메뉴 건너뛰기




Volumn 17, Issue 2, 2013, Pages 223-238

On the use of evolutionary feature selection for improving fuzzy rough set based prototype selection

Author keywords

Data reduction; Evolutionary algorithms; Feature selection; Fuzzy rough sets; Nearest neighbor; Prototype selection

Indexed keywords

CLASSIFICATION (OF INFORMATION); DATA REDUCTION; EVOLUTIONARY ALGORITHMS; GENETIC ALGORITHMS; NEAREST NEIGHBOR SEARCH; ROUGH SET THEORY;

EID: 84872775741     PISSN: 14327643     EISSN: 14337479     Source Type: Journal    
DOI: 10.1007/s00500-012-0888-3     Document Type: Article
Times cited : (32)

References (87)
  • 1
  • 6
    • 62149144693 scopus 로고    scopus 로고
    • Beyond the data deluge
    • Bell G, Hey T, Szalay A (2009) Beyond the data deluge. Science 323: 1297-1298.
    • (2009) Science , vol.323 , pp. 1297-1298
    • Bell, G.1    Hey, T.2    Szalay, A.3
  • 7
    • 0347763609 scopus 로고    scopus 로고
    • Using evolutionary algorithms as instance selection for data reduction in KDD: An experimental study
    • Cano JR, Herrera F, Lozano M (2003) Using evolutionary algorithms as instance selection for data reduction in KDD: An experimental study. IEEE Trans Evol Comput 7(6): 561-575.
    • (2003) IEEE Trans Evol Comput , vol.7 , Issue.6 , pp. 561-575
    • Cano, J.R.1    Herrera, F.2    Lozano, M.3
  • 8
    • 33845982223 scopus 로고    scopus 로고
    • Evolutionary stratified training set selection for extracting classification rules with trade-off precision-interpretability
    • Cano JR, Herrera F, Lozano M (2007) Evolutionary stratified training set selection for extracting classification rules with trade-off precision-interpretability. Data Knowl Eng 60: 90-100.
    • (2007) Data Knowl Eng , vol.60 , pp. 90-100
    • Cano, J.R.1    Herrera, F.2    Lozano, M.3
  • 9
    • 48749106976 scopus 로고    scopus 로고
    • Making CN2-SD subgroup discovery algorithm scalable to large size data sets using instance selection
    • Cano JR, Herrera F, Lozano M, García S (2008) Making CN2-SD subgroup discovery algorithm scalable to large size data sets using instance selection. Expert Syst Appl 35: 1949-1965.
    • (2008) Expert Syst Appl , vol.35 , pp. 1949-1965
    • Cano, J.R.1    Herrera, F.2    Lozano, M.3    García, S.4
  • 10
    • 0035426683 scopus 로고    scopus 로고
    • Genetic feature selection in a fuzzy rule-based classification system learning process for high-dimensional problems
    • Casillas J, Cordon O, Del Jesus MJ, Herrera F (2001) Genetic feature selection in a fuzzy rule-based classification system learning process for high-dimensional problems. Inf Sci 136: 135-157.
    • (2001) Inf Sci , vol.136 , pp. 135-157
    • Casillas, J.1    Cordon, O.2    Del Jesus, M.J.3    Herrera, F.4
  • 12
    • 70350576588 scopus 로고    scopus 로고
    • Attribute selection with fuzzy decision reducts
    • Cornelis C, Jensen R, Hurtado G, Slezak D (2010) Attribute selection with fuzzy decision reducts. Inf Sci 180: 209-224.
    • (2010) Inf Sci , vol.180 , pp. 209-224
    • Cornelis, C.1    Jensen, R.2    Hurtado, G.3    Slezak, D.4
  • 13
    • 84926662675 scopus 로고
    • Nearest neighbor pattern classification
    • Cover TM, Hart PE (1967) Nearest neighbor pattern classification. IEEE Trans Inf Theory 13(1): 21-27.
    • (1967) IEEE Trans Inf Theory , vol.13 , Issue.1 , pp. 21-27
    • Cover, T.M.1    Hart, P.E.2
  • 15
    • 76749096459 scopus 로고    scopus 로고
    • IFS-CoCo: Instance and feature selection based on cooperative coevolution with nearest neighbor rule
    • Derrac J, García S, Herrera F (2010a) IFS-CoCo: Instance and feature selection based on cooperative coevolution with nearest neighbor rule. Pattern Recognit 43(6): 2082-2105.
    • (2010) Pattern Recognit , vol.43 , Issue.6 , pp. 2082-2105
    • Derrac, J.1    García, S.2    Herrera, F.3
  • 16
    • 79957963100 scopus 로고    scopus 로고
    • A survey on evolutionary instance selection and generation
    • Derrac J, García S, Herrera F (2010b) A survey on evolutionary instance selection and generation. Int J Appl Metaheur Comput 1(1): 60-92.
    • (2010) Int J Appl Metaheur Comput , vol.1 , Issue.1 , pp. 60-92
    • Derrac, J.1    García, S.2    Herrera, F.3
  • 17
    • 81355127279 scopus 로고    scopus 로고
    • Enhancing evolutionary instance selection algorithms by means of fuzzy rough set based feature selection
    • Derrac J, Cornelis C, García S, Herrera F (2012) Enhancing evolutionary instance selection algorithms by means of fuzzy rough set based feature selection. Inf Sci 186(1): 73-92.
    • (2012) Inf Sci , vol.186 , Issue.1 , pp. 73-92
    • Derrac, J.1    Cornelis, C.2    García, S.3    Herrera, F.4
  • 18
    • 84859482916 scopus 로고    scopus 로고
    • A k-nearest neighbours method based on imprecise probabilities
    • Destercke S (2012) A k-nearest neighbours method based on imprecise probabilities. Soft Comput 16(5): 833-844.
    • (2012) Soft Comput , vol.16 , Issue.5 , pp. 833-844
    • Destercke, S.1
  • 19
    • 84963133436 scopus 로고
    • Rough fuzzy sets and fuzzy rough sets
    • Dubois D, Prade H (1990) Rough fuzzy sets and fuzzy rough sets. Int J General Syst 17: 191-209.
    • (1990) Int J General Syst , vol.17 , pp. 191-209
    • Dubois, D.1    Prade, H.2
  • 21
    • 0001334115 scopus 로고
    • The CHC adaptive search algorithm: how to have safe search when engaging in nontraditional genetic recombination
    • G. J. E. Rawlins (Ed.), San Mateo: Morgan Kaufmann
    • Eshelman LJ (1991) The CHC adaptive search algorithm: how to have safe search when engaging in nontraditional genetic recombination. In: Rawlins GJE (ed) Foundations of genetic algorithms, Morgan Kaufmann, San Mateo, pp 265-283.
    • (1991) Foundations of Genetic Algorithms , pp. 265-283
    • Eshelman, L.J.1
  • 22
    • 78049529494 scopus 로고    scopus 로고
    • Bayesian instance selection for the nearest neighbor rule
    • Ferrandiz S, Boullé M (2010) Bayesian instance selection for the nearest neighbor rule. Mach Learn 81(81): 229-256.
    • (2010) Mach Learn , vol.81 , Issue.81 , pp. 229-256
    • Ferrandiz, S.1    Boullé, M.2
  • 23
    • 78049231842 scopus 로고    scopus 로고
    • Data pre-processing through reward-punishment editing
    • Franco A, Maltoni D, Nanni L (2010) Data pre-processing through reward-punishment editing. Pattern Anal Appl 13: 367-381.
    • (2010) Pattern Anal Appl , vol.13 , pp. 367-381
    • Franco, A.1    Maltoni, D.2    Nanni, L.3
  • 26
    • 58149287952 scopus 로고    scopus 로고
    • An extension on statistical comparisons of classifiers over multiple data sets for all pairwise comparisons
    • García S, Herrera F (2008) An extension on statistical comparisons of classifiers over multiple data sets for all pairwise comparisons. J Mach Learn Res 9: 2677-2694.
    • (2008) J Mach Learn Res , vol.9 , pp. 2677-2694
    • García, S.1    Herrera, F.2
  • 27
    • 70349617264 scopus 로고    scopus 로고
    • Evolutionary undersampling for classification with imbalanced datasets: Proposals and taxonomy
    • García S, Herrera F (2009) Evolutionary undersampling for classification with imbalanced datasets: Proposals and taxonomy. Evol Comput 17(3): 275-306.
    • (2009) Evol Comput , vol.17 , Issue.3 , pp. 275-306
    • García, S.1    Herrera, F.2
  • 28
    • 42749092345 scopus 로고    scopus 로고
    • A memetic algorithm for evolutionary prototype selection: a scaling up approach
    • García S, Cano JR, Herrera F (2008) A memetic algorithm for evolutionary prototype selection: A scaling up approach. Pattern Recognit 41(8): 2693-2709.
    • (2008) Pattern Recognit , vol.41 , Issue.8 , pp. 2693-2709
    • García, S.1    Cano, J.R.2    Herrera, F.3
  • 29
    • 64549120231 scopus 로고    scopus 로고
    • A study of statistical techniques and performance measures for genetics-based machine learning: accuracy and interpretability
    • García S, Fernández A, Luengo J, Herrera F (2009) A study of statistical techniques and performance measures for genetics-based machine learning: accuracy and interpretability. Soft Comput 13(10): 959-977.
    • (2009) Soft Comput , vol.13 , Issue.10 , pp. 959-977
    • García, S.1    Fernández, A.2    Luengo, J.3    Herrera, F.4
  • 30
    • 77549084648 scopus 로고    scopus 로고
    • Advanced nonparametric tests for multiple comparisons in the design of experiments in computational intelligence and data mining: experimental analysis of power
    • García S, Fernández A, Luengo J, Herrera F (2010) Advanced nonparametric tests for multiple comparisons in the design of experiments in computational intelligence and data mining: experimental analysis of power. Inf Sci 180: 2044-2064.
    • (2010) Inf Sci , vol.180 , pp. 2044-2064
    • García, S.1    Fernández, A.2    Luengo, J.3    Herrera, F.4
  • 31
    • 84856161441 scopus 로고    scopus 로고
    • Prototype selection for nearest neighbor classification: taxonomy and empirical study
    • García S, Derrac J, Cano JR, Herrera F (2012a) Prototype selection for nearest neighbor classification: taxonomy and empirical study. IEEE Trans Pattern Anal Mach Intell 34(3): 417-435.
    • (2012) IEEE Trans Pattern Anal Mach Intell , vol.34 , Issue.3 , pp. 417-435
    • García, S.1    Derrac, J.2    Cano, J.R.3    Herrera, F.4
  • 34
    • 76549132784 scopus 로고    scopus 로고
    • A cooperative coevolutionary algorithm for instance selection for instance-based learning
    • García-Pedrajas N, Romero JA, Ortiz-Boyer D (2010) A cooperative coevolutionary algorithm for instance selection for instance-based learning. Mach Learn 78: 381-420.
    • (2010) Mach Learn , vol.78 , pp. 381-420
    • García-Pedrajas, N.1    Romero, J.A.2    Ortiz-Boyer, D.3
  • 36
    • 58449124909 scopus 로고    scopus 로고
    • Evolving edited k-nearest neighbor classifiers
    • Gil-Pita R, Yao X (2008) Evolving edited k-nearest neighbor classifiers. Int J Neural Syst 18(6): 1-9.
    • (2008) Int J Neural Syst , vol.18 , Issue.6 , pp. 1-9
    • Gil-Pita, R.1    Yao, X.2
  • 37
    • 0035359278 scopus 로고    scopus 로고
    • Selection of relevant features in a fuzzy genetic learning algorithm
    • Gonzalez A, Perez R (2001) Selection of relevant features in a fuzzy genetic learning algorithm. IEEE Trans Syst Man Cybern 31(3): 417-425.
    • (2001) IEEE Trans Syst Man Cybern , vol.31 , Issue.3 , pp. 417-425
    • Gonzalez, A.1    Perez, R.2
  • 38
    • 33745561205 scopus 로고    scopus 로고
    • An introduction to variable and feature selection
    • Guyon I, Elisseeff A (2003) An introduction to variable and feature selection. J Mach Learn Res 3: 1157-1182.
    • (2003) J Mach Learn Res , vol.3 , pp. 1157-1182
    • Guyon, I.1    Elisseeff, A.2
  • 40
    • 84931162639 scopus 로고
    • The condensed nearest neighbour rule
    • Hart PE (1968) The condensed nearest neighbour rule. IEEE Trans Inf Theory 18(5): 515-516.
    • (1968) IEEE Trans Inf Theory , vol.18 , Issue.5 , pp. 515-516
    • Hart, P.E.1
  • 42
    • 79956195274 scopus 로고    scopus 로고
    • Membership evaluation and feature selection for fuzzy support vector machine based on fuzzy rough sets
    • He Q, Wu C (2011) Membership evaluation and feature selection for fuzzy support vector machine based on fuzzy rough sets. Soft Comput 15(6): 1105-1114.
    • (2011) Soft Comput , vol.15 , Issue.6 , pp. 1105-1114
    • He, Q.1    Wu, C.2
  • 43
    • 0036832996 scopus 로고    scopus 로고
    • Design of an optimal nearest neighbor classifier using an intelligent genetic algorithm
    • Ho SY, Liu CC, Liu S (2002) Design of an optimal nearest neighbor classifier using an intelligent genetic algorithm. Pattern Recognit Lett 23(13): 1495-1503.
    • (2002) Pattern Recognit Lett , vol.23 , Issue.13 , pp. 1495-1503
    • Ho, S.Y.1    Liu, C.C.2    Liu, S.3
  • 44
    • 0343773003 scopus 로고    scopus 로고
    • Feature subset selection by bayesian networks: a comparison with genetic and sequential algorithms
    • Inza I, Larrañaga P, Sierra B (2001) Feature subset selection by bayesian networks: a comparison with genetic and sequential algorithms. Int J Approx Reason 27: 143-164.
    • (2001) Int J Approx Reason , vol.27 , pp. 143-164
    • Inza, I.1    Larrañaga, P.2    Sierra, B.3
  • 46
    • 0013384310 scopus 로고    scopus 로고
    • Genetic-algorithm-based instance and feature selection
    • In: Liu H, Motoda H (eds), Kluwer Academic Publishers, Dordrecht
    • Ishibuchi H, Nakashima T, Nii M (2001) Genetic-algorithm-based instance and feature selection. In: Liu H, Motoda H (eds) Instance selection and construction for data mining, Kluwer Academic Publishers, Dordrecht, pp 95-112.
    • (2001) Instance selection and construction for data mining , pp. 95-112
    • Ishibuchi, H.1    Nakashima, T.2    Nii, M.3
  • 48
    • 33947421283 scopus 로고    scopus 로고
    • Fuzzy-rough sets assisted attribute selection
    • Jensen R, Shen Q (2007) Fuzzy-rough sets assisted attribute selection. IEEE Trans Fuzzy Syst 15(1): 73-89.
    • (2007) IEEE Trans Fuzzy Syst , vol.15 , Issue.1 , pp. 73-89
    • Jensen, R.1    Shen, Q.2
  • 49
    • 68849126540 scopus 로고    scopus 로고
    • New approaches to fuzzy-rough feature selection
    • Jensen R, Shen Q (2009) New approaches to fuzzy-rough feature selection. IEEE Trans Fuzzy Syst 17(4): 824-838.
    • (2009) IEEE Trans Fuzzy Syst , vol.17 , Issue.4 , pp. 824-838
    • Jensen, R.1    Shen, Q.2
  • 50
    • 30944444787 scopus 로고    scopus 로고
    • Artificial neural networks with evolutionary instance selection for financial forecasting
    • Kim K (2006) Artificial neural networks with evolutionary instance selection for financial forecasting. Expert Syst Appl 30: 519-526.
    • (2006) Expert Syst Appl , vol.30 , pp. 519-526
    • Kim, K.1
  • 52
    • 0031381525 scopus 로고    scopus 로고
    • Wrappers for feature selection
    • Kohavi R, John G (1997) Wrappers for feature selection. Artif Intell 97: 273-324.
    • (1997) Artif Intell , vol.97 , pp. 273-324
    • Kohavi, R.1    John, G.2
  • 53
    • 0000935031 scopus 로고
    • Editing for the k-nearest neighbors rule by a genetic algorithm
    • Kuncheva LI (1995) Editing for the k-nearest neighbors rule by a genetic algorithm. Pattern Recognit Lett 16: 809-814.
    • (1995) Pattern Recognit Lett , vol.16 , pp. 809-814
    • Kuncheva, L.I.1
  • 54
    • 0033220766 scopus 로고    scopus 로고
    • Nearest neighbor classifier: simultaneous editing and descriptor selection
    • Kuncheva LI, Jain L (1999) Nearest neighbor classifier: simultaneous editing and descriptor selection. Pattern Recognit Lett 20: 1149-1156.
    • (1999) Pattern Recognit Lett , vol.20 , pp. 1149-1156
    • Kuncheva, L.I.1    Jain, L.2
  • 55
    • 77952888335 scopus 로고    scopus 로고
    • A unified approach to reducts in dominance-based rough set approach
    • Kusunoki Y, Inuiguchi M (2010) A unified approach to reducts in dominance-based rough set approach. Soft Comput 14(5): 507-515.
    • (2010) Soft Comput , vol.14 , Issue.5 , pp. 507-515
    • Kusunoki, Y.1    Inuiguchi, M.2
  • 59
    • 17044405923 scopus 로고    scopus 로고
    • Toward integrating feature selection algorithms for classification and clustering
    • Liu H, Yu L (2005) Toward integrating feature selection algorithms for classification and clustering. IEEE Trans Knowl Data Eng 17(3): 1-12.
    • (2005) IEEE Trans Knowl Data Eng , vol.17 , Issue.3 , pp. 1-12
    • Liu, H.1    Yu, L.2
  • 60
    • 0035860537 scopus 로고    scopus 로고
    • Machine learning for science: state of the art and future prospects
    • Mjolsness E, DeCoste D (2001) Machine learning for science: state of the art and future prospects. Science 293: 2051-2055.
    • (2001) Science , vol.293 , pp. 2051-2055
    • Mjolsness, E.1    DeCoste, D.2
  • 63
    • 27744565978 scopus 로고
    • Rough sets
    • Pawlak Z (1982) Rough sets. Int J Comput Inf Sci 11(5): 341-356.
    • (1982) Int J Comput Inf Sci , vol.11 , Issue.5 , pp. 341-356
    • Pawlak, Z.1
  • 65
    • 33749667344 scopus 로고    scopus 로고
    • Rough sets: some extensions
    • Pawlak Z, Skowron A (2007a) Rough sets: some extensions. Inf Sci 177(1): 28-40.
    • (2007) Inf Sci , vol.177 , Issue.1 , pp. 28-40
    • Pawlak, Z.1    Skowron, A.2
  • 66
    • 33749680310 scopus 로고    scopus 로고
    • Rudiments of rough sets
    • Pawlak Z, Skowron A (2007b) Rudiments of rough sets. Inf Sci 177: 3-27.
    • (2007) Inf Sci , vol.177 , pp. 3-27
    • Pawlak, Z.1    Skowron, A.2
  • 68
    • 78149233463 scopus 로고    scopus 로고
    • Instinct-based mating in genetic algorithms applied to the tuning of 1-nn classifiers
    • Quirino T, Kubat M, Bryan NJ (2010) Instinct-based mating in genetic algorithms applied to the tuning of 1-nn classifiers. IEEE Trans Knowl Data Eng 22(12): 1724-1737.
    • (2010) IEEE Trans Knowl Data Eng , vol.22 , Issue.12 , pp. 1724-1737
    • Quirino, T.1    Kubat, M.2    Bryan, N.J.3
  • 69
    • 0036498107 scopus 로고    scopus 로고
    • A comparative study of fuzzy rough sets
    • Radzikowska A, Kerre E (2002) A comparative study of fuzzy rough sets. Fuzzy Sets Syst 126: 137-156.
    • (2002) Fuzzy Sets Syst , vol.126 , pp. 137-156
    • Radzikowska, A.1    Kerre, E.2
  • 71
    • 38349121661 scopus 로고    scopus 로고
    • Genetic algorithm-based feature set partitioning for classification problems
    • Rokach L (2008) Genetic algorithm-based feature set partitioning for classification problems. Pattern Recognit 41: 1676-1700.
    • (2008) Pattern Recognit , vol.41 , pp. 1676-1700
    • Rokach, L.1
  • 72
    • 35748932917 scopus 로고    scopus 로고
    • A review of feature selection techniques in bioinformatics
    • Saeys Y, Inza I, Larrañaga P (2007) A review of feature selection techniques in bioinformatics. Bioinformatics 19: 2507-2517.
    • (2007) Bioinformatics , vol.19 , pp. 2507-2517
    • Saeys, Y.1    Inza, I.2    Larrañaga, P.3
  • 75
    • 37649019425 scopus 로고    scopus 로고
    • Feature subset selection based on fuzzy entropy measures for handling classification problems
    • Shie J, Chen S (2008) Feature subset selection based on fuzzy entropy measures for handling classification problems. Appl Intell 28: 69-82.
    • (2008) Appl Intell , vol.28 , pp. 69-82
    • Shie, J.1    Chen, S.2
  • 76
    • 33845302828 scopus 로고    scopus 로고
    • Randomized variable elimination
    • Stracuzzi D, Utgoff P (2004) Randomized variable elimination. J Mach Learn Res 5: 1331-1362.
    • (2004) J Mach Learn Res , vol.5 , pp. 1331-1362
    • Stracuzzi, D.1    Utgoff, P.2
  • 77
    • 78650064965 scopus 로고    scopus 로고
    • IPADE: Iterative prototype adjustment for nearest neighbor classification
    • Triguero I, García S, Herrera F (2010) IPADE: Iterative prototype adjustment for nearest neighbor classification. IEEE Trans Neural Netw 21(12): 1984-1990.
    • (2010) IEEE Trans Neural Netw , vol.21 , Issue.12 , pp. 1984-1990
    • Triguero, I.1    García, S.2    Herrera, F.3
  • 78
    • 84655176618 scopus 로고    scopus 로고
    • A taxonomy and experimental study on prototype generation for nearest neighbor classification
    • Triguero I, Derrac J, García S, Herrera F (2012) A taxonomy and experimental study on prototype generation for nearest neighbor classification. IEEE Trans Syst Man Cybern Part C Appl Rev 42(1): 86-100.
    • (2012) IEEE Trans Syst Man Cybern Part C Appl Rev , vol.42 , Issue.1 , pp. 86-100
    • Triguero, I.1    Derrac, J.2    García, S.3    Herrera, F.4
  • 80
    • 61749090884 scopus 로고    scopus 로고
    • Distance metric learning for large margin nearest neighbor classification
    • Weinberger K, Saul L (2009) Distance metric learning for large margin nearest neighbor classification. J Mach Learn Res 10: 207-244.
    • (2009) J Mach Learn Res , vol.10 , pp. 207-244
    • Weinberger, K.1    Saul, L.2
  • 81
    • 0003389370 scopus 로고
    • The genitor algorithm and selection pressure: Why rank-based allocation of reproductive trials is best
    • Fairfax, Virginia, USA, June 1989, Morgan Kaufmann
    • Whitley LD (1989) The genitor algorithm and selection pressure: Why rank-based allocation of reproductive trials is best. In: Proceedings of the 3rd international conference on genetic algorithms, vol 2, Fairfax, Virginia, USA, June 1989, Morgan Kaufmann, pp 116-123.
    • (1989) Proceedings of the 3rd international conference on genetic algorithms , vol.2 , pp. 116-123
    • Whitley, L.D.1
  • 82
    • 0015361129 scopus 로고
    • Asymptotic properties of nearest neighbor rules using edited data
    • Wilson DL (1972) Asymptotic properties of nearest neighbor rules using edited data. IEEE Trans Syst Man Cybern 2(3): 408-421.
    • (1972) IEEE Trans Syst Man Cybern , vol.2 , Issue.3 , pp. 408-421
    • Wilson, D.L.1
  • 83
    • 0343081513 scopus 로고    scopus 로고
    • Reduction techniques for instance-based learning algorithms
    • Wilson DR, Martinez TR (2000) Reduction techniques for instance-based learning algorithms. Mach Learn 38(3): 257-286.
    • (2000) Mach Learn , vol.38 , Issue.3 , pp. 257-286
    • Wilson, D.R.1    Martinez, T.R.2
  • 86
    • 34248666540 scopus 로고
    • Fuzzy sets
    • Zadeh LA (1965) Fuzzy sets. Inf Control 8(3): 338-353.
    • (1965) Inf Control , vol.8 , Issue.3 , pp. 338-353
    • Zadeh, L.A.1
  • 87
    • 79956205684 scopus 로고    scopus 로고
    • Fuzzy decision tree based on fuzzy-rough technique
    • Zhai J (2011) Fuzzy decision tree based on fuzzy-rough technique. Soft Comput 15(6): 1087-1096.
    • (2011) Soft Comput , vol.15 , Issue.6 , pp. 1087-1096
    • Zhai, J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.