, 3:167-175.
-
(2006)
Cell Metab.
, vol.3
, pp. 167-175
-
-
Overton, H.A.1
-
97
-
-
34248527678
-
A role for beta-cell-expressed G protein-coupled receptor 119 in glycemic control by enhancing glucose-dependent insulin release
-
Chu Z.L., et al. A role for beta-cell-expressed G protein-coupled receptor 119 in glycemic control by enhancing glucose-dependent insulin release. Endocrinology 2007, 148:2601-2609.
-
(2007)
Endocrinology
, vol.148
, pp. 2601-2609
-
-
Chu, Z.L.1
-
98
-
-
80455122696
-
The gut hormones PYY 3-36 and GLP-1 7-36 amide reduce food intake and modulate brain activity in appetite centers in humans
-
De Silva A., et al. The gut hormones PYY 3-36 and GLP-1 7-36 amide reduce food intake and modulate brain activity in appetite centers in humans. Cell Metab. 2011, 14:700-706.
-
(2011)
Cell Metab.
, vol.14
, pp. 700-706
-
-
De Silva, A.1
|